CONF -F5)D0F--2.

DISCLAIMER - HECERIVED

This report was prepared as an account of work sponsored by an agency of the United States JAN 2 6 1995
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi- O S T ‘
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or *

process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

A Real-Time MPEG Software Decoder

Using a Portable Message-Passing Library

Man Kam Kwong, P. T. Peter Tang, and Biquan Lin*

Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439-4844

Email: kwong, tang, blin@mcs.anl.gov

Abstract

We present a real-time MPEG software decoder that uses message-

passing libraries such as MPL, p4 and MPIL The parallel MPEG de-

*This work was supported by the Office of Scientific Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38.

MAS l ER The submitted manuscript has been authored

8 S a contractor of the U.S. Government
‘»AEMT ‘S UNL‘M‘T :Z:der contract No. w-31-109-EN(§~38.
1S QQGU‘ Accordingly, the U. S. Govgrnment retam§:
‘ON OF TH.XW nonexclusive, royalty-free license to pUbit:‘s
or reproduce the published form of f«
contribution, or atlow others to do so, for
U. §. Government purposes.

1

piISTRIBUT

coder currently runs on the IBM SP system but can be easily ported
to other parallel machines. This paper discusses our parallel MPEG
decoding algorithm as well as the parallel programming environment
under which it uses. Several technical issues are discussed, including
balancing of decoding speed, memory limitation, I/O capacities, and
optimization of MPEG decoding components. This project shows that
a real-time portable software MPEG decoder is feasible in a general-

purpose parallel machine.

Keywords: Image processing, high-performance computing, video

compression, real-time system, message-passing library.

1 Introduction

Video compression is a crucial technique in coping with large amounts of dig-
itized video data. MPEG (Motion Pictures Expert Group) is an industrial
standard of video and associated audio compression for digital media storage
and transmission. An MPEG video system consists of an encoder and a de-

coder: the encoder compresses a sequence of images (video) into a bitstream

and the decoder decompresses the bitstream and displays the decompressed

video. Since a video sequence has to be displayed in real-time, an MPEG
decoder is required to perform over a billion operations per second. Usu-
ally, special hardware with signal processing chips is needed to implement an
MPEG decoder. This paper explores the possibility of using portable parallel

software environment to implement such a video decoder.

<

Although a hardware-based MPEG system can encode and decode video
sequences in real-time and the cost for the hardware will decrease dramat-
ically in the coming years, a software-based approach presents several ad-
vantages: First, it provides a simulation environment for designing the hard-
ware. In fact, a software simulation must be performed before designing
any hardware-based MPEG system, since it involves complex compression
algorithms. Second, a software-based approach provides flexibility to accom-
modate growing varieties of algorithms and specific applications. Third, a
software-based approach enables the use of a single general-purpose multipro-
cessor computer which, for many visual communication and image processing
tasks, is more economical than buying separate special hardware pieces. Our

investigation of a parallel software-based implementation of MPEG system

was motivated by these consideration.

Recently, several real-time software decoders have been implemented.
Rowe et al. [7] developed a portable MPEG-1 video decoder that can play
small-sized (160x120) video in real-time. They used a SPARC 1+ to read
the bitstream and a SPARC 10 to decode and display the video. Some frames
may be dropped to accommodate network load and decoding speed. Tay-
lor [8] implemented an MPEG-1 encoder and decoder that works in real-time
using some special DSP processors embedded in parallel hardware. The draw-
back of this implementation is that it cannot be ported to a general-purpose
parallel machine without such DSP processors. Ghafoor et al. [1] studied
speedup with different numbers of processors on several parallel machines
including the nCUBE2 and Intel’s Paragon. But they did not incorporate

such parallel decoding processes with real-time and continuous video display.

Our parallel MPEG-1 parallel decoder has the following features. First it
is implemented in a general-purpose parallel machine (IBM SP) and can be
easily ported to other machines, since it uses a message passing library such
as MPL, p4 and MPI. Second, it can decode and display video smoothly in

real-time by means of a HIPPI (HIgh Performance Parallel Interface) frame

buffer. Third, the parallel MPEG decoder requires only 16 processors, which

are now available on many commercial parallel machines.

The remainder of this paper is organized as follows. Section 2 discusses
our parallel MPEG-1 decoding algorithm. Section 3 describes our implemen-
tation environment, including the system configuration and message-passing
libraries used. Section 4 discusses several technical issues faced in imple-
menting the decoder. Section 5 presents our testing results. Finally, Section
6 summarizes the project and points out some future research and imple-

mentation topics.

2 Parallelization of the MPEG Decoder

MPEG is a video coding standard established by the Motion Pictures Expert
Group of the International Standards Organization. Version 1 of MPEG
(or MPEG-1) is primarily designed for digital storage such as CD-ROM at
transmission speeds up to 1.5 Mbits/second. MPEG-2 is designed as a generic
standard to support a variety of applications including high-definition TV,

digital cable TV, and video-on-demand. Both MPEG-1 and MPEG-2 use

discrete cosine transform coding, motion estimation and Hoffman coding

techniques to compress video data. This paper is mainly concerned with

MPEG-1.

The syntax of an MPEG bitstream is organized into several layers: video
sequence layer, group of pictures (GOP) layer, picture layer, slice layer, mac-
roblock layer, and block layer. An upper layer encapsulates a lower layer,
and each layer conveys information for some specific functions. For example,
the video sequence layer contains information for an entire video sequence
such as video size, bit rate, and default quantization matrices; the picture
layer contains information such as picture coding type and temporal refer-
ence for non-intra coded pictures; the macroblock layer deals with motion

estimation and compensation; and the block layer contains information on

.DCT coeflicients.

There are three types of MPEG picture frames: intra-coded (I) frame,
predictive-coded (P) frame and bidirectionally predictive-coded (B) frame.
An I-frame is coded by using information only from itself. A P-frame is coded
by using motion compensation from a past I-frame or P-frame. A B-frame

is coded by using motion compensation from a past and/or future I-frame

or P-frame. The group of pictures (GOP) layer is intended to assist random

access to the sequence. A GOP contains at least one I-frame, and it may
contains some P-frames and B-frames. In the bitstream, the first frame in a
GOP must be an I-frame, and the reference frames (an I-frame or a P-frame)
by a P-frame or a B-frame are coded ahead so the the bitstream can be
decoded and displayed on-the-fly. But in display order, the first displayed
frame in a GOP needs not be an I-frame; it may use an I-frame or a P-frame
in the preceding GOP. In general, a GOP is a relatively independent unit and
can be decoded in parallel if we add the sequence header and the previous

GOP information. Qur parallel algorithm is based on this observation.

Figure 1 is the diagram of the parallel MPEG decoder. The parallel
MPEG decoder consists of a distributor, a number of decoders, and a col-
lector. The distributor cuts a sequential MPEG bitstream into segments.
Each segment contains sequence header, the preceding GOP (which may be
referred to by the current GOP), the current GOP, and the sequence end
code. The distributor also dispatches the cut segments to decoders in turn.

Fach decoder receives and decodes segments, dithers the decoded frames into

the ARGB format (the display format for HIPPI), and sends frames to the

collector. The number of decoders is scalable to accommodate different CPU

speeds. In our system, 14 to 18 SP nodes (each roughly equivalent to a
RS/6000 model 370 workstation) are sufficient to achieve real-time decoding
(30 frames/second). The collector collects decoded frames in order and sends

them to a HIPPI frame buffer for real-time display.

Decoder

Decoder

Decoder —
7
/

bitstream
Decoder

—_—
HIPPI
"

Collector

Distributor

/N

Decoder

i Decoder |

Figure 1. The Basic Model of Parallel MPEG Decoder

3 System Environment and Parallel Program-
ming Libraries

The parallel MPEG decoder was developed on IBM SP system using message

passing parallel libraries. In this section, We describe system environment

and parallel software tools.

SP. The SP is an IBM POWERparallel system that can provide high-
performance CPU and I/O power with scalability and flexibility on a UNIX
operating system. The current SP2 system can be scaled from 2 to 512 nodes,
each node is essentially an RS/6000 model 370. The nodes are connected by
internal high-performance switch. In the Mathematics and Computer Science
Division of Argonne National Laboratory, 128 nodes are currently installed;
each node is equipped with 128 MBytes of memory and 125 MFlops. The
peak performance for switching between nodes is 35 MBytes/sec bandwidth
and 63 psec latency. In our parallel MPEG decoding system, only 16 to 20

nodes are required to achieve real-time performance.

MPL. MPL is IBM’s message-passing library for the high-performance
switch. It is easy to parallelize a standard C program by calling a few
message-passing functions in the MPL library. In our implementation of

the MPEG decoder, fewer than 10 MPL functions are used. A list of MPL

message-passing functions can be found in [3].

p4. p4 is one of the most popular message-passing systems that can run

on a wide variety of parallel systems and workstations. One of the imped-

iments to widespread use of parallel computers is lack of standard software

tools; users have to use specific software tools provided by vendors. p4 is an
early effort to build a “common language” for these machines. Currently, it
has been installed in most major parallel machines and workstations We im-
plemented the parallel MPEG decoder using p4 library; and the performance

is almost the same as that using MPL library.

MPI. MPI (Message Passing Interface) is a standard for message-passing
system established by a broadly based parallel computing group including
vendors, library developers, and users. MPI was completed in the spring of
1994 and is now awaiting public comments. An excellent book on MPI for
newcomers as well as for experienced parallel researchers and programmers
is [2]. One version of our parallel MPEG decoder was implemented with the

MPI message-passing system.

HIPPI. HIPPI (HIgh Performance Parallel Interface) is, as its name
says, a high-performance I/O interface. At Argonne, a HIPPI frame buffer
developed by Input Output Systems Corporation is connected by a HIPPI
channel to the IBM SP2 system. The image can be displayed from the HIPPI

frame buffer at high resolution (1280x1024) or low resolution (640x512).

TCP/IP and IPI-3 protocols are currently used for the connection. The peak

transmission performance is 40 MBytes/sec. Our parallel MPEG system

delivers 30 frames/sec. at low resolution.

4 Implementation Issues for the Parallel MPEG

Decoder

In this section, we discuss several technical issues in our implementation
of parallel MPEG decoder. These issues must be taken into account when

porting the parallel MPEG decoder into other machines.

Parallel Models. Figure 1 is a simple parallel MPEG decoding model.
We also studied several more complicated parallel models to accommodate .
different CPU speeds, memory capacities, and transport protocols. Here we

give some examples:

Token Model. Asynchronic message passing between nodes makes tasks
more independent of each other. For example, in p4, the p4_send() function
will return without waiting until an acknowledgment is received, so that the
calling process can continue work on other calculations such as decoding. If

this function is used, some decoders may keep sending decoded frames to

11

the collector where they must be wait in the buffer. This procedure will
cause overflow if the buffer size is small. A scheduling algorithm is needed
to overcome this drawback. A simple scheduling policy is to pass a token
among each decoding node and to allow only the node holding the token to
send the frames. Once it finishes sending, it releases the token to the next

decoding process. This model is called a token model.

Scalable Model. Another way to overcome the memory limitation of the
collector is to build a hierarchical buffering for the collector. For example,
we can add a first-layer buffering processor for every three decoders and a
second-layer buffering processor for every first-layer buffering processors and
so on. This model enables decoding processes to be scaled to any number.

The disadvantage of this model is that it introduces many overhead.

Parallel /O Model. Display speed and stability can be dramatically
improved if we can let the collector’s output (sending to the HIPPI frame
buffer) in parallel with its input (receiving from decoding nodes). At the
current stage, the time for displaying one frame is bounded by the sum of

the time for receiving it from a decoding nodes and the time for sending it to

the frame buffer. Moreover, an instable transmission rate between a decoding

node to the collecting node will affect the display rate. This effect will be
removed if a parallel I/O mechanism is implemented. A synchronization
scheme is currently used to reduce the instability of transmitting frames

from decoding nodes to the collecting nodes.

Load Balance. Load balance is an important issue in parallel com-
puting. Several strategies are used in the parallel MPEG decoder. Since
the decoding speeds for I-frames, P-frames and B-frames are different and a
future reference frame will be delayed to display in MPEG codings, the de-
coding rate will vary significantly if we sent a frame as soon as it is decoded.
Instead, we send frames when all frames in this GOP are decoded. There-
fore, the decoding loads among decoders are almost balanced assuming each
GOP requires the same decoding time. We also must balance the CPU speed
and transmission capacities tq achieve real-time performance. For example,
if a routine that transforms a YUV format to ARGB format is put in the
decoder, the transmitted data from decoding nodes to the collecting nodes
will be reduced by 2.67 times. But by doing so, the collector must transform
the format. This process is feasible only if the collector has a very high CPU

speed.

13

Reducing Overhead. In our prototype implementation, one GOP with
its preceding GOP is sent to each decoder. This process causes one GOP
overhead for each transmission from distributor to decoder. The overhead
can be reduced by transmitting several consecutive GOPs with one preceding
GOP. But this modification will increase latency. The overhead can also be
reduced by restricting bitstream in encoding process. If every GOP is started
with an I-frame in the display order, one no longer needs to add a preceding

GOP when distributing segments to decoders.

Local Optimization. Numerous coding optimizations were used in im-
plementing our parallel MPEG decoder. These optimizations included use of
local copies of variables to avoid memory references; as many register vari-
ables as possible; bit operations instead of arithmetic operations, and in-line

expansions instead of function calls. Also, a fast dithering algorithm from

YUYV format to HIPPI’'s ARGB format is used.

5 Experiment Results

We tested our parallel MPEG decoder for two standard video sequences:
“flower garden” (Figure 2) and “tennis” (Figure 3). The testing result are
summarized in Table 1. Note that the time is an approximation based on a

segment containing GOPs with six frames. The testing was conducted in the

system environment described in Section 3.

Figure 2. Flower Garden Image Figure 3. Tennis Image

Total Number of Processors

16

Overall Speed 30 frames /sec.
Latency about 10 sec.
Image Size 352x240
Number of GOPs 26
Number of Frames 150
Bit-rate from Disk to Distributor 3.16 MB/sec.
Bit-rate from Distributor to Decoder 17 MB/sec.

Time from Decoder to Collector
Time from Collector to HIPPI

Time for Dithering a Frame

Time for Decoding a Segment (Fig. 1)

Time for Decoding a Segment (Fig. 2)

0.0112 sec./frame
0.0167 sec./frame
0.135 sec.
2.48 sec.

1.95 sec.

Table 1. Key Statistics of Parallel MPEG Decoder

6 Conclusions

In this paper, we developed a real-time software MPEG decoder using portable
parallel processing tools. Compared with a hardware-based approach, the
software-based approach provides a better environment for exploring video
compression algorithms. In addition, the software approach enables flexibility
and portability in applications. A future research topic is to investigate par-
allel video data distribution and management algorithms and parallel MPEG

encoding schemes by using portable message passing libraries.

7 Acknowledgments

We thank our colleagues E. Lusk and W. Gropp for many discussions on using
the p4 and MPI message-passing systems at their early stages, T. Pierce for

his help for efficiently using the SP2 I1/O subsystem, and S. Bradshaw for

allowing us to use and modify his HIPPI display program.

References

[]

Arif Ghafoor, J. Yang, and S. Baqai, “Coarse-grained Parallel Algorithm
and Implementation for MPEG-1 Decoder,” Proceedings of the Work-
shop on Wavelets and Large-Scale Image Processing, Argonne National

Laboratory, 1994.

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message-Passing Interface, MIT Press, 1994.

IBM, High-Performance Parallel Interface User’s Guide and Program-

mer’s Reference Manual, AIX version 3.2, May 1993.

IBM, IBM AIX Parallel Environment Parallel Programming Subroutine

Reference Release 2.0, June 1994.

ISO/IEC Committee Draft 11172-2, Coding of Moving Pictures and As-
sociated Audio for Digital Storage Media at upto 1.5 Mbits/s, ISO/IEC

JTC1/5C29 WG11, Nov. 1991.

R. Butler and E. Lusk, User’s Guide to the p4 Parallel Programming

System, Technical Report ANL-92/17, Argonne National Laboratory,

Oct. 1992.

[7] L. A. Rowe, K. D. Patel, B. C. Smith and K. Liu, “MPEG Video in
Software: Representation, Transmission, and Playback,” SPIE Proc. of
High-Speed Networking and Multimedia Computing, pp. 134-144, Feb.

1994.

[8] H. H. Taylor, D. Chin, and A. W. Jessup, “An MPEG Encoder Imple-
mentation on the Princeton Engine Video Supercomputer,” IEEFE Proc.

of Data Compression Conference, pp. 420-429, 1993.

19

