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Abstract

The Fermi-Léwdin orbital self-interaction correction (FLOSIC) method effectively
provides a transformation from canonical orbitals to localized Fermi-Lowdin orbitals
which are used to remove self-interaction error in the Perdew-Zunger (PZ) frame-
work. This transformation is solely determined by a set of points in space, called
Fermi-Léwdin descriptors (FODs), and the occupied canonical orbitals or the density
matrix. In this work we provide a detailed workflow for the implementation of the
FLOSIC method for removal of self-interaction error in DFT calculations in an orbital-
by-orbital basis that takes advantage of the unitary invariant nature of the FLOSIC
method. In this way, it is possible to cast the self-consistent energy minimization at

fixed FODs in the same manner than standard Kohn-Sham with one additional term in



the Kohn-Sham Hamiltonian that introduces the PZ self-interaction correction. Each
energy minimization iteration is divided in two sub-steps, one for the density matrix
and one for the FODs. Expressions for the effective Kohn-Sham matrix and FOD gradi-
ents are provided such that its implementation is suitable for most electronic structure
codes. We analyze the convergence characteristics of the algorithm and present appli-
cations for the evaluation of NMR shielding constants and real-time time-dependent
DFT simulations based on the Liouville-von Neumann equation to calculate excitation

energies.

1. Introduction

Density functional theory (DFT)!? can be considered the workhorse of electronic structure
methods, offering a good compromise between accuracy and computational cost for a wide
range of systems and properties.® 7 Despite its success, DFT is not free from limitations. One
of the most striking shortcomings of approximate exchange-correlation density functionals is
that they do not completely cancel the interaction of electrons with themselves, giving place
to the well-known self-interaction error (SIE). The presence of SIE has been linked to several
negative consequences, such as, for example, an incorrect potential energy disociation curve
for Hy*,%Y an underestimation of energy band gaps,!® and unphysical Kohn-Sham orbitals
and orbital energies,!! which are known to impact calculated magnetic properties.'?

Perdew and Zunger proposed a scheme to explicitly remove the one-electron SIE'® on an

orbital-by-orbital basis. This scheme, commonly known as PZ-SIC, is based on a modified

energy expression,

Eprrsic = Eppr[n',n'] = Y (Excl[n{,0] + Eu[nf)), (1)

0,0

where n{ are single orbital spin densities (¢ =71,]) and Exc and Ey are the exchange-

correlation and Hartree energies, respectively. The PZ scheme to remove SIE delivers the



proper corrections to approximate density functionals via localized orbitals. However, this
scheme has not been adopted for routine applications due to the high computational cost
associated with solving a system of equations, also known as the localization equations,'4
which involves finding a unitary transformation that minimizes Eppr.sic. In addition to
the computational burden involved in removing SIE, its use in combination with standard
approximate functionals may be detrimental for many properties, and thus demands careful
construction of density functionals for SIC.1%2!

In the past years, a method for removing the SIE based on the construction of Fermi-

Lowdin orbitals (FLOSIC) was proposed.?*2* Within this approach, the localized orbitals

that are used for minimizing Enpr.gic are parametrized in the form of Fermi orbitals?® f, (r),

D SRTACING

n(a)

Jal(r ) (2)

where a are points in space, called Fermi orbital descriptors (FODs), 1,(r) are the canonical
Kohn-Sham orbitals which define the occupied sub-space, n is the electron density, and a
denotes an FOD label. The spin indices have been omitted for clarity. The non-orthogonal
Fermi orbitals f,(r) are then orthogonalized using the Lowdin orthogonalization scheme?®
to give place to the Fermi-Léwdin localized orthonomal orbitals (FLOs), which are solely
determined by the occupied manifold and the set of FODs. Minimizing Eppr.sic therefore
involves relaxing the canonical orbitals (or the occupied sub-space) and the FODs. In the
original implementation of the FLOSIC method in the FLOSIC code?’, the occupied sub-
space relaxation was achieved by means of Jacobi-type rotations to zero the overlap between
the occupied and virtual orbitals at each self-consistent iteration, much like traditional im-
plementations of Foster-Boys,??° Edmiston-Ruedenberg,?® or Pipek-Mezey?! localization
schemes. Other implementations of FLOSIC are based on unified Hamiltonian schemes and

effective potentials.?? 3¢ In this work we introduce an implementation of FLOSIC based on

the minimization of Eppr.sic. An effective mean-field Kohn-Sham Hamiltonian, including



self-interaction, is derived as a derivative of Eppr.sic with respect to the 1-particle density
matrix, leading to a set of standard self-consistent Roothaan-Hall equations that determine
the occupied orbitals and hence the density matrix. The set of FODs is relaxed in a separate

step to complete a fully variational procedure for the minimum of Eppr.sic.

2. Theory and Implementation

Since the set of Fermi orbitals defined in eq. (2) is a normalized but not orthogonal set, a

Léwdin symmetric orthogonalization is performed to give Fermi-Lowdin orbitals (FLOs),

Fy(r) =) [0 afo(r), (3)

with
>0 Va(a)va(b)

Oab -
(@) (b) “

the Fermi orbital overlap matrix. This choice of orthogonalization ensures that the Fermi
orbitals and FLOs are as close as possible, in the least-squares sense.3” The transformation
from Fermi-orbitals to Fermi-Lowdin orbitals and its inverse have been derived in Ref. 38.
The FLOs depend only on the FODs and the occupied canonical orbitals, and therefore it is
possible to write the single-orbital Fermi-Lowdin densities P, in terms of the total density
matrix P and the FODs (vide infra). This allows us to write the Perdew-Zunger energy in

terms of the total density matrix and the FODs,

Eprrsic(P, {a}) = Eppr(P) + Esic(P, {a}), (5)

with

Eqc(P,{a}) = Z Fuxc(P (6)

In eq. (6), Euxc is the Hartree plus exchange-correlation energy. Finding a stationary



solution of Eppr.sic in eq. (5) with the standard constraints of orbital orthonormalization
leads to the Kohn-Sham equations, and the only difference between standard Kohn-sham and
Perdew-Zunger in this case is the additional Egc(P,{a}) term, which accounts for removal
of self-interaction and depends on P and all the FODs. Thus, for a given (fixed) set of FODs,

the effective KS Hamiltonian is

dEpprsic  dEppr  dEsic
Hyq = = 7
K P P P (")

where

dE dFE; dP
SIC _ Z SIC (8)

Equations (5) and (7) provide the energy and an effective “mean-field” Hamiltonian that
includes the self-interaction correction. In eq. (8), the “-” symbol represents contraction on
all the indices of P,. The solutions of the KS equations using the augmented Hkg given
in eq. (7) can be obtained using very well-developed self-consistent techniques, available
for standard KS calculations. However, it should be pointed out that this Hamiltonian
does not provide the fully variational solution because it does not allow for FOD relaxation.
In practice, relaxation of both, FODs and density matrix can be performed using a two-
loop self-consistency as suggested by Lehtola et al.3 In our approach, the density matrix
and FODs are relaxed in independent steps, which are repeated until convergence of all
parameters is achieved, as shown schematically in Figure 1. This double loop strategy has
been successfully used in several implementations of SIC methods. 32333

The mean-field Hamiltonian in eq. (7) is derived from variations of the total energy, and
hence the self-consistent solutions of the KS equations with SIC provide a stationary solution
of the energy in eq. (5) at fixed FODs. The matrix elements of the single-orbital density

matrices P,, needed for the evaluation of Epprgic in eq. (5), can be obtained following

three simple steps:

1. Evaluate the transformation matrix G from atomic orbitals (AOs) ¢,(r) to Fermi-
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Figure 1: Flowchart of the algorithm used for FLOSIC calculations.

orbitals Iy (r) as Go = >_, @y, where @, = Puéu(a)//n(a).

2. Calculate the Fermi-orbital overlap matrix as O = G'SG (S is the AO overlap
matrix). Alternatively, the FO overlap can be evaluated as O = Y'PY. Where

Y. = ¢u(a)/y/n(a) and the fact that P is idempotent (P = PSP) has been used.

3. Using the Fermi-orbital overlap matrix, construct the single-orbital density using [P, =

X7 Xya, where X = GO'2,

It can be easily verified that ) P, = P, consistently with the unitary invariance of the
FLOSIC transformation. Additionally, by construction, each P, is idempotent and holds
exactly one (or two for the closed-shell case) electrons.

During the density matrix relaxation, the additional term needed in Hgkg to account for

SIE (eq. (7)) can be obtained as the gradient “Z51¢ while for the FOD relaxation loop, the

FOD gradients are calculated as dﬁdaﬁ. In what follows, we provide the workflow to evaluate

generalized gradients of EFgi¢ in the FLOSIC formalism. To simplify the equations, we use



Newton’s notation for these gradients, ['] = d/d Py, for derivatives with respect to the density

matrix elements, or ['] = d/da for gradients with respect to Cartesian FOD components:

1. Construct Q using:

“a dQZV o gbu(a)élw,)\a . EPAUQZ))\(a)gbU(a)QSM(a) (9)

w= 4Py | n'2(a) 2 32 (a)

for the self-consistent field (SCF) loop, or

. dQy, _ PwVady(a) 16,Van(a)

= ni2@) 2 n3%(a) (10)

for the FOD relaxation loop. Note that QZV in eq. (9) is not symmetric in p and v and
it is Hermitian in A and o, while QZV in eq. (10) does not have any index symmetry.

In eq. (10) it has been assumed that dQ%,/db = dQs,,/dadap.

2. From eqs. (9) or (10), evaluate G, = > Q%,, and O = G'SG + G'SG.

a
pv?

3. Calculate the derivative of the AO-to-FLO transformation matrix as X = GW+GW,
with W = O~1/2. The W matrix can be calculated from O using the method described

by Chen and Gauss (a full derivation is provided in the ST).%°
4. From X, evaluate the gradients using [Pa] = X o Xva + X7, X,

We have implemented the scheme described above using the relaxation algorithm shown in
Figure 1 in an in-house version of the GAUSSIAN program®! using calls to PYTHON functions
to simplify the implementation. The SCF loop is performed entirely using the Gaussian pro-
gram and thus takes advantage of all the acceleration techniques available in that code. The
FOD relaxation is performed using the limited memory Broyden—Fletcher—Goldfarb—Shanno
method (L-BFGS) from NUMPY.

In Figure 2, we show the typical convergence characteristics of the double loop algorithm

of Figure 1. The SCF loop has excellent convergence properties, in analogy to standard DFT
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Figure 2: Typical convergence behavior of the optimization algorithm shown in Fig. 1. The
plots are for HCN molecule with the aug-cc-pVTZ basis set and the PBE functional. (a)
RMS FOD gradient and (c) energy change with respect to the (final) lowest energy at the
end of the SCF loop and commutator error (calculated as the norm of HxsPS — SPHkg) at
the beginning of each SCF loop. Panel (b) shows the energy change and RMS FOD gradients
at each individual iteration. The blue points in the vicinity of 107 correspond to the RMS
FOD gradient after the FOD relaxation step. Panel (d) shows the rate of convergence of
the energy for the entire double-loop algorithm calculated as |AE(, 1)/ AFE,|, where n is the
iteration number.



calculations. The FOD relaxation step was successful in most cases in our tests, provided
that a reasonable set of starting FOD is available, with gradients reaching 10~° Hartree/Bohr
in a few iterations for small molecules. Fig. 2-a shows the root mean square (RMS) FOD
gradient at the end of the SCF loop as a function of the iteration number, with typical values
in the range of 1075 to 107® Ha/Bohr as convergence of the double loop progresses. Fig. 2-b
shows both, the RMS FOD gradient and AFE at each individual SCF cycle. The blue dots
that fall below 10~% Ha/Bohr correspond to the first SCF cycle, which evaluate the gradients
immediately after the FOD relaxation step. In Fig. 2-c we show the change in energy between
two consecutive iterations in the SCF loop, AE in Hartree and the commutator error after
the FOD relaxation step. The combined double-loop scheme converges only linearly for all
the test cases that we performed (see panel d of Figure 2) and highlights one of the potential
areas of improvement of the method.

One characteristic of the double-loop optimization is that the FOD energy landscape
changes as the occupied manifold changes, unlike in the case of structural relaxation. In
Fig. 3, we show the position dependence of the energy and gradients for the C—H bond FOD
in the CH, molecule. Regardless of being a simple example, Fig. 3 shows some important
features of the FOD energy landscape. First, there is a clear basin that hosts the global
minimum, as well as three “flat” regions where the FOD gradients become small or zero
(Fig. 3-b), potentially causing problems in a gradient-based minimization. Fig. 3-c illustrates
a successful optimization case. Starting from the FODs at the leftmost arrow position, the
L-BFGS algorithm finds where the gradients are zeroed, at the next arrow to the right. With
these new FODs, the SCF procedure determines a new density, which in turn changes the
FOD energy landscape. This sequence repeats seven times in this simple case until the global
minimum is found. This behavior is commonly found in many optimization problems, but
it can be particularly challenging in the case of finding optimal FODs due to the increased
dimensionality for larger molecules, emphasizing the importance of developing reliable tools

to determine initial FOD for the FLOSIC method.*243
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Figure 3: (a) Energy and (b) FOD gradient landscape for the FOD “breathing mode” for
a methane molecule preserving Ty symmetry using the aug-cc-pVTZ basis and the LSDA
functional. The red arrow in panels a and b indicate the FOD position for the calculation
and the vertical red dotted line shows the global energy minimum. Panel ¢ shows the FOD
gradients for different FOD positions (represented with colored arrows) following an L-BFGS
optimization sequence.
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3. Applications

The FLOSIC method has been tested and benchmarked for a number of applications, in-
cluding thermochemistry, and electrostatic and magnetic properties.**° For the evaluation
of many molecular properties, it is convenient to consider a small perturbation added to the
total energy,

E(P,{a}) = Eppr(P) + Esic(P, {a}) + AQ(P), (11)

and express the target property in terms of the second-order correction to the energy. In
this case, )\g—g represents the perturbative term to be added to the Hamiltonian, and A is an
infinitesimally small parameter. We show in the SI that since © does not depend on {a},
the second-order in A energy correction can be obtained at fixed FODs, i.e., the first-order

response of the FOD with respect to the perturbation can be neglected:

o dQ dP

=P N (12)

For example, for the calculation of the (i, 7) component of the electric dipole polarizability
tensor, 2;(P) = (z;) , and E® = (R; - P§1)>, where R; is the i-component of the vector
dipole matrix and Pgl) is the first-order density matrix corresponding to the electric field per-
turbation in the j direction, in analogy to standard linear-response theory. Obtaining P™),
however, is not trivial as one would have to include the kernel response due to Egic(P,a).
While in practice, this has been done using finite perturbations (see for example Refs. 50—
52), our results show that for the evaluation of second-order response properties, only the
density needs to be relaxed, formally validating the use of a fixed FOD approach.

NMR properties are very sensitive to the underlying electronic structure method used for
their evaluation, and thus removing self-interaction error is expected to have a significant

effect. Using the Krieger-Li-Iafrate®® approximation to the optimized effective potential

for removing self-interaction error, Ziegler et al. have shown in an early paper® that self-
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interaction can have a sizable impact on NMR shielding constants. Here we tested the effect
of explicitly removing self-interaction error in an orbital-by-orbital basis using the FLOSIC
method in a set of small molecules (CH,, NH3, Ny, and Hy,0). To this end, we employed the
LSDA and PBE functionals in combination with the aug-cc-pVQZ basis with the individual
atomic centers as gauge origin. A self-consistency convergence threshold of 107 Ha in the
energy and 107% in the RMS changes in the density matrix was used in all calculations
for the SCF loop, and 107% Ha/Bohr in the RMS FOD forces for the FOD loop. FODs
were relaxed using the same basis and the corresponding functional for each case (atomic
coordinates and FODs are provided in the SI). Since Eppr and Egic do not depend on the
first-order paramagnetic current, the linear-response equations involved in the evaluation
of the paramagnetic contribution are uncoupled and thus the paramagnetic term in the
FLOSIC method can be evaluated as a simple sum-over-states. As a consistency check,
we have tested the validity of this approach by comparing with explicit finite differences
calculations of the paramagnetic contribution using a version of the code that works with

complex density matrices (shown in the SI).

Table 1: Isotropic NMR shielding constants, o, calculated with the FLOSIC method using
the LSDA and PBE functionals (in ppm). The aug-cc-pVQZ basis is used with the gauge
origin placed at each given nuclei. A = oprosic — OprT

LSDA PBE
DFT FLOSIC A DFT FLOSIC A

CH,(C) 1907 1743 —164 1830  168.1 —19.9
FH(F) 4077  379.6 —28.1 4032  374.0 —29.2
No(N)  —96.7 —1049 -82 —88.0 —87.3 0.7
H,0(0) 3261 2948 —31.3 320.1  281.2 —39.9
NHy(N) 2624 2404 —220 257.7  217.9 —39.8

Table 1 shows the absolute NMR shielding constants for LSDA and PBE and their self-
interaction corrected counterparts. In all cases, removing SIE leads to a shielding effect

(A < 0 in Table 1), shifting the NMR shielding constant towards a lower field region. The

12



diamagnetic contribution (not shown in Table 1) remains almost unaffected by removal of
self-interaction error. This is somewhat expected since it is calculated as the expectation
value of a short-range operator, and thus, unlike the dipole moment, it is less sensitive to
subtle changes in the total density. 505 The effect of removing SIE in the isotropic NMR
shielding constants is largely due to the change in the paramagnetic contribution. This
contribution is negative in all cases, and becomes slightly larger in magnitude when SIE is
removed using the FLOSIC method. This can be understood in terms of the slight reduction
of the gap between the occupied and virtual orbitals that enter in the sum-over-states used

to evaluate the paramagnetic contribution.

TD-DFT
—— SICTD-DFT
0.0
LUMO  LUMO
5 LMo
s 50
o 3 LuMo
= S
= 2710075500 Homo
o ] -12.5
g -15.0
A
DFT  SIC-DFT SIC-DFT
—
10 15 20 25 30

Energy (eV)

Figure 4: Excitation spectrum of the CH,; molecule calculated from real-time TD-DFT
propagation for DFT (orange) and self-interaction corrected DFT (green) using the FLOSIC
method. The red arrows show the displacement of the main peaks. The inset shows the
HOMO/LUMO energies as estimated from different methods. See text for details.

Since at convergence the effective Hkg (eq. 7) satisfies the Roothaan equations for sta-
tionary (canonical) orbitals, it also satisfies the zero commutation relation between Hkg and
the total density matrix P, which in the non-orthogonal AO representation takes the form

HysPS —SPHks = 0. In analogy to TD-DFT, one can thus write a Liouville-von Neumann

13



equation for the total time-dependent density matrix,

P
z'scil—ts = HysPS — SPHgq (13)

that includes the self-interaction correction in Hgg, and assumes that the FODs are kept
fixed during the time evolution, which is formally justified if the deviation from equilibrium
is small, as shown above. This approach provides a computationally costly but reliable
way to obtain electronic excitations from self-interaction corrected DF'T within the FLOSIC
formalism. As a proof-of-concept, we used eq. 13 to perform a time dependent DFT (TD-
DFT) propagation using the J-kick method to determine the electronic excitation spectrum
of the CH, molecule. The time propagation was carried out using a customary second-order

Magnus expansion %5>7

with the second-order predictor-corrector scheme proposed by Cheng
et al.?® The total density matrix P as well as the single-orbital density matrices P, are
necessarily complex, while the FODs are kept real.?®%" The calculations were performed
using the aug-cc-pVTZ basis within the LSDA approximation as the underlying functional.
A total propagation time of 90 fs and 510* time steps was used to allows for an energy
resolution of approximately 0.07 eV. The excitation spectrum, calculated as the Fourier

transform of the time-dependent dipole moment for the FLOSIC time-dependent density is

shown in Figure 4 (the excitation spectrum for the Ne atom is shown in the SI).

Table 2: HOMO and LUMO energy levels (in eV) of the CH, molecule calculated with and
without self-interaction correction using the LSDA functional and the aug-cc-pVTZ basis.
The FLOSIC LUMO is evaluated by adding the first excitation energy from the TD-DFT
calculation in Fig. 4 to the HOMO eigen-energy taken from the Lagrange multiplier matrix
A. Reference values taken from Ref. 61.

DFT FLOSIC Reference

HOMO -10.0 —16.0 —13.6
LUMO —-0.6 —5.7 —2.7

The immediate feature that stands out in Figure 4 is a shift in the excitation peaks for the
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FLOSIC energies towards higher frequencies of about 1 eV with respect to the non-corrected
case (larger gap), in line with the expected physical effect of SIE removal.®?% In contrast,
it is interesting to note that the HOMO and LUMO canonical energies resulting from the
self-consistent FLOSIC calculation (obtained directly as the eigenvalues of Hgg) are not
largely affected, and give only slightly smaller gap (see Table 2). In Perdew-Zunger (PZ),
one can interpret the eigenvalues of the Lagrange multiplier matrix, A, utilized to solve the

localization equations as the occupied orbital energies.% In FLOSIC, the Lagrange multiplier

matrix is not directly involved in the calculation, but it can be easily constructed from dfTSff
in eq. 8 as Ap, = X - 4512 . X, 336 and leads to slightly asymmetric matrix at convergence.

The eigenvalues of this matrix, after symmetrization (shown as A in the inset of Fig. 4), can
be interpreted as the occupied FLOSIC orbital energies, and turn out to be very close to those
from the solution of the localization equations in traditional PZ.% However, virtual orbital
energies are unaffected by the removal of SIE, giving an unphysical gap that is much larger
than the actual gap. Our TD-DFT calculations provides a reliable estimation of this gap,
which can be added to the HOMO value obtained from the symmetrized Lagrange multiplier
matrix A. The resulting HOMO and LUMO for CH, is shown in Table 2. As discussed in Ref.
67 and references therein, there are other choices, including virtual-orbital dependent choices,
that could be adopted depending on the application of interest. The strategy proposed in
this work offers a robust estimation of the LUMO level (and potentially excitation energies)
from FLOSIC calculations that can be used as reference for approximations that aim to

estimate self-interaction corrected LUMO levels or excitation energies.

4. Summary

We provide a detailed workflow for the implementation of the FLOSIC method for removal of
self-interaction error in DF'T calculations in an orbital-by-orbital basis. The FLOSIC method

effectively provides a transformation from M canonical orbitals to M localized Fermi-Lowdin
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orbitals, determined by a set of M Fermi-orbital descriptors. This implementation takes
advantage of the unitary invariant nature of the FLOSIC method to cast the self-consistent
energy minimization at fixed Fermi-orbital descriptors in the same manner than standard
Kohn-Sham with one additional term in the Kohn-Sham Hamiltonian that introduces the PZ
self-interaction correction. Each energy minimization iteration is divided in two sub-steps,
one for the density matrix and one for the Fermi-orbital descriptors. Expressions for the
effective Kohn-Sham matrix and Fermi-orbital descriptor gradients are provided such that
its implementation is suitable for most electronic structure codes. Moreover, the expression
of the gradient of the total electronic energy, including SIC, with respect to the density
matrix elements can be used in conjunction with the Fermi-orbital descriptor gradients and
would allow for simultaneous relaxation of all variational parameters in FLOSIC calculations.
Work along these lines is underway. We analyze the convergence characteristics of the
algorithm and present applications for the evaluation of NMR shielding constants and real-
time time-dependent DFT simulations based on the Liouville-von Neumann equation to

calculate excitation energies.
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