CONF-DED 2453

A Perspective on Computer Documentation:
System Developer vs. Technical Editor

170
. O8T]
Elithe Truett Carnes
University of Tennessee

and

Lorena F. Truett
Oak Ridge National Laboratory™

Prepared for
19th Annual Practical Conference on Communication
October 12-13, 1995
Oak Ridge, Tennessee

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

*Oak Ridge National Laboratory is managed by Lockheed Martin Energy Systems, Inc. for the
U.S. Department of Energy under contract DE-AC05-840R21400.

“The submittAedr manuscript has been

authored by a contractor of the U.S. i £ & —
Government under contract No. DE- E 7 "%9 Sahe
ACO5-840R21400. Accordingly, the U.S. J Rt ;m

Government retgins a nonexclusive,
royalty-free license to publish or reproduce

ERSTIEZE STRBUTON OF THS DOCUNENT IS UNLMTED
)

purposes.”

A Perspective on Computer Documentation:
System Developer vs. Technical Editor

Elithe Truett Carnes and Lorena F. Truett

Between the computer-knowledgeable “techie” and the technical writer is a chasm
created by differences in knowledge bases and skills. Although this gap is widened by
misunderstandings and misconceptions of system development roles, it is bridged by
mutual need and dual appreciation.

Often the editorfwriter is "behind” from beginning to end. The writer normally joins
the team after the programmers are well into system development and do not want
to "waste time" discussing fundamentals. The writer is usually excluded from technical
discussions because it is assumed that he/she would not understand anyway. Later in
the system development cycle, the writer has no time to polish the documentation.
before a new version of the software is issued which implies that the documentation
must be revised. Nevertheless, the editorfwriter’s product is critical for the end-user’s
appreciation of the software, a fact which promotes unity to complete the
comprehensive package of software and documentation.

This paper explores the planks in the bridge that spans the chasm between developers
and their fundamental PR agents, the technical editorsfwriters. This paper defines
approaches (e.g., The Circling Theory) and techniques (Bold Thrust!) employed for
effective communication -- between software developer and technical writer as well
as between the software and the end-user.

Introduction

Cooperation among the members of a software development team is critical, as is an understanding
and appreciation for the roles and tasks of other members of the team. Otherwise, the software may

be very good but the documentation inadequate and ineffective.

Computer documentation historically has been the undesired stepchild of system development. In an

article in InfoWorld, Pamela Beason (co-author of Technical Writing for Business and Industry, Scott,

Foresman & Co., 1990) states that "The key flaw is that documentation is usually not written for the
people who have to use it, [such as] either an end-user ot another programmer. It’s written by the
developer for himself, and therefore written from a developer’s point of view." Beason goes on to
note that one of the main reasons users do not read documentation is because it is not written in

such a way as to be useful to their purposes. J. G. Angus asserts that the reasons for poor

Carnes & Truett 2 PCOC 19

documentation cannot be attributed to one single fault, but most of the erring results from poor
design and poor management (Angus, 1995). Ed Yourdon notes that “in the culture of development,
documentation is always considered an add-on, not real work. It’s not considered something you need
to make a working program. Programmers will do whatever it takes to make a working program, as

long as that whatever isn’t documentation” (Angus, 1995).

In this paper we describe perspectives of both developers and writers, and we discuss the approaches
and techniques employed for effective documentation. W. R. Dodson breaks the process of
documentation into three subcategories: Storming, Norming, and Performing (Rodson, 1994).
Storming sees members of the team vying for power (similar to the Circling 'Ihcoryideé&ibf:d in this
paper). Norming occurs once the team is past the battle for control; it is a period of ;:ommonality and
working toward a unified goal (similar to Iterative Progression). Performing "is the summit of team

evolution," or the success of completed computer documentation.

In this paper, the Software Development Team is assumed to consist of a leader or manager,

programmers (also referred to as "developers”), and a technical writer/editor (also referred to as

"documenter"). Software Documentation, for the purposes of this paper, includes printed manuals,

reports, and pamphlets that describe the system and/or assist the end-user; it also includes hypertext
and on-line help files. Software documentation excludes comments embedded within the code, which
are almost always completely written by programmers {or programmers and are rarely viewed by the

user community.

The Circling Theory

The Circling Theory assumes that a team is composed of individuals with differing skills (including
tools usage), experiences, knowledge bases, and goals (Table 1). The theory states that the team
members will attempt to establish a hierarchy of importance. To advance their own positions, team
members will emphasize their own strengths and/or point out the failures and inadequacies of others.
This behavior, which is pronounced during the formation of the team, may continue on a lesser scale

until the team becomes highly successful or is disbanded.

Carnes & Truett 3 PCOC 19

Table 1. Strength scctors of the Circling Theory defined
for a softwarc devclopment tcam

Sector Programmer : Documenter

Skills Programming logic/syntax; Readability, grammar;
programming languages word-processing tools

Experiences Knowledgeable about system Not familiar with system
requirements, technical issues, tools, system requircments,
team personnel -- an insider people involved, end-users --

' an outsider

Knowledge bases Mathematics, computer science | English, communications

Goals Software functionality and Documentation accuracy and
performance; technical completeness; readability
requirements

The programmers’ skills emphasize logic and syntax within the code, and the writer concentrates on
readability, grammar, and appearance of the documentation. Indeed, different tools for getting the
job done (i.e., programming languages as opposed to word processing packets) foster an environment
in which the developer and the writer circle one another with wary attitudes, failing to maximize time
efficiently and blaming the other’s differences for any problem encountered in the documentation
process. With respect to experiences, although the technical writer may have already produced tomes
on other projects, he/she is the "new kid on the block" for this project. The programmer’s knowledge
base is technical, founded in mathematics or computer science, while the documenter typically has
a degree in English or communications. Commonly, the developer questions the writer’s credentials,
and vice versa. Developers are leery of the writer’s urge to be creative. As Patricia Williams, co-
author of a book on technical writing, notes, “It’s programmer €go, -.. Programmers are so coddled
in most organizations, they think their work is so brilliant and easy to use that it doesn’t need
documentation” (Angus, 1995). These hesitancies of the programmer are met with writer-based
exclamations centered around the grammatical acumen of the developer. J. O. Borchers states that
most programmers view documentation with the perspective that if the software was hard to write,
it should be just as difficult to understand. Therefore, if the developer writes the documentation it

is "typographically dreadful” (Borchers, 1995).

Carnes & Truett 4 PCOC 19

The Circling Theory assumes that members of the formative team have an innate lack of trust for
cach other. The developer often assumes that the writer is not sufficiently intelligent to comprchend
the software’s intricacies. Similarly, the writer’s reaction to the program which must be documented
often prompts such responses as "They call this "user friendly’?!" During circling maneuvers, very little
advancement is made toward the real goals: software functionality AND software documentation

accuracy and complcteness.

Bold Thrust!!

In the typical software development environment, the technical writer joins the team after the
programmers are well into code development. Circling diversions then waste a lot of time. Because
of impending deadlines (which were almost certainly set prior to the technical writer’s arrival), the
documenter produces a first draft based almost entirely on his or her interpretation of what the
software does (Bold Thrust!). The review of this first draft is usually extreme: either too little or too
much. It may be completely ignored by other members of the team, which will cause a greater
problem in the next iteration if the technical writer has made errors in interpretation. In other cases,
this preliminary draft may receive too much attention, being reviewed not only by the team, but also
by management, the system’s sponsor, and the end-users. This extensive review can be disastrous if

it occurs before the writer knows enough about the software to produce a reasonable draft.

Coordinating software development and software documentation is mandatory, but difficult to
orchestrate until after the initial Bold Thrust. Bold Thrust can result in significant improvements to
the team dynamics. For instance, one positive result of this technique finds the writer suddenly
included in meetings and discussions (even if only as a listener). Another positive result is increased
willingness among the Project Manager and the developers to hear and respond to questions posed
by the writer. Of course, Bold Thrust can devastate the writer’s ego. As a worst-case scenario, the -

documenter might leave the team.

Carnes & Truett 5 PCOC 19

Figure 1 illustrates the process of comparing the programmers’ concepts of “what the code really
does" (or "will do" since the code is unfinished) against this preliminary documentation. This merging

can be a disaster, or it can result in a more cooperative team, working together on the next iteration.

-’ ——

—
~

J
-~

docunentation

—_—

Fig. 1. Bold Thrust!

Iterative Progression

Iterative Progression is the longest stage in the documentation process, from a time perspective. From
a task perspective, this stage accomplishes the most. This phase in the process is centered around
cooperation and communication between the programmer and the writer. For instance, while the
programmer arranges the document by logic flow, the technical writer arranges the document for the
end-user. Developer and writer must agree on what is important to tell the users. Often, developers
want just the facts; their drafts have little order, no formatting, and questionable grammar. The
technical writer wants a nice appearance; their drafts are often verbose, fancy, eye-pleasing, and

border-line superfluous.

Carnes & Truett 6 PCOC 19

Programmer and writer must also agree on an appropriate use of acronyms and system-specific words.
Moderation is everything. Williams asserts that, "There’s no technological fix ... for the problem of
poor documentation. You only solve it by working with people, and most technologists don’t like
people; if they did, they probably wouldn’t be technologists” (Angus, 1995). While this view is perhaps
a bit biased, it is true that compromise and collaboration is everything in the process of creating
effective computer documentation. The final product must be neither too technical nor too wordy.
The programmers and writers must agree on who the end-users really are and what they need to
know. Through an appropriate use of creativity, the documenter must decide how best to provide this
information. The documentation does not necessarily need to follow the logic flow of the code, but
the functionality of the code must be explained logically to the reader. For example, user’s manuals

and hypertext are arranged to guide a user (novice or advanced) through a system.

Because of its repetitive nature, this stage is characterized by persistence and patience. The writer

does not need to understand all of the technical details of the software, but he/she must understand

the system’s functionality and must have a clear understanding of the user community. Similarly, the
developer does not need to understand the writer’s emphasis on format and design, but the "techie”
must understand the functional requirements and must communicate the purpose of the software to
the writer. Cooperation is critical, communication is essential, persistence is required, and patience

makes the whole process more pleasant.

Unfortunately, during this stage, time pressures to complete the product and budget issues are
mentioned more and more frequently. It would be wonderful to have sufficient time and budget to

develop the world’s most wonderful software with accompanying perfect documentation.

In addition to time and funding issues, about this time, the version crises occurs. Changes to code
usually require changes to documentation. There is no time to polish the text because a new version

is being prepared.

The Iterative Progression stage can be slow initially, but toward the end of this stage, when deadlines,
budget crunches, and the eternal change cycle are all factors, it is important that programmers and

writer cooperate fully. The developer has accepted the role of the technical writer as the P.R. agent

Carnes & Truett 7 PCOC 19

for the codefsoftware. The technical writer must accept. the reality of constant change (i.e., revisions
and newer versions -- both to the code and to the documentation). This joint cooperation promotes

team unity, and a good team produces a good product.

Figure 2 illustrates that as the code becomes more solidified, the version of the documentation

becomes more in tune with the code.

S~

)
—

Fig. 2. Iterative Progression

Success!!

Effective teamwork produces a comprehensive package of software and documentation, as well as
a more effective and efficient software development team. Through Circling maneuvers, a Bold
Thrust, and Iterative Progression, the final product (though fleeting, because the next version is right

behind it) arrives.

Computer documentation, like any formal writing, is never completed in "one fell swoop.” The process

of drafting and revising is continuous. Computer documentation differs from creative writing,

Carnes & Truett 8 PCOC 19

however, because it is a collaborative effort by individuals with different skills using different tools,
from different backgrounds and experiences, with different knowledge bases, and having different

goals. Although good documentation cannot make bad code any better, the technical writer’s skill

cc.rtainly elicits the end-user’s appreciation of good code.

Works Cited

Angus, Jeffery Gordon. "Documentation Is Not for Dummies." InfoWorld Feb. 1995: 57+.

Borchers, Jan Oliver. "HyperSource: a Hypermedia Program Development and Documentation
System.” Karlsruhe, Germany: 1995 (Internet Article).

Dodson, William R. "Secrets of a High-Performing Team: Joint Application De§ign (JAD) Is
Effective When Examined and Implemented in Components." Data Based Advisor Dec. 1994:

46+

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof,

