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Overview

• Neutron cross sections can be 
broken up into several regions
– Thermal, resolved resonance, 

unresolved resonance, fast

• Thermal scattering is unique
– Neutron wavelengths approach size 

of molecules and spacings in crystal 
lattices

– Energies are on the order of 
excitation energy of the materials
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Overview

• Thermal neutron double differential scattering cross sections 
are defined by:
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• Thermal Scattering Law (TSL) 𝑆 𝛼, 𝛽 related to dynamic 
structure factor 𝑆 𝑞, 𝐸
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Overview

• 𝑆 𝑞, 𝐸 broken up into 2 primary components:
– Incoherent

• Occurs when there is no interference between scattering neutron wavefunctions
• More prevalent in hydrogenous materials

– Coherent
• Occurs when neutrons scatter with different nuclei and their wavefunctions 

interfere with one another
• More prevalent in solids; specifically crystals

• ENDF currently stores coherent elastic (Bragg edges), 
incoherent elastic and incoherent inelastic
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Overview

• 𝑆 𝑞, 𝐸 can be calculated several ways:
– Density Functional Theory (DFT)

• Simulate small cluster of atoms (~10s – 100s of atoms) in repeated structure
• Atomic forces calculated from first principles by approximating the Schrödinger 

equation
– Molecular Dynamics (MD)

• Large cluster of atoms (thousands to millions of atoms)
• Atomic forces calculated using classical potentials
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Experimental Capabilities – SNS 

• High-energy protons
accelerated to 1 GeV
– 1.4 MW LINAC

• Neutron produced
by spallation with
mercury target
– Pulsed neutrons produced at 60 Hz

• Neutrons thermalized by passing through room temperature 
water or 20 K liquid hydrogen moderators

• Peak brightness: ~1×1013 n/cm2/sr/Å/s
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Experimental Capabilities – SNS 
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Experimental Capabilities – SNS 
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Experimental Capabilities: ARCS & SEQUOIA
• Time-of-flight direct geometry 

spectrometer
• User chooses incident energy; Fermi 

choppers rotate to select energy from 
white beam

• Detector & data acquisition system 
(DAS) setup measures final energy 
and scattering angle
– SEQUOIA: better energy resolution
– ARCS: larger angular range

• Selection of furnaces and refrigerators 
for temperatures range 5 – 1800 K
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Experimental Capabilities: VISION
• Indirect geometry vibrational spectrometer
• White beam of neutrons hits sample
• Scattered neutrons reflected off graphite blocks to two 

detectors for forward- and backward-scattering angles
• Graphite blocks configured to scatter neutrons at 4 meV
• Constant relative energy resolution
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Experimental Capabilities: Comparison

Direct Geometry 
(ARCS/SEQUOIA)

Indirect Geometry
(VISION)

Complimentary 
measurement techniques
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Evaluations – Polyethylene

• Ubiquitous moderator 
material

• Carried out in collaboration 
with RPI as a follow up on [1]

• Interested in changes in the 
inelastic spectra as a 
function of temperature

Instrument Incident neutron
energy [meV]

Temperature
[K]

ARCS
80, 175, 400 5, 100, 196, 

268, 295, 313

250 5, 295

VISION N/A

5, 20, 40, 60, 
77, 100, 120, 
140, 160, 180, 
196, 220, 233, 
240, 263, 283, 
293.6, 300, 
303, 313, 323, 
333, 343, 350
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Evaluations – Polyethylene – ARCS

Loss of fine-resolution features at increasing temperatures
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Evaluations – Polyethylene – ARCS
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Evaluations – Polyethylene – VISION

Shifted peaks represent changes in 
lattice parameters

Broadening at higher 
temperatures & loss of fine-
resolution features
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Evaluations – Polyethylene – Total XS
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Evaluations – Yttrium Hydride

• Moderator of choice 
for Oak Ridge National 
Laboratory (ORNL) 
Transformational 
Challenge Reactor 
(TCR)

• Measurement is two-
fold:
– Hydrogen concentration
– Anharmonicities at high 

temperatures

• Full report available 
here [2]

SNS
Instrument Samples Sample

Form
Sample
Fixture Mass [g]

Incident
neutron

energy [meV]
Temperature 

[K]

SEQUOIA

YH1.62

Powder
Aluminum 
plate and 

cover

0.6966

45, 180, 600

5

YH1.86 0.702 5, 295, 550, 
800

VISION

YH1.62 0.6966

N/A 5, 293
YH1.74 0.6684

YH1.86 0.702

YH1.90 0.7696

ARCS
YH1.68 0.1 mm 

hydride
foil

Thin-wall 
quartz tube

1.6681
45, 180, 600

295, 550, 800, 
900, 1,000, 

1,100, 1,200
YH1.87 1.8937

https://www.osti.gov/biblio/1659577
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Evaluations – Yttrium Hydride – VISION
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Evaluations – Yttrium Hydride – SEQUOIA
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Evaluations – Yttrium Hydride – SEQUOIA
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Evaluations – Yttrium Hydride – SEQUOIA
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Evaluations – Yttrium Hydride – ARCS
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Uncertainty Quantification

• Goal was to develop a procedure to generate a covariance 
matrix for 𝑆 𝛼, 𝛽 data that incorporated both computation 
simulations and experimental data

• Experimental data and computer simulation fit is achieved 
using the Unified Monte Carlo (UMC) method [3]

• Framework should not rely on how the TSL file is generated:
– Classical MD vs. DFT
– Underlying assumptions used to calculate TSL from computational 

simulation methods

• Demonstrated using light water
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Uncertainty Quantification

• Active area of research, as evident by:
– WPEC Subgroup 44 
– Monte Carlo perturbations of phonon density of states [4]
– Generalized least-squares uncertainty quantification of LEAPR [5] and 

molecular dynamics parameters [6] to data
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Uncertainty Quantification

• Water is difficult to model 
computationally

• Properties are calculated using 
molecular dynamics (MD)

• Models categorized by the number of 
‘sites’

• 3-6 sites, extra sites are ‘dummy’ 
particles

• Over 30 different models of water exist
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Uncertainty Quantification

• Used the TIP4P/2005f [7] parameter set and varied 8 model parameters (7 
in red below plus spacing between oxygen and ‘dummy’ atoms) using 
Latin hypercube sampling (±5%) to ensure representative sampling of 
phase space
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• 2048 randomly generated parameter samples were generated, of which 
1615 successfully completed (job failures due to unphysical combination 
of parameters)

• From those 1615, the 250 simulations with the diffusion coefficient and 
density closest to their experimental values were chosen
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Uncertainty Quantification

• These 250 accepted results were used to compare against experimental 
data gathered at the SNS

• 300K measurement performed by RPI in 2011 at SEQUOIA beamline

• 55, 160, 250, 600, 1000, 3000, and 5000 meV incident neutron energies

• Phonon density of states (pDOS) calculated from trajectory information of 
simulations, which were then used to calculate 𝑆 𝛼, 𝛽

• Simplified model of SEQUOIA detector in MCNP used to include 
experimental effects
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Uncertainty Quantification – Correlation Matrices
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Uncertainty Quantification – 𝑺(𝑸, 𝑬) and Uncertainties
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Uncertainty Quantification – DDXS 
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Uncertainty Quantification – DDXS (cont.)
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Uncertainty Quantification – Total XS
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Uncertainty Quantification – Benchmarks 

• Compared averaged 𝑆 𝛼, 𝛽 against ENDF/B-VIII.0 evaluation 
for 3 sets of benchmarks: LCT-078 (298K), LCT-079 (300K), LCT-
080 (298K)
– Benchmarks were chosen because they are all at temperatures close 

to the experimental temperature (300K) and are well characterized

• Need to ensure covariance matrix reproduces similar spread to 
those generated by ensemble of Monte Carlo runs

• Covariance matrix of pDOS used to generate 250 pDOS
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Uncertainty Quantification – LCT-078, -079, & -080 
Validation
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Uncertainty Quantification – LCT-079-005 Validation 
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Conclusions

• Nuclear data is used in a wide variety of application

• Experimental data necessary for both evaluation and 
validation of thermal scattering libraries

• Still work to be done regarding uncertainty propagation
– Storing covariances
– Propagating 2-D covariance information
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Questions?


