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Abstract—This paper studies the problem of distributed beam
scheduling for 5G millimeter-Wave (mm-Wave) cellular networks
where base stations (BSs) belonging to different operators share
the same spectrum without centralized coordination among them.
Our goal is to design efficient distributed scheduling algorithms
to maximize the network utility, which is a function of the
achieved throughput by the user equipment (UEs), subject to
the average and instantaneous power consumption constraints
of the BSs. We propose a Media Access Control (MAC) and a
power allocation/adaptation mechanism utilizing the Lyapunov
stochastic optimization framework and non-cooperative games.
In particular, we first decompose the original utility maximization
problem into two sub-optimization problems for each time frame,
which are a convex optimization problem and a non-convex op-
timization problem, respectively. By formulating the distributed
scheduling problem as a non-cooperative game where each BS is
a player attempting to optimize its own utility, we provide a dis-
tributed solution to the non-convex sub-optimization problem via
finding the Nash Equilibrium (NE) of the game whose weights are
determined optimally by the Lyapunov optimization framework.
Finally, we conduct simulation under various network settings
to show the effectiveness of the proposed game-based beam
scheduling algorithm in comparison to that of several reference
schemes.

Index Terms—mm-Wave networks, network utility, distributed
scheduling, Lyapunov stochastic optimization

I. INTRODUCTION

The use of millimeter-Wave (mm-Wave) frequencies in 5G
cellular networks makes additional spectrum available and
contributes directly to orders of magnitude increase in through-
put. However, the available licensed spectrum for commercial
mobile services is still limited even for mm-Wave frequencies.
One way to address this limitation is via spectrum sharing or
spectrum pooling [2], [3], by enabling the secondary utilization
of additional unlicensed or shared spectrum available for use
in 5G [4], allowing multiple service providers to use the
same frequency band. The characteristics of the mm-Wave
frequency channel and directional beamforming have a major
impact on the use of spectrum pooling. It has been shown that
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both orthogonal pooling, where frequency bands are allocated
dynamically but exclusively to one operator at a time, and
non-orthogonal pooling, where the same frequency bands can
be allocated to multiple operators, have significant capacity
gains [5]. Due to the high directional gain of the mm-Wave
beams, concurrent transmissions are possible using the same
frequency band. However, concurrent transmissions over the
shared frequency bands potentially causes severe interference
among operators if there is no proper coordination.

To handle interference and improve system throughput, two
different approaches have been commonly considered. In one
line of research [6]-[12], centralized beam and transmission
scheduling was studied. In [6], the beam alignment versus
throughput trade-off was considered and a joint optimization
for beam width selection and scheduling was proposed to
maximize the effective system throughput. To perform the
proposed scheduling algorithm, the knowledge of the system
topology and interference are required. The authors in [7]
considered an urban Non-Line-of-Sight (NLOS) mm-Wave
cellular system where cooperation among subsets of base
stations are allowed and proposed a scheduling mechanism to
handle inter-cell interference and maximize system throughput
with the consideration of fairness. In addition, the authors in
[9] focused on the joint optimization of analog beam selection
and user scheduling based on limited CSI and developed two
codebook-based methods.

Another line of research [13]-[21] considered distributed
approaches where there is no coordination among multiple
network entities. Though distributed scheduling suffers from
performance degradation compared to centralized approaches,
it usually requires lower implementation complexity. In addi-
tion, distributed approaches have the advantage of enhancing
system security since it is more robust to network attacks than
the centralized case where the failure of the central controller
will lead to the shutdown of the entire system. In [14], a
multi-RAT system was considered where 5G cellular BSs co-
exist with existing networks (e.g., WiGig) and share frequency
bands. A co-existence mechanism was proposed in which
5G and WiGig BSs schedule their own UEs in a distributed
manner to optimize their own utilities. In [15], a two-stage
schedule-and-align scheme was proposed to facilitate efficient
communication in a scenario where a BS communicates with
multiple UEs through a number of distributed remote radio
units with mm-Wave antennas. Moreover, non-cooperative
game-based approaches [17]-[19], [22]-[25] were introduced



for distributed scheduling in general cellular networks, which
are also suitable for mm-Wave networks. The authors in [22]
first formulated the CDMA uplink power control problem as a
non-cooperative game where the UEs are the ’selfish’ players
trying to maximize their own individual payoff via transmit
power control without collaborating with others. The Nash
Equilibrium of the game is proved to exist and a corresponding
parallel updating algorithm was proposed to solve the equilib-
rium based on the measurements of the interference and noise
at each UE. In [23], a cognitive radio system, consisting of a
set of primary and secondary users sharing the same frequency
band, was considered. Each secondary user aims to maximize
its own throughput while the aggregate interference caused
by these users to the primary users should not exceed some
pre-defined thresholds. The authors formulated this scheduling
problem as a non-cooperative game and proved the existence
and uniqueness of the equilibrium. Also, several updating al-
gorithms were developed and shown to converge under certain
conditions. [17] studied the interference management problem
in mm-Wave cellular networks in the presence of Device-
to-Device (D2D) transmissions. A Stackelberg game-based
interference control mechanism was proposed to optimize
the D2D throughout while suppressing its interference to the
mm-Wave network. In [18], the distributed power allocation
problem in a multi-cell CDMA network was considered and
a potential game-based approach was proposed to provide an
approximate solution to the original non-cooperative power
allocation game. It was shown that by properly selecting
the pricing factors of the potential game, it can converge to
the unique equilibrium which is a globally optimal power
allocation. This provides a good solution to the original game
in the high SINR regime. Moreover, a systematic way to find
the proper potential game for any underlying power allocation
game was developed in [19].

In this paper, we consider the downlink beam scheduling
problem for mm-Wave cellular networks in a realistic sce-
nario where the base stations (BSs) may belong to different
operators, both private (e.g., Nokia private LTE network)
and commercial (e.g., AT&T, Verizon), and these operators
share spectrum but do not cooperate with each other. In
this case, distributed beam scheduling must be performed
for the downlink data transmission from the BSs of different
operators to the UEs. One advantage of the considered non-
cooperative network setting lies in its security and robustness
aspects because a central controller is usually vulnerable to
malicious attacks. Our goal is to design efficient distributed
MAC strategies together with adaptive power control to handle
inter-cell interference due to spectrum sharing and to maxi-
mize the network utility as a function of the time averaged
throughput of the UEs. The major novelties of this paper
are as follows. First, designing adaptive distributed beam
scheduling algorithms for non-cooperative operators in mm-
Wave networks has not been considered by any existing work
according to our knowledge. Second, we propose a concrete
approach to solve the distributed beam scheduling problem
with theoretical optimality guarantee compared to heuristic
solutions in the literature. The main contributions of this paper
are summarized as follows.

e We first propose a novel problem formulation based
on the Lyapunov stochastic optimization framework
given the underlying MAC protocols (e.g., p-persistent,
CSMA/CA) but with optimizable parameters (e.g., BS
transmit powers). Given the average and peak power
constraints of the BSs, the proposed network utility
optimization problem can be decomposed into two sub-
optimization problems. It can be shown that solving the
two sub-problems in each time frame will yield a network
utility within an additive gap to that obtained by solving
the original optimization problem. The first sub-problem
is convex and involves a set of auxiliary variables which
can be solved distributedly. The second sub-problem
involves the power allocation for the UEs associated with
each BS, and is stochastic and non-convex.

¢ In order to solve the second sub-problem in a distributed
manner, we formulate the scheduling problem as a non-
cooperative game in which the BSs are the players which
do not cooperate with each other. Each BS has its own
payoff function which is defined as a weighted sum
of the total throughout achieved by the UEs associated
with that BS, plus a power consumption penalization
term. Surprisingly, the weights in the payoff function
are optimally determined by the decomposition of the
Lyapunov optimization, i.e, the parameters in the two
sub-problems. Under this game theoretic formulation, the
above sub-problems can be (approximately) solved in a
distributed manner by solving the Nash Equilibrium (NE)
of the corresponding non-cooperative game.

o We identify several key properties of the formulated game
and propose an iterative update algorithm to compute
the equilibrium. In particular, we show that the power
allocation game always admits at least one pure-strategy
equilibrium and provide sufficient conditions guarantee-
ing the uniqueness of the equilibrium. To solve the NE,
we propose a parallel updating algorithm which is proved
to globally converge. This parallel updating algorithm is
performed periodically to provide approximate solutions
to the sub-problems at each epoch. Numerical evaluation
is also conducted to verify the effectiveness of the pro-
posed game-based scheduling compared to other MAC
protocols with optimized transmit powers.

The rest of this paper is organized as follows. Section II
introduces the system model and formulates the network utility
maximization problem. The main results are presented in
Section III. In Section IV, a thorough numerical evaluation is
provided to justify the performance of the proposed scheduling
algorithm. We conclude the paper in Section V.

Notation: Let Z+ denote the set of positive integers. Let

[n] = {1,--- ,n} for some n € Z". For a set of real numbers
, A A

a;,i € [n], we let (a;)"; = [a1,- - ,a,]T. 0" = (0,0, ,0]

denotes the all-zero row vector with n entries. Calligraphic

letters A, B, - -- represent sets, bold capital letters A, B, - - -

represent matrices. For a matrix A = [a; ;] € R™™, the
Frobenius norm is defined as ||A||» 2 \/Z:il >y lag g%

For two sets A and B, the difference set is defined as A\B 2




{z € A:x ¢ B}. We denote the Euclidean projection of x
onto the interval [a,b] as [7]%, ie., [z]2 = z if a < 2 < b,

[z] =aif 2 < aand [z ]a = b if z > b. All logarithms used
in this paper are natural logarithm.

II. PROBLEM FORMULATION
A. Network Model

We consider a cellular network with M base stations (BSs)
and K user equipments (UEs). Each BS i € [M] belonging to
an operator is responsible for serving a set of K; UEs denoted
by K; C [K], i.e., the UEs in K; are associated with BS i.
The total number of UEs is equal to K = Zf\il K. BSs from
multiple operators are allowed to be co-located at the same
sites. The system operates on a shared frequency band with
bandwidth W Hz with a center frequency at W, Hz. We are
interested in the downlink data transmission and scheduling
for this network. Due to the proximity of locations, UEs may
suffer from the interference caused by neighboring BSs of
different operators. The received Signal-to-Interference-plus-
Noise Ratio (SINR) at UE j € [K] is given by

S _

bj, L(J)G;JlE(J) ?Z(J i J)‘dej(j)
YieBiniG PiwGiEGT |hj,l|2d;,2’+‘7(21)
where i(j) € [M] denotes the BS index which is transmitting
to UE j!; Pii(s)s h; ;) and d; ;(jy denote the transmit power,
channel gain and distance from BS i(j) to UE j, respectively.
B(j) denotes the set of BSs which interfere with UE j
(note that 4(j) € B(j)). The channel gain h;,(;y is assumed
to follow the Nakagami-m distribution [26] with probability
density

Ju(h;p, Q) =

SINR; sy =

2 o M2
Rk ——h h > 2
T()Qx eXp( Q ) 20 @

where the parameters are p = g‘a [r( ,L]Q), Q =E[h?] and T'(+) is

the Gamma function. Moreover, 1 > 2 is the path-loss factor.
Let No denote the random noise power spectrum density,
then 02 = NoW is the total noise power. GUl ) and G] )
denote the UE and BS antenna gain between UE j and BS
i(j) respectively. In this paper, we assume that both the BSs
and UEs are equipped with directional antennas. The antenna
gain is modeled by a ‘keyhole’ sectorized antenna model with
constant main-lobe gain G™* and side-lobe gain G™in e

oy - < = 2 3)
- Gmin’ ‘el > %

where A6 is the beam width (in radian). Moreover, each
BS/UE antenna has a constant total power radiation gain of F,
ie., AOG™ 4 (2 — AP) G™» = E. WLOG, we set E = 1.
We further define the main to side-lobe ratio (MSR) of the
antenna, denoted by D, as

A Gmdx
D= .
Gmln

“4)

'For any UE j, we let i(j) denote the BS that this UE is associated with,
ie., j € Ky ). Similarly, we let j(¢) € KC; denote the UE that is selected by
BS ¢ to transmit to (if one UE is scheduled at a time for each BS).

Given D and A#, the maximum and minimum antenna gain
can be calculated as G™* = ((D—1)A0+27r) " and
Gmax — pEmin, Usually, the MSR is measured in decibel,
which is D (dB) = 10lgD. We assume that all the BSs
have identical antenna gain parameters and all the UEs also
have identical antenna gain parameters. Therefore, we use
GBSmax GBSmin - and A@PS to represent the BS antenna
parameters and GUE:max GUEmin and AGUE to represent the
UE antenna parameters. For ease of presentation, we define
the equivalent channel gain between UE j and the serving BS
i(j) as
A G
95.i(3) =

BS
JZ(J)G ‘h-j?(J)‘ dJ Z(J) (5)
2 e BON G} pMMGj,e GRilhield; ) + o®

and then the SINR at UE 5 can be conveniently written as
SINR; i(jy = 95,i(j)Pj,i(5)- The main notations used in this
paper are summarized in Table I on the top of the next page.

In the following, we focus on distributed beam scheduling
schemes with power adaptation, which means that each BS
will optimize its own transmit power without the knowledge of
the transmit powers of other BSs, i.e., there is no information
exchange among different BSs. We assume that each BS
and UE can only have one beam scheduled at a time so in
each time slot, each BS can only transmit to at most one
UE and each UE can only receive data from the associated
BS. Moreover, throughout this paper, all interference will be
treated as additive Gaussian noise at the target UEs.

B. Distributed Beam Scheduling & Network Utility Maximiza-
tion

We consider a slotted system operating synchronously. We
assume that each time frame (or epoch) consists of N blocks
and each block has TP time slots. Therefore, each epoch has
T = NTP" slots. We assume a block fading channel where the
channel gains stay unchanged during each epoch and are i.i.d.
over different epochs. Scheduling happens among different
blocks of each epoch. The time-averaged expected throughput
of UE j from the corresponding serving BS i(j) is given by

],Z(]) = hm ZE

where the expectation is taken over the system randomness
(e.g., fading channel, scheduling). X Z(J)(k) is the throughput
of UE j from its associated BS i(j) in epoch k and is
calculated as

g (k (6)

Xji()( Z i) (R, n)W log (1+ SINR; ;) (k, n))
(N
where T] i(jy(k,n) denotes the data transmission time for UE

J during block n of epoch . In addition, SINR; ;(;)(k, n) rep-
resents the SINR at UE j during block n of epoch k. Since we
have assumed that scheduling happens among different blocks,
i.e., the selected UE and beam selection will stay unchanged
during each block, the SINR of UE j, SINR; ;;(k,n) will
stay unchanged during block n if the BS transmit powers do
not change.



TABLE I: Summary of notations

Notation Description

M; K total number of BSs; total number of UEs

Ki; K; set of UEs associated with BS 4, ; C [K], [K;| = K,
Wi W, total bandwidth; center frequency

7(7) UE (i) selected/served by BS i, j(i) € K;

1(4) BS i(j) serving UE j, j € K;

transmit power of BS 4 (or i(j)) to its selected UE j(z)(or 7)

Dji average power consumption of UE j (associated with BS ¢)
Py pe e maximum/average power constraint of BS 4
djis hji distance/small-scale fading between BS ¢ and UE j
Gj,i equivalent channel gain between BS ¢ and UE j
gii (k) maximum equivalent channel gain between BS ¢ and UE j at epoch k

Gjs maximum channel gain overall blocks and epochs

BS. AUE
Gji: Gl

BS/UE antenna gain between BS ¢ and UE j

GBS,max; GBS,mm

maximum (main-lobe)/minimum (side-lobe) BS antenna gain

GUE,max, GUE,mln
)

maximum/minimum UE antenna gain

AG”S; AT

main-lobe width of BS/UE antenna

’Yj,i(k); Vi,

auxiliary variables at epoch k; time averaged value of auxiliary variables

Z;i(k); Hj,i(k)

Virtual queue values at epoch &

X;i(k,n); X;.4(k)

Throughput of UE j at block n of epoch k; throughput at epoch k

X

Time averaged throughput

T3 (k,n)

Wi

Data transmission time of UE j from BS i at block n of epoch k

For the network utility, we adopt the a-fairness utility model
given by

Uy(z) =
logz, ifa=1,

Q, ifa>0,a#1,
A{ o 20 ®)

where « is a free parameter. In this paper, we use U(z) =
log x (with base e) as the utility function. It can be seen that
U(z) is a continuous, concave and strictly increasing function.
The utility of each UE j, denoted by u}JE, is defined as the
logarithm of the time averaged expected throughout (See (6))
of that UE, ie., uj"” = U(X;(;)),Vj € [K]. The utility of
each BS 14, denoted by uP3, is defined as the sum utility of
the UEs associated with that BS, i.e., u?s = Z].e,ci u}-jE, Vi €
[M]. The network utility is then defined as the sum utility of
all the BSs, i.e.,

Network utility 2 Z Z U(Xj4). 9)
ic[M] jEK:

Our goal is to design efficient distributed access strategies
to maximize the network utility subject to peak and average
power constraints of each BS. In particular, we aim to solve
the following stochastic optimization problem with variables

pj,i(k, n):

max Y Y U(X;,) (10a)
i€[M] jEK;
st i <Tpi, Vi€ [M] (10b)
JEK:
0< Z pjilk,n) < pi*®*, Vie [M],k>1,n € [N]
JEK;:
(10¢)
a(k,n) € A(k,n), Yk > 1,¥n € [N] (10d)

_ . N
where pj,; = lim ¢ 370, 32,0, E T3 (k,n)pji(k, n)] rep-

resents the average power consumption of BS ¢ to UE j
at epoch k; p;;(k,n) is the transmit power from BS i to
UE j at block n of epoch k; pi'® and pi"®* represent the
average and peak power constraints for BS i, respectively;
a(k,n) represents the instantaneous control action of the
access strategy at block n of epoch k and A(k,n) is the
action space which depends on the specific access strategy. We
let U°P' denote the optimal value of the above optimization
problem. We assume that the UE association is fixed, i.e., it
has been determined by some exogenous mechanism prior to
our design. Since we have assumed that each UE can connect
to at most one BS at a time and each BS can transmit to at
most one UE at a time, this excludes the use of Successive
Interference Cancellation (SIC) techniques which may not be
a common practice in real-world cellular systems.

III. PROPOSED APPROACH

According to the Lyapunov optimization theory [27], we
transform the network utility maximization problem of (10),
which aims to optimize a sum of logarithm functions of the
time averaged expected throughput of the UEs, into a new
optimization problem (11) which aims to optimize the time
averaged expected logarithm function of the UE throughput.
The purpose of doing this transformation is to apply the well-
established Lyapunov drift-plus-penalty framework. Further,
the transformed optimization problem can be solved via solv-
ing two sub-problems at each epoch together with the updating
of the virtual queues to enforce BS power constraints.

We formulate the distributed beam scheduling problem as
a non-cooperative game and propose to solve the two sub-
problems by solving the Nash Equilibrium (NE). The payoff
functions of the players (i.e., BSs) are determined by the
objective functions of the two sub-problems and have a nice
mathematical structure which guarantees the existence and



Netowork utility maximization
Optimizing function of time averages

max Y0 S UG

Vie [M],Vk>1,Vne[N]

a(k,n) € A(k,n), Vk>1,Vne[N]

Transformed problem

Optimizing time average of functions
max Jim - Z S S EUGk)

kelr) ie[M) €K
i€[M] jeK;
’ st pa < TPYE, Vie M
s.t. Z D < TPy, Vie M) jex
K

54 < Xy Vie M), VjieK,

0< pjilk.n) < pi ) >
; 7 0< 3" pralk,n) < pp™,
ik,

Vi€ [M].Vk>1,Vne[N]

0 < %;i(k) < TW log(1 + y/j“,“‘[r:"*‘).

First sub-problem (convex)

Solving auxiliary variables based on
virtual queue H

max Z Zu'r'( 5i(k)) = Hy (k) y;4(k))

i€[M] j€Ks
st 0< (k) < TW log (14 g

vj € K, Vi € [M], Vk > 1

virtual queue H:
H;i(k+1) = max {H;;(k) +~j:(k) — X;i(k), 0}.

VjeKi Vie[M),Vk>1

Non-cooperative game based UE schedulin

(distributed solution)

1) Each BS greedily maximizes its own utility:

A AR I
: Gi(pipi) = <Z Wlog (1 ASINR,_,)> -\ (Z,J> :
—

JeK:

2) Find Nash Equilibrium using proposed parallel update
algorithm:

BR [n,ﬂ' 1 ]"tw
Pty = -
i) N giil,

Vi e [M]

2y

Second sub-problem (non-convex, centralized)
Need to solve the BS transmit powers based on

virtual queue Z

_________________________ |

min Z|Z Zi(k) Z [1 (k,n)p; — TP | — H,;(k)X;(k) |
&[\’]l] K nelN] :

st n<z,1u n) < p Vi [M],Vk>1,Vne[N]

€Ki
virtual queue Z:
Zi(k+1) = mz\x{Z,(/.')- SN T e n)pjakon) = TS, n}. Vi€ [M]

JEKi nelN]

Fig. 1: Solution flow of the proposed distributed beam scheduling framework. The original network utility maximization problem which
involves maximizing a function of the time averaged UE throughput is transformed into a new problem whose objective is to maximize
the time averaged value of the utility function. The transformed problem is then decomposed into two sub-problems by introducing the
auxiliary variables 7, ;(k) in each epoch. The first sub-problem is convex and thus can be easily solved. The second sub-problem is non-
convex and aims to determine the BS transmit powers p;;(k,n) in each block. We formulate the distributed beam scheduling problem as
a non-cooperative game where each BS attempts selfishly to maximize its own payoff which is a function of the Lyapunov virtual queue
parameters Z;(k), H; (k) and the transmit powers of other BSs. We then propose a parallel update algorithm to find the Nash Equilibrium
of the game which serves as a distributed solution to the second sub-problem.

uniqueness (under certain conditions) of the NE. A step-by-
step relaxation from the original network utility maximization
to the non-cooperative game-based distributed solution is given
in Fig. 1.

A. The General Lyapunov Optimization Framework

By introducing a set of K auxiliary variables
{v;.i(k) i € [M],j € K;} in each epoch k, which represent
the the average throughput of each UE in epoch k, the
original optimization problem (10) can be transformed into
the following equivalent optimization problem with a time
averaged objective function and variables p;;(k,n) and

V5,1 (k):

max tlgglof Z Z Z E[U(vj,i(k))] (11a)
ke(t] ie[M] jeEK;
st Y pji < Tpi™s, Vi€ [M] (11b)
JEK;
Yii < X, Vi € [M],Vj € K; (11c)

0< ij,i k,n) < p* Vi e [M],k>1,n € [N]
JEK:
(11d)

0 < 7;,i(k) < TW log (1 + g5 pi™)
Vie [M],VjeK,k>1 (lle)

where ¢7’7* denotes the maximum equivalent channel gain

max é

gj1
A .
maxy , g;i(k,n). ¥ = tli{go%ZZﬂ 7;,i(k) denotes the

from BS ¢ to UE j over all blocks and epochs, i.e.,

average value of the auxiliary variable ~y; ;(k) over all epochs.
The above transformed optimization problem can be solved
by solving two sub-problems at each epoch together with
the updating of two virfual queues to enforce the average
and peak power constraints of the BSs [27]. In particular,
we define two virtual queues {Z;(k)}3,,Vi € [M] and
{H;(k)}2,,Vi € [M],¥j € K; which are updated at each
epoch. The first virtual queue {Z;(k)}72, corresponds to the
transmit powers p; ;(k,n) and is updated according to

I

jEK; ne[N]

Zi(k+1) = max{ i(k,n)pji(k,n)

— TP, 0}, Vie [M]. (12)

The purpose of this virtual queue is to enforce the sat-
isfaction of the average BS power consumption constraint
(11b). The second virtual queue {H;,(k)}7, corresponds
to the auxiliary variables v, ;(k) and is updated according to
Vi € [M],Vj € K;:

vai(k —+ 1) = max {ijz(lﬂ) -+ ’YJZ(]{)) — Xj’i(k), 0}, (13)

which is used to enforce the average constraint (11c) on the



auxiliary variables. With the definition of the virtual queues,
we are now ready to present the two sub-problems.

The first sub-problem aims to solve the auxiliary variables
~;.: (k) in each epoch k:

ZZVUVJZ ) —

M]jeER;
st. 0 g V5i(k) < TWlog (1 + g5y (k)pi"™)
Vi € [M],Vj € K;,Vk > 1 (14b)

H; i(k)v;,i(k)) (14a)

max

where g (k) denotes the maximum value of g;;(k,n) in
epoch k, ie., g5 (k) 2 max, g;,i(k,n).> The parameter
V' is a constant that can be tuned to find a desirable trade-
off between optimality gap (to the original problem (10))
and convergence speed. It can be seen that for fixed virtual
queue status in epoch k, the sub-problem (14) is a convex
optimization problem. Moreover, the first sub-problem inter-
acts with the virtual queve {H;,;(k)}32, as follows. From
(14a), we see that if the queue status H ;(k) is large at the
current epoch k, which implies that the average value (up
to the current epoch) of the auxiliary variable ~y;; is large,
then maximizing the objective function (14a) will yield a
small 7, ; (k) which reduces the average value of the auxiliary
variables and enforces the satisfaction of the time averaged
constraint 7, ; < iji of (11c¢).

The second sub-problem aims to solve the transmit powers
pj.i(k,n) in each block n of epoch k:

min Z Z Z E [Tﬁi(k,n)pjyi(k,n)] Tpie
i€[M]jEK; \n€[N]
x Zi(k) — H; (k) X;.:(k) (152)
st. 0< Z pji(k,n) < pi®,
JjeEK;
Vi e [M],¥k > 1,Yn € [N] (I5b)
where

N
X;i(k) £ ST E [T (k,n)W log(1 + SINR; i (k, n))]
n=1

denotes the expected throughput achieved by UE j (served
by BS ¢) in epoch k and SINR; ;(k,n) = g,.:(k,n)p;:(k,n).
This sub-problem interacts with the virtual queue {Z;(k)}%2,
as follows. From (15a), it can be seen that when the queue
status Z; (k) is large in the current epoch k, implying the time
averaged power consumption (up to the current epoch) of BS

2From the boundedness constraint (11e), ideally, we want to upper bound
5.5 (k) by v;,:(k) < TWlog(1 + g;"*pj**) instead of using g (k).
However, for implementation, we wam to solve the sub- -problem (14) at each
epoch, so it is impossible to get knowledge of the equivalent gains in the future
epochs. Therefore, we use g“”x(k:) as a substitute of gmaLX Furthermore,
gjmfx(k) also needs to be estlmated at the beginning of epoch k. We can
adopt any large enough finite constant which is an upper bound on gmax(k)
as a substitute of g;“‘"“‘(k) According to [27], the effect of this esumate
is negligible and the optimality of problem (11) will not be affected if the
chosen constant is large enough. Note that there is no need for each BS to
know the exact value of the equivalent channel gain g; ;(k,n) in (14). In
fact, it is impossible for BS ¢ to know g; ;(k,n) in a distributed system as
the equivalent channel gain depends on the transmit powers of all interfering
BSs.

1 is high, then minimizing the objective function (15a) will
yield some small values of power allocation to the UEs of
BS i, which reduces the average power consumption of BS
and therefore enforces the satisfaction of the average power
constraint (11b).

By solving the two sub-problems (14) and (15) in each
epoch and updating the virtual queues using (12) and (13),
the following proposition for the performance guarantee of
this approach can be obtained straightforwardly [27]:

Proposition 1:  Let X?Eb_Opt,Vi € [M|,Vj € K; be
the optimal average throughput achieved by solving the two
sub-problems (14), (15) in each epoch. Given that the utility
function U(x) = log x and the system state is i.i.d. over every
epoch, then all the constraints in the transformed problem (11)
can be satisfied and
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B
ZUO’“—V, (16)

where U°Pt is the maximum utility of the original optimization
problem (10) and B is some constant. O

It can be seen from Proposition 1 that if V' is large, then
the proposed approach can achieve almost the same optimal
network utility as the original problem. We observe that the
first sub-problem (14) is a convex optimization problem which
can be easily solved distributedly. However, the second sub-
problem (15) is a stochastic non-convex optimization problem
in general and it is required to solve this sub-problem dis-
tributedly among the BSs. Hence, finding the optimal solution
for (15) is challenging. In what follows, we provide a non-
cooperative game-based approach to solve the distributed
scheduling problem. We next explain intuitively how the sec-
ond sub-problem (15) is connected to non-cooperative games.
When the virtual queue status Z;(k), H; ;(k),Vi € [M],Yj €
KC; are given (this is because the status of the two virtual
queues are determined by the data transmission of the previous
epoch and is independent of the BS transmit powers at the
current epoch), the objective function (15a) becomes mini-
mizing the difference between the total power consumption
and the average throughput weighted by the virtual queue
status across all BSs. This is equivalent to maximizing the
sum of a (18)-like (See Section III-B) payoff function for all
BSs with pre-determined and optimal “weights” «; and ),
(called pricing factors). We aim to solve this problem in a
distributed manner, i.e., BSs do not coordinate in determining
their transmit powers. Instead, each BS myopically maximizes
its own payoff by choosing its transmit powers based on the
measured interference from other BSs. This non-cooperative
game theory provides a straightforward approximate solution
to such a distributed optimization problem. In the following
subsection, we will provide a detailed description of the non-
cooperative game-based formulation.

B. Non-cooperative Game-based Formulation

The distributed nature of the beaming scheduling task falls
into the scope of the non-cooperative games in which a set
of players tries to maximize their individual payoff based on
the decisions of other players. In this section, we propose



a distributed beam scheduling algorithm by formulating the
scheduling problem as a non-cooperative game in which the
BSs are the players each having a payoff function which is
the aggregate throughput achieved by the associated UEs plus
a power consumption penalty term. Each player then tries to
maximize its own payoff based on the power allocation deci-
sions and the CSI. This game happens in each scheduling unit,
i.e., a block. By finding the Nash Equilibrium (NE) of the non-
cooperative power allocation game, the proposed scheduling
algorithm provides a good distributed approximation to the
sub-problem (15). In other words, the sub-problem (15) fits
naturally into the scope of non-cooperative games in game
theory [22], where instead of pre-defining the pricing factors
a;, A; as in most of the work in the literature, the pricing
factors in this problem are determined by the status of the
virtual queues. Before proceeding, we first describe the non-
cooperative games in a more general sense, providing several
key properties of the game and then adapt the game theory
framework to our specific scheduling problem in each epoch.

Consider the power allocation game G =
(IM],{P:}ieim)> {®i}ieqm)) in our considered network
model described in Section II-A, in which the set of M
BSs are the players. WLOG, we consider the case where
each BS is associated with the same number of UEs, i.e.,
K; = K/M,Vi € [M]. The action space of BS i € [M],
denoted by P;, is defined as

A .
Pi=4pi:0< Z i <Pt pis > 0,V5 € G », (17)

JEK:

where p; 2 (pji)jex: € Rf/ M denotes the power allocation
profile for BS ¢, i.e., the power allocation to each UE asso-
ciated with BS i. Let p_; = {ps : ' € [M]\{i}} denote the
power profile for all BSs expect BS i. The payoff function ¢;
of BS i is defined as

®i(pi, P—i) =
041-< Z Wlog (1 + SINR]—,Z-)> — /\i< Z pj,i>7 (18)
JEK; JEK:

in which SINR;; = g;;p;; is the received SINR at UE
7 of BS ¢ and o; > 0,)\; > 0 are some non-negative
weights referred to as pricing factors. This payoff function
has an intuitive interpretation that it aims to maximize the
throughput while penalizing the over consumption of power
which is consistent with the average power constraints of the
BSs. In general, the pricing factors a; and \; can be tuned
to find a desirable trade-off between throughput and power
consumption. For example, in [28] a scenario where multiple
radar and communication systems coexist, a game theoretic
method was proposed to control the interference where the
pricing factors are adjusted heuristically according to the
achieved SINR at the communication system. In our proposed
distributed scheduling algorithm, however, the pricing factors
«;, \; are updated according to the status of the virtual queues
determined by (12), (13) and the first sub-problem (14). Such
a choice of the pricing factors ensures the constant-factor

optimality of the proposed framework due to the Lyapunov
transformation (See Lemma 3). Next we formally present the
definition of the Nash Equilibrium for the game G through the
best response function.

Definition 1 (Best Response, BR): The Best Response
for each BS i, denoted by pPR, given the power profiles
P—i of all other BSs, is defined as a power profile of BS
i such that its payoff is maximized, i.e., ¢; (p?R,p,i) >
@i (Pi,P—i),VPi € P;. Moreover; the Best Response function
for BS i, as a function of the power profiles p_;, is defined
as p;R(p—;) = argmaxp, ep, i (Pi; P—i) -

With the definition of BR, the Nash Equilibrium of G is
then defined as follows.

Definition 2 (Nash Equilibrium, NE): The Nash Equilib-
rium of the distributed scheduling game G is defined as a
power allocation profile {Pf}z‘e[ M) such that each BS’s power
allocation profile is the Best Response to the power allocations
of all other BSs, i.e., Vi € [M]:

¢:(P7, ;) = ¢i(Pi, PL,),
From the above definition, we see that NE is a power allocation
for which no BS has the incentive to unilaterally deviate from
it to obtain a better individual payoff. Solving the NE for
the non-cooperative game G is essentially solving a set of M
coupled optimization problems where the objective function
for each of these optimization problems is the payoff of the
corresponding BS which depends also on the power allocation
of other BSs.

Vp; € P; (19)

C. Existence and Uniqueness of Nash Equilibrium

In this section we discuss the properties of the NE of the
power allocation game G defined in Section III-B. More specif-
ically, given the structure of the game, we prove that G always
admits at least one NE for arbitrary channel realizations.
We further provide sufficient conditions which guarantee the
uniqueness of the NE by establishing an equivalence between
the non-cooperative game and a corresponding Variational
Inequality (VI) problem [29]. Borrowing existing results on
the uniqueness of solutions of the VI problem, we are able to
prove the uniqueness of NE.

Since we have assumed no use of SIC techniques, each BS
can only transmit to at most one UE during a block in the
proposed distributed scheduling algorithm. To choose which
UE to serve, multiple approaches such as random selection
and Round Robin can be used. However, multiple BSs can
transmit to their designated UEs simultaneously. In this case,
the aggregate interference from other transmitting BSs will
be simply treated as Gaussian noise. Under this scheduling
model, the BR function for each BS is given in Lemma 1.
Recall that for any BS i, we let j(¢) denote the UE which is
served by this BS; For any UE j, we use i(j) to denote the
BS which is responsible to serve this UE.

Lemma 1: Suppose that at most one UE can be served by
each BS at any time, given the payoff function defined in (18),

the Best Response of BS i, pP& = (p?:%R)je)c , is given by

}Z . Yie[M] (0
0

Pj(),i = [

Ai 9j(i).i



where UE j(i) is the only UE served by BS i. We
have pSR = OVJ € K\D} and g0, =
G GRS bl Py,

ey G .G g(z),e‘}fj( OWARCYY (7>,'zpj(€),é+‘72
channel gain from BS i to UE j(Z). O

Proof: See Appendix A of [30]. ]
Based on the Best Response function derived in the above
lemma, solving the NE can be formulated as solving a fixed
point equation. In particular, if the NE of G exists, then it
must satisfy a set of non-linear equations specified by (20).
It can be seen that the NE {p]}icias) is a fixed point of
the Euclidean projection mapping defined by (20). Therefore,
the NE can be found using the fixed point iteration algorithm
[31]. In our scheduling algorithm, BR based iteration method
can be used to find the NE based on the interaction (via
interference) among different BSs. We next prove the existence
and uniqueness of the NE of the considered game.

Lemma 2 (Existence of NE): Based on the considered
scheduling model, the game G = ([M],{P:}icim), {®i}ieim))
always admits at least one pure strategy NE® for any oy, \; >
0,Vi € [M] and any set of channel realizations. O

Proof: See Appendix B of [30]. ]

Since the NE of G always exists, we are interested in
finding a set of sufficient conditions under which the equilib-
rium is unique. The uniqueness of NE is established via the
connection to the Variational Inequality (VI) problem [29].
Before proceeding to prove the uniqueness of the NE, we
give a brief description of the VI problem. Given a closed
and convex set M C R™ and a mapping F : M — R”,
the VI problem, denoted by VI(M,F), aims to find a vector
x* € M such that (y — x*)TF(x*) > 0,Vy € M, in which
x* is called the solution of VI(M,F). For our considered
non-cooperative game g the corresponding VI problem can

found as follows. Let P = Hl 1 P; denote the product space.
Recall that j(i) is the UE selected by BS 4 to transmit to.

Let v(i) 2 mod (j (@), K/M) be the index of UE j(i) among
the UEs associated with BS 7. We define a vector function

is the equivalent

F: P RUM as F(p) £ [Fi(p). Fa(p), -, Fur(p)] €
R~ *M in which F;(p), Vi € [M] is defined as
N
Fi(p) = —Vp,¢i(pi, i) (21a)
T
_ |:01/(2)17 _a¢z(p7? p—L) , Oﬁy(z)] (21b)
Opj(iy.i
. sy . T
- [Oy(i)l,)\i _ W70ﬁ1/(i)] . (21¢)
1+ 9i6).iPii

, the only non-zero entry in the v/(7)'" position of F;(p)

represents the first-order derivative of the payoff function ¢,
w.rt. the transmit power of BS i to the selected UE j(i).
Note that the selection of which UE to serve by each BS is
determined by some exogenous mechanism and here we just
assume that the UE selection is fixed, i.e., each BS 7 selects
UE j(4). It was shown in [32] that the game G is equivalent
to the VI problem VI(P,F). A direct consequence of this
equivalence is that if the mapping F is a uniformly P-function,

3A pure strategy NE is a NE in which each BS chooses a certain power
allocation profile with probability one.

then VI(P,F) has a unique solution, which implies that the
game G admits a unique equilibrium. This result is formally
described in Proposition 2. In the following, we introduce two
definitions which are useful in proving the uniqueness of the
equilibrium.

Definition 3 (Uniformly P-function): The mapping F is said
to be a uniformly P-function on ‘P if there exists a constant
C" > 0 such that for any two power allocation profiles p =

K p
()M, € RIM and pf = (p))M, € R M it holds that

max (p; —p})' (Fi(p) — Fi(p')) > C™|p — p'[2. (22)

1<i<M

in which ||p—p’||2 represents the Frobenius norm of the matrix
p-p.

Definition 4 (P-matrix): A matrix A € R™*" is called a
P-matrix if every principal minor of A is positive.

Proposition 2 (Uniqueness of Solution to VI(P,F), [32]):
If each P;,¥i € [M] is a closed convex set and F is a
continuous uniformly P-function on P,then VI(P,F) has a
unique solution. Equivalently, the game G admits a unique
NE. ]

Next we introduce the matrix Q 2 [Q,,] € RM*M which
is useful in studying the sufficient conditions guaranteeing the
uniqueness of the equilibrium. Q is defined as

Qpaq =
apW, itp=gq
2 2, max
_ hj(l’)ﬁfl Zze[}% |hJ(q) 1‘ .
(23)

A
where 1 ; = \/G??G}BSMJ i|*d; . For a unified notation, we

further denote % 2 h“”) <. Note that hj(p) »=1,Yp €

3(P)q
[M]. With such a speciﬁca]tio)n of Q, we are ready to present
the uniqueness results in the following Theorem.

Theorem 1 (Sufficient Conditions on the Uniqueness of
NE): If the matrix Q defined in (23) is a P-matrix, then the
mapping F is a uniformly P-function. Consequently, the game
G admits a unique NE. O

Proof: See Appendix C of [30]. [ ]

Remark 1: Theorem 1 gives a sufficient condition which
guarantees the existence and uniqueness of the NE of the
game G. Since the matrix Q only depends on the parameters
a;,% € [M] and the channel realization, it is possible that Q
is a P-matrix. For example, due to structure of Q where all
diagonal elements are equal to the constant o, while all
off-diagonal elements are negative numbers depending on the
channel gains, we notice that if all the channel gains are small
enough, every principal minor of Q will be positive, making
Q a P-matrix.

D. Non-cooperative Game Based Beam Scheduling

With the general non-cooperative game-based formulation
in Section III-B, we are ready to present the proposed dis-
tributed beam scheduling algorithm. Recall that beam schedul-
ing happens in each block of an epoch. To maximize the
network utility, we aim to solve the two sub-problems (14) and



(15) in a distributed manner at the beginning of each epoch.
Recall that the first sub-problem is convex and can be solved
by letting each BS perform an independent optimization of
its own utility. The proposed distributed scheduling algorithm
for solving sub-problem (15) is as follows. At the beginning
of each epoch, each BS ¢ € [M] uniformly selects one UE
j(i) € K; at random to transmit to until the end of the current
epoch. Therefore, the peak power constraint of (11d) can be
simplified as 0 < p;q),; < p*™*, Vi € [M]. After the UE
selection, the beams are aligned for BS ¢ and UE (i) if the
transmit power is not zero.* In particular, BS 7 aligns its beam
with UE j(¢), i.e., UE j(¢) will lie in the center of the BS
beam. UE j(i) also aligns its beam with BS 7. All BSs will
transmit to their designated UEs at the same time using the
same spectrum. Therefore, BSs interfere with each other. We
assume that all BSs are synchronized which can be achieved
by aligning timing with GPS. Since BSs are transmitting to
their individually selected UEs throughout the entire epoch,
for BS i, the data transmission time is T] (yi(km) = T" and

4 (k,n) =0,V € K\{j(i)},vn € [N } As a result, the
objectlve function of the second sub-problem (15) becomes?

ZZ

i€[M] ne[N

(k)T*W log (1 4 SINR;(;) i (k,n))

max

— Zi(k)T"pj(i).i(k,n) (24a)
st. 0 < pjgy,i(k,n) <™,

Vi € [M],Vk > 1,Yn € [N]. (24b)

We now solve the optimization problem (24) in each block dis-
tributedly using the proposed game-based approach presented
in Sections III-B and III-C. In particular, in each block n of
epoch k, each BS i aims to maximize the following payoff
function:

¢i (Pi(k,n), p—i(k,n)) =

;W log (1 + SINR;(;) ;(k,n)) —

A1pj(z l(k ’I’L) (25)

with

ai 2 Hy (T, N\ 2 Zi(k)T (26)

where p;(k,n) is the power allocation profile for BS 7. It
can be seen that this payoff function fits exactly in the non-
cooperative game formulation (18) with pricing factors «; =
Hj(;y;(k)T" and \; = Z;(k)T". Let G(k,n) denote the power
allocation game whose payoff function is defined by (25) and
the action space for each BS i is defined as

2 {pi(k,n) 2 (pji(k,n)) jex, D0 < pyi(k,n) < i,
Vi e [M],Vj €Ki} 27)

Each BS ¢ also maintains the virtual queues {Z;(k)}?2,
and {H,;}72,,Vj € K; in order to perform the distributed
scheduling.

4If the transmit power of BS i equals zero, which is possible in the game-
based power update algorithm, then there is no need for beam generation
between BS ¢ and UE j(z).

SHere we omitted the term ~Yjex; Zi(k)Tpi® =
—KTZ;(k)p;"®/M which is a constant. Therefore removing this term
from the objectlve function does not affect the solutions of the optimization
problem.

The Nash Equilibrium of the game G(k,n) can be found
by performing a standard parallel updating algorithm (See
Algorithm 1) based on the interactions via interference among
different BSs [24]°. In particular, within each block n, each BS
i adapts its transmit power to the designated UE j(¢) slot-by-
slot based on the interference (plus noise) measured at UE j(4)
from all other interfering BSs. In this case, the SINR of each
designated UE, i.e., SINR ;) ;(k,n), will change from slot to
slot. Therefore, the throughput of each UE needs to be calcu-
lated in a slot-by-slot manner instead of calculated from block
to block as in (7). The parallel updating algorithm is formally
described in Algorithm 1. For ease of notation, we ignore the
epoch and block indices (k,n) on the power allocation profiles
and denote hj; 2 \/GUEGBSM] J[2d7, Vi € [M],V) € [K].
Algorithm 1 works as follows. At the beginning of each epoch,
each BS randomly picks an initial power p( ()) from the action
space defined by (27) to transmit to its desrgnated UE j(3).
In each slot s, UE j(i),Vi € [M] measures the received
interference plus noise Ij(fl) and then sends Ij(.fi)) and the
estimated direct channel gain %j(;) ; to BS 7 through some
feedback mechanism’. BS i then calculates the equivalent

channel gain gj((Z . = i ) and adapts its transmit

power to pg st for the next slot S + 1 according to equation
(28). Each BS repeats this process until the stop criterion is
met. The stop criterion of the updating algorithm is that if
either two consecutive power profiles are very close to each
other, i.e., a difference of /¢ for some pre-defined threshold
€ > 0 in Frobenius norm, or the number of iterations reaches
the maximum, i.e., the number of time slots per block. If
the algorithm stopped before the iteration index s reaches its
maximum value 7P, the transmit powers of the BSs will be
equal to the output of the algorithm for the remaining time
slots. Note that the parallel updating algorithm is performed at
each block, therefore the output of the algorithm at the current
block will serve as the initial input to the algorithm at the
next block. To perform the distributed scheduling algorithm,
BS i needs to know the virtual queue status Z;(k) and
Hj;,i(k), the measured interference plus noise I (f)) at UE
j(i) and the channel gain hj; ;. The channel gain hjg)
can be estimated by sending some pilots to UE j(i) and
then fed back to BS <. Similarly, the measured interference
1) at UE j(i) can be fed back to BS .3 In addition,

3(@) .
because the virtual queues are maintained separately by each

Other than the parallel updating algorithm, sequential updating in which
the BSs update their transmit powers one after another in a sequential way
can also be used to find the NE. The difference mainly lies in the convergence
speed.

7Since we have assumed a block fading channel model where the channel
gains do not change during each epoch, the direct channel gain 725 ; only needs
to be feedback to BS ¢ once per epoch, which can be done by assigning a
number of desi (gnated time slots at the beginning of each epoch. The measured
interference I needs to be feedback to BS ¢ periodically in order to
perform the power updates, which means that certain slots also need to be
allocated periodically for feedback. To increase the downlink data efficiency,
the duration between two consecutive BS power updates can be increased so
that a larger portion of time can be devoted to data transmission instead of
feedback.

8The system overhead due to the feedback of the channel gain and measured
interference (plus noise) from the UEs is negligible since is does not scale
with the downlink data transmission.



BS, all the above information is available to BS 7. Since the
direct channel gain 7;(;) ; can be obtained by BS i via the
feedback mechanism, the equivalent channel gain gj(?z)b can
be calculated as 9]((2 y |7 )i |2 /I Z)l as used in (28).
The parallel updating algorlthm is proved to converge under

Algorithm 1 Parallel Updating Algorithm

1: Input: Randomly pick a feasible initial point p(©) 2

{pgo)} e P. Set time slot index s = 0.

€[M
2: Step 1: If Hp(s“) p® |2 < e or s > TP, then Stop.

3: Step 2: Each BS i € [M] compute (simultaneously):

max

p;
j(z) (k) 1
(S) ’
.7( )a 0

(s+1) _

12100 Ll(k) (28)

where g](( i = |y

between BS i and UE ](’L) at time slot s and IJ(EZ)) denotes
the interference plus noise measured at UE j(¢) at slot s.
4: Step 3: Set s < s+ 1. Go back to Step 1.
s: Qutput: Output p(*).

)) is the equivalent channel

the same condition that guarantees the uniqueness of NE of
G(k,n) by [23] (See Proposition 3). In fact, our simulation
results showed that the proposed parallel updating algorithm
converges very fast in general (in dozens of slots).

Proposition 3 (Proof of Convergence, [23]): The sequence
{p(8>}§10 generated by Algorithm 1 always converges. Fur-
thermore, if the matrlx Q defined in (23) is a P-matrix, then
the sequence {p( o2 converges to the unique NE of the
game G(k,n).

E. Optimality Gap Analysis

In this section we identify one important property of the
proposed game-based scheduling algorithm and analyze its
optimality gap to the optimal value of the original network
utility maximization problem.

Let U&*™m¢(k) and U'deal(k) denote the network utility
achieved by the proposed scheduling algorithm and the ideal
case (See Section IV-A3) respectively, in epoch k. The follow-
ing lemma states the optimality gap of the proposed scheduling
algorithm to the original utility maximization problem.

Lemma 3: (Optimality Gap) Suppose that there is an
additive gap C > 0 in utility between the proposed game-
based approach and the ideal case at each epoch, i.e.,
psame(gy > yideal(p)y — O Vk > 1. Then
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where X;{‘;me is the average throughput achieved by UE j
(of BS i) in the proposed scheduling algorithm, U°P* is the
optimal value of the original problem (10) and B is some
constant. O

Proof: See Appendix D of [30]. ]

When multiple NE exist, since it is unknown which one of
the proposed parallel update algorithm will converge to, so we
choose C' to be the upper bound on the optimality gap among
all possible equilibrium power allocations. See Appendix E of
[30] for a detailed discussion on the optimality gap.

1V. NUMERICAL EVALUATION
A. Description of the Baseline Schemes

One advantage of the proposed Lyapunov optimization
framework is that it can admit a number of underlying MAC
layer protocols including p-persistent protocol and the 802.11
CSMA/CA protocol. In the following, we will consider the
algorithms designed based on these two underlying MAC
protocols as the baseline schemes in order to show the
performance gain of the proposed game-based algorithm. We
also consider an ‘ideal case’ where we assume there is no
interference among BSs. This ideal case provides a natural
upper bound on the performance of the proposed and baseline
schemes. Moreover, we consider two more baselines which
are p-persistent and CSMA/CA protocol with random power
allocations. In the following, we will first describe how these
two protocols fit into the proposed Lyapunov stochastic opti-
mization framework and then we present the numerical results.

1) p-persistent Access Strategy: In this case, we solve
the network utility maximization problem (10) under the p-
persistent access strategy. In particular, we solve the two sub-
problems (14) and (15) together with the updating of the two
virtual queues at the beginning of each epoch. The first sub-
problem (14) is a convex optimization problem and can be
efficiently solved using the MATLAB optimization toolbox
CVX. The second sub-problem involves the random data
transmission time E[T’{; (k, n)] which has to be determined by
some underlying access strategy and has to be estimated at the
beginning of each epoch. Based on an estimate of IE[TJdZ(k, n))
which is denoted by Tﬁi(k,n),Vj € K;,Vn € [N], each BS i
needs to independently minimize®

> T (kn)pj ik, n) — TP | —H; (k) X;4(k),

n€[N]

Z;i(k)

(30)

subject to the BS peak transmit power constraints p; ;(k,n) <
P Vi e Ky¥n € [N]. We have X;i(k) =
Zne[N T i;(k,n)Wlog(l + SNR;;(k,n)) and SNR;; =
95, Zp”gk n) is the SNR at UE j (Since at most one BS
transmits at any time slot, SINR is replaced by SNR). Clearly,
the optimization problem of (30) is convex and can be solved
easily. Note that in this optimization we solve the one-time
transmit power for all UEs. The same UE might be selected
by the corresponding BS in multiple blocks, but the transmit
power for that UE stays unchanged. In this regard, we ignore
the block index of the transmit powers in (30) and simply

Note that once the estimated data transmission time E[Td (k,n)] are
given, the joint optimization problem of (15) is equivalent to the independent
optimization of (30) performed by each BS. This is because in the p-persistent
protocol, only one BS is allowed to transmit at any given time and the
power constraints are independent for each BS. A similar situation holds when
solving the auxiliary variables y; ; (k) from the first sub-problem (14).



write p;;(k,n) as p;,(k). Then the objective function (30)
becomes

Zi(k) | pra(k) Y Tilk,n) — Tp™® | — Hyi(k)X;.i(k),
]

ne[N
(3D
from which the transmit power p;;(k) for each UE can be
solved at the beginning of the epoch k. Similarly, to solve
auxiliary variables, each BS needs to independently maximize
VU (v;,i(k)) — Hji(k)y;,i(k) subject to 0 < ;3(k) <
TW log(1 + g#*pi"™), which is also convex.

In the p-persistent protocol, we let the BSs compete for
the channel use in each block within each epoch.'” To avoid
interference, there can be at most one active link at any time.
More specifically, at the beginning of each block, each BS
attempts to transmit with probability P.. If more than one
BS decide to transmit at the same time, i.e., collisions are
detected, then all BSs will not transmit. The BSs then contend
the channel again in the following time slot until one BS wins
the channel, i.e., there is only one BS decides to transmit and
all other BSs stay silent. The BS which wins the contention
then randomly chooses one UE from the set of UEs associated
with it to transmit to it until the end of the current block. All
BSs will contend for the channel again at the beginning of the
next block. At any time slot, successful transmission happens
with probability M P.(1 — P.)™~1 which is maximized when
P. = 1/M. Note that the above channel contention process
can also be used as a simulated process which produces an
estimation for the data transmission time for the UEs during
the current epoch.

2) CSMA/CA Access Strategy: We consider a CSMA/CA
MAC protocol with exponential backoff time (IEEE 802.11).
Different from the p-persistent case, the CSMA/CA schedul-
ing happens in each epoch instead of in each block. More
specifically, each BS listens to the shared spectrum before
transmitting. If the channel is sensed to be busy, the BS will
wait. If the channel is idle, the BS starts to transmit to its
selected UE with certain probability. If a collision occurs,
each BS then chooses a random backoff time of 1 or 2 slots
(assuming a contention window size of two) and attempts to
transmit again after the chosen backoff time. If no collision
occurs, the BS wining the channel in the last slot will randomly
choose a backoff time of 1 or 2. If collision happens again,
each BS randomly chooses a backoff time between 1, 2, 3
and 4. After C collisions, each BS will choose a backoff time
randomly distributed from 1 to 2¢ and attempts to transmit
again after the chosen backoff time. The maximum backoff
time can not exceed the epoch length T'. To improve the data
transmission efficiency, a BS wining the channel contention
may continue its data transmission for multiple consecutive
slots instead of only one. Similar to the case of the p-
persistent MAC, at the beginning of each epoch, based on

10The reason that we let the channel contention happen in each block
instead of each epoch is for the consideration of data transmission delay of
the UEs. If one BS wins the channel contention and occupies it for the entire
epoch, then all other BSs have to wait until the next epoch begins to contend
again. This will result in a significant delay for other UEs since the length of
an epoch could be much longer than a block.

an estimation of the data transmission time for each UE, each
BS independently solves the sub-problem (30). Because there
is only one active link at any time, independent optimizations
performed by the individual BSs are equivalent to the joint
optimization of the sub-problems (14) and (15) as in the case
of p-persistent MAC. Note that the transmit power for each
UE is determined by solving the second sub-problem at the
beginning of each epoch and will stay unchanged during the
entire epoch. We further assume that the UE selection of the
BSs is fixed during each epoch but can change among different
epochs. Particularly, at the beginning of each epoch, we let
each BS randomly select one of its associated UEs to serve
throughout the whole epoch, i.e., at any slots in which the BS
wins the channel contention.

3) The Ideal Case: To give a straightforward intuition on
the optimality of the proposed scheduling algorithm, we con-
sider a scenario in which we assume there is no interference
among the BSs. In particular, at the beginning of each epoch,
each BS i randomly selects a UE j(i) € K, to serve throughout
the whole epoch. The M BSs then transmit to its selected UEs
simultaneously and there is no interference among them. Note
that this ‘ideal case’ is just a way to produce an upper bound
on the performance and is not an achievable scheme. Since in
this case the data transmission time for each UE can be easily
determined at the beginning of each epoch, the transmit powers
(and the auxiliary variables) of the BSs can be determined by
solving the sub-problems (14) and (15) similarly to that of the
p-persistent and CSMA/CA protocols.

4) p-persistent and CSMA/CA Protocol with Random Pow-
ers: We provide two more baselines which are the p-persistent
and CSMA/CA protocols with random transmit powers. In
particular, the two protocols are preformed repeatedly at each
epoch and the BS transmit powers are chosen randomly. Due
to the choice of the peak and average power constraints, the
average power constraints of the BSs can be satisfied.
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Fig. 2: Distribution of the BSs and the UEs over a planar grid of
dimension 800 x 800 meter squared. Each BS is associated with ten
UEs and these UEs are uniformly distributed in the disk coverage
area with a radius of 150 meters. This BS-UE association is fixed
over all epochs.



B. Simulation Result

In this section we present the numerical results on the per-
formance of the proposed game-based scheduling algorithm.
We compare the performance of the proposed approach to the
baseline schemes, i.e., the p-persistent and CSMA/CA MAC
protocols with optimized and random transmit powers. The
simulation setup is described as follows.

Consider a wireless network (See Fig. 2) with M = 10
BSs, each from a different operator, and a total of KX = 100
UEs located on a planar grid with dimension 800 x 800
meter squared. Each BS is responsible for serving a set of
10 UEs within its coverage area which is a disk of radius 150
meters centered at that BS. Due to the proximity locations,
the coverage areas of different BSs may overlap. The system
operates on a W = 400 MHz frequency band with a center
frequency W, = 37 GHz. Each BS i has an average power
constraint of pi*® = 38.13 dBm (6.5 Watt) and a peak power
of pi"®* = 39 dBm (7.9 Watt). For the wireless propagation
channels, the path loss factor is set to be n = 4. The parameters
of the Nakagami-m distribution are p = 1,Q = 0.001.
Each time slot represents 1 millisecond. Each block contains
T = 50 slots and each epoch contains N = 8 blocks
thus having T = NT® = 400 slots. For the p-persistent
baseline scheme, the optimal contention probability is set to be
P. = 0.1. For the CSMA/CA scheme, the minimum contention
window is set to be CW,,,;, = 20 slots. For practical reasons,
we also impose a maximum contention window constraint
of CWpax = 200 slots. Each data transmission duration
contains two time slots. The random noise power at the UEs
is calculated according to

o? (dBm) = 101g (kgTp x 10*) + NR(dB) + 101g W, (32)

where kg = 1.38 x 10723 Joules/Kelvin is the Boltzmann’s
constant, NR is the UE noise figure and T} is the temperature
of UE receive antenna system. Taking the typical value of
NR = 1.5dB and Tj, = 290 Kelvin, the total noise power over
the 400 MHz bandwidth is equal to 0? = —86.46 dBm. In
the simulation, we also assume that the BSs’ and UEs’ beams
are perfectly aligned, i.e., if a UE is served by a BS, then the
UE will lie in the center of the BS antenna main-lobe and
the BS will lie in the center of the UE antenna main-lobe.
With the above parameter specification, we next evaluate the
performance of the proposed game-based scheduling algorithm
and verify the effect of BS/UE beam width, MSR, the number
of UEs, and feedback overhead on the network utility. In all
simulations, we fix the Lyapunov constant to be V' = 1000.

1) Effect of BS/UE Beam Width: The BS MSR is fixed
as DBS = 20 dB. We let the BS beam width take values
AGBS = 5s3g and 75 respectively in order to verify the
effect of the beam width. Since changing the UE antenna
beam width and MSR has a similar effect as varying that of
the BSs, we fix the UE antenna beam width and the MSR
to be AGVF = X and DYF = 10 dB. The network utility
versus the number of epochs curve is shown in Fig. 3. We have
the following observations. First, for all the three cases, the
proposed approach outperforms the baseline schemes. More
specifically, the proposed approach converges faster than the

baselines and achieves higher asymptotic utility. It can also
be seen that the CSMA/CA baseline achieves better utility
than the p-persistent baseline for both optimized and random
transmit powers. This is because in the CSMA/CA protocol,
the data transmission time has been improved compared to
the p-persistent protocol. Second, it can be seen that when the
beam becomes narrower, the achieved network utility of all
schemes increase (See Fig. 4). This is because narrower BS
beams increase the antenna gain towards the target UE and
avoid covering other UEs and causing interference. Note that
when the BS antenna beam width is very small and the MSR
DPBS is very large, the proposed approach will have a similar
performance to the ideal case since very sharp beams will
eliminate the interference from undesired BSs for the UEs
and mimic the performance of the ideal case in which it is
assumed that BSs do not interfere with each other.

2) Effect of BS/UE MSR: The UE antenna beam width and
MSR are fixed as AGVF = 15 DVE = 10 dB. The BS antenna
beam width is fixed to be AFBS = 15- We let the BS MSR
be DBS = 10,20 and 30 dB respectively in order to verify
the effect of MSR. The simulated curves are shown in Fig. 5.
We have the following observations. First, for all the three
cases, the proposed scheme outperforms the baselines in terms
of both convergence speed and asymptotic utility. Second,
it can be seen that when the MSR increases, the achieved
network utilities of all the schemes increase (See Fig. 6). This
is because a higher D®S increases the antenna gain towards
the target UE and reduces the side-lobe gain which causes
interference to other UEs.

3) Effect of the Number of UEs: We verify the effect of
the number of UEs on the proposed game-based scheduling
algorithm in this section. The BS and UE antenna parameters
are chosen as AGPS = Z DBS = 20dB and AGVF =
I—TFS,DUE = 10 dB. The positions and coverage areas of the
BSs are fixed as in Fig. 2. We then randomly generate 10, 8,5
and 3 UEs for each BS. Therefore, the total number of UEs
is equal to 100, 80, 50 and 30 respectively. The achieved
network utility and average per UE utility, i.e., the network
utility divided by the total number of UEs, are shown in Fig. 7.
From Fig. 7(a), it can be seen that the achieved network utility
increases as the number of UEs increases from 30 to 100.
Similar trends can be observed from both baseline schemes
as shown in Fig. 7(c),(d). From Fig. 7(b), it can be seen that
the average per UE utility decreases as the number of UEs
increases, and the utility curve converges faster (i.e., reach its
asymptotic value in fewer epochs) when there are less UEs in
the system. This result is expected because when the number
of UEs increases, there are likely to be more UEs located
close to the overlapping areas of the BS coverage. These
UEs receives stronger interference from neighboring BSs and
therefore achieves a smaller average utility.

4) Optimality of the Proposed Scheduling Algorithm: As
we have observed in the previous simulation results, when the
BS antenna beam becomes sharper, i.e., a narrower beam width
and a larger MSR, the proposed game-based approach gets
closer to the ideal case in terms of the achieved network utility.
The reason is that, in the proposed algorithm, BSs update
their transmit powers based on the measured interference
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Fig. 5: The effect of BS MSR on the network utility. The BS beam width is fixed to be A9®S = 7/18.

(plus noise) from all other BSs. When the BS beam width
AP is large, or the BS MSR DPBS is small, each UE is
more likely to be covered by the main-lobe of many other
interfering BSs, which will impose a strong interference to
the UE and lead to performance degradation in throughput
and therefore in network utility. In contrast, when the beams
are sharp (small beam width and high MSR), the interference
caused by neighboring BSs remains negligible as the side-
lobe gain is very small, which is similar to the ideal case.
Fig. 8 shows the utility gap between the proposed approach
and the ideal case for various BS antenna beam width and
MSRs values. It can be seen that when the BS beam becomes
sharper, the gap of the achieved network utility between the

proposed algorithm and the ideal case shrinks. As an extreme
case where A9PS = 7/36 and DBS = 40 dB, the proposed
algorithm achieves almost identical performance to the ideal
case, demonstrating its advantage.

5) The Effect of Feedback Overhead: In a time division
system, a certain number of time slots need to be designated
to the feedback process during which the selected UEs report
the measured interference to the associated UEs. We verify
the effect of the feedback overhead in this section. For the
simulation, we further divide each time slot into multiple sub-
slots, say 20 sub-slots per slot. We assign the first .S sub-
slots of each slot for feedback. The reason for this further
division is that, the size of the feedback message is usually
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the proposed approach and the baselines.

very small because the measured interference value has to be
quantized and possibly compressed and therefore devoting full
slots to feedback may cause under-utilization of the resources.
The BSs stay silent during the first S sub-slots and then
use the updated power starting from the (S + 1) sub-
slot. The feedback overhead is defined as 5 x S%, which is
the portion of a slot that is used for feedback. We set the
BS/UE beam width and MSR to be A#BS = AGUE = T
DBS = 20 dB, DVF = 10 dB. Fig. 9 shows the result for
various feedback overhead values. It can be seen that, first,
the utility curve will converge slower as the BSs update their
powers less frequently; second, the asymptotic network utility
will drop since the average throughput decreases due to the
non-transmission of the BSs during the feedback slots.
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V. CONCLUSION

In this work, we studied the distributed beam scheduling
problem in 5G mm-Wave cellular networks where there is no
cooperation or centralized coordination among base stations
belonging to different operators that share the same spectrum.
We proposed a new design framework based on the Lyapunov
stochastic optimization techniques to maximize the network
utility as a function of the time averaged throughput subject



to the average and peak power constraints of the base stations.
The original network utility optimization problem was then
transformed into two sub-problems which solve the auxiliary
variables (convex) and the power allocation in each epoch
(non-convex). With theoretical performance guarantees, we
proposed a distributed beam scheduling algorithm to cope with
the non-convexity of the second sub-problem by formulating
the scheduling problem as a non-cooperative game where the
optimal pricing factors determined by the virtual queues. An
iterative interference-measuring based power update algorithm
was proposed to solve the Nash Equilibrium and was shown
to have fast converge speed. We numerically evaluated the
effectiveness of the proposed scheduling algorithm compared
to several baseline MAC scheduling algorithms including p-
persistent and CSMA/CA protocols. The proposed optimiza-
tion framework can accommodate a large range of other
MAC protocols for network utility maximization, which opens
up opportunities for future research. Furthermore, one may
consider the scenario in which subsets of the base stations
can cooperate and cooperative game-based approach may be
investigated.
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