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Motivation

Coal-Fired Power Generation Outlook

Coal-fired power plants (CFPPs) are critical to US power
generation infrastructure
» providing diversity at low cost
* hardening the grid against increased penetration of
intermittent generati on sources Electric generating capacity Total electricity generation ::rl::"::?;:ﬁ"zaﬁm rate - coal-fired

gigawatts trillion kilowatthours
2018 percent

350 history | projections 4 100% 2018

Coal-fired generating capacity is projected to decrease 36% 300 T vea | ey | projeetons
However, coal-fired generation is projected to decrease 18% 2 " and Teommorogy 3 % |
2018 to 2035 (AE2019, EIA) . conemmiy [N . — “\KF
Remaining active CFPPs will have to: T | 40% i

operate more time at part-load 50 | High Oil and Gas Resource 20% |

0 | and Technology
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be more flexible
be more efficient

Program Goal: Build a platform for Digital Twins (UKF + transient model) and Real-Time Optimizers (MPC)
that estimates then optimizes heat rate at all conditions
optimizes part-load to base-load transitions



Purpose of Project
Project Description

Program to develop model-based estimation and Program Deliverables
predictive control technology for transient » Extensive model library for
GE optimization and estimation of CFPPs coal-fired power plants

* Integrated MBE-MPC
technology

* Hardware in the Loop setup

Research Program Objective: Deliver faster ramp rates, higher plant

efficiency, and reliability through transient estimation and
optimization

&

Dynamic model

development for testing MBE-MPC
Model Based Estimation e technology
Model Predictive Control = Tk Ganerster e Anticipated Benefits of

the Proposed Technology

* Heat rate improvements of

GE to relative 5%
Power up to relative
e - * Flexibility improvements of
P ed Technol up to 30%
Coal-fired power plant f MPC \4 —— f MBE ] b

* Reliability improvements
through power plant
component health estimation

# Estimated Plant Status & Health &

operation & design

Coal-fired power plant

modelling

Model Predictive Control Model-Based Estimation
Real-time optimization using Real-time estimation of plant
dynamic model of the plant states and health parameters

Relevant Prior Work

. Model Library
« MPC-MBE de5|gn for IGCC Dynamic models of CFPP components that can be
and CC power plants assembled and configured to represent existing US fleet
« MPC for military aviation . .
applications Technical Approach Technical Challenges
* MBE for military aviation « Reduced order dynamic models  « Model library to be able to
applications embedded in MBE based on represent the US installed
unscented Kalman filtering base coal-fired power plants
* Integrating the MBE with MPC * Model, MBE, MPC cohesive
for improved flexibility, integration
efficiency, and reliability
. y,

Value: 800 MW plant 5%(relative) improvement in heat rate - $2.9M fuel savings/year
* 5% relative improvement for a plant with 37% efficiency amounts to an increase of 1.85% in overall plant efficiency to 38.85%



Project Overview

r A
Engineering Knowledge Customer choice
Dynamic Models Optimization Heat rate
Forecasts Constraints Objective Ramp rate
Design e A > Reliability Sensor
Parameters .~ measurements
Past Future> >
r I y ~ P._I‘ant /
Pesiraton ) Rerme D ,A{}Eﬁ
;‘ o B e ] Optimization _>. Future W .
Sensor ey & solver J Optimal N
measurements Al ith Actuator
gorithms ¢ . “
Predictive _ zl. - Setpoints
models e | Implement
\\ / first element

Periodically solve optimization problem online

* Develop & Demonstrate real-time
model-based estimation & optimal
control technology (TRL5)

 Use a simplified, continuously
matched model (Digital Twin) to
optimize operation of power
plant, and monitor plant
equipment health

Model-based (Digital Twin) Optimal Controls for Coal Fired Power Plants (CFPP)

 faster ramps (flexibility)
« reduced coal fuel usage (efficiency)

« equipment health monitoring




Key Elements of MBE+MPC Technology

4 ) * Physics-based transient models
(1) High-fidelity model + High-fidelity model in Apros (1) -
simulate plant
> * Reduced-order model (ROM) (2) - very
| High-fidelity model Sensor fast and robust for use as shared
Reduced order model J< e et % o measurements embedded model in MBE & MPC

(2) Reduced-order model

v

- C bedded model used . .
asr[;]iggal] ?\r;inefortle\/lBrlrE]c;nil I\leTDeC * Model-based estimation (MBE) (3)
x * Real-time adaptation of model
Plant parameters and states to match plant

v ) e measurements (Digital Twin)

9 % Estimation Real Time i * . * Model predictive control (MPC) (4)
.‘ g i i Optimization Future = S * Real-time optimization - fast load
Sensor L - Optimal ramps, efficiency
measurements v Actuator
Predictive Setpoints
models . * Develop and test individually - Topical Reports
k," < o * Integrate and test overall solution
(3) Model based estimator (MBE)  (4) Model predictive control (MPC) » Desktop simulations

* Deploy and test on Hardware-in-loop (HIL)
platform for real-time deployment

MBE+MPC for faster ramps (flexibility), better heat-rate (efficiency), and health monitoring
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Overall Program Summary

-
Program Activities

2019 2020

2021

2022 )

Q3 Q4101 Q2 Q3 Q4]|Q1 Q2 Q3 Q4

01/02

Task 1: World Design and Simulation Engine for prediction/expectation task
Deliverable: Upated Project Management Plan
Deliverable: Updated Technology Maturation Plan
Deliverable: Final Project Report

Y

\%

Phase 1: Task 2: Generic Transient Model Development
2.1: Develop transient models of key components of coal-fired power plant from
existing steady-state performance models
2.2: Validation of transient model of the overall CFPP using site data and refine
i imits

Deliverable: Modeling methodology of key component models and validation
results
Milestone: Models available for key components of coal-fired power plants

Task 3: Transient Model-based Estimator Design (MBE)

3.1: Develop and test model-based estimator to estimate parameters of the coal-
fired power plant model

3.2: Validate MBE with site data at steady-state and transient conditions

Deliverable: Model-based estimation technology applied to a coal-fired power
plant to estimate parameters resulting in a digital twin CFPP model

v
*
—
—
v

Task 4: Model Predictive Control (MPC) Design
4.1: Develop and test MPC technology using the digital twin CFPP model to
optimize heat rate at steady state and ramp-rates at part-load conditions
4.2: Integrate and apply MPC and MBE technologies on the nominal CFPP model

=1

Deliverable: Integrate MBE and MPC solution to estimate states and control
operation of CFPP

Milestone: Model-based estimation and controls methodology and simulation
results using nominal CFPP model

Phase 2: Task 5: Deployment of Integrated Solution
5.1: Integrate MBE and MPC solution on the tuned digital twin model
5.2: Deployment of Integrated Solution on GE's EdgeOS platform
5.3: Hardware-in-loop (HIL) simulation to test different optimization formulations

Deliverable: Deployment process and optimization results of HIL studies
peformed on GE's Edge OS platform

Milestone: Integrated solution on the tuned digital twin model, deployment
\ process on GE's Edge OS platform and HIL results

@ Denotes Milestone ¥ Denotes Deliverable

Task 1: Project Management
* Final Report - in progress

Task 2: Transient Model Development

* High-fidelity APROS model (based on reference 820 MW plant)
* Reduced order model (>100x faster than real time)

* Submitted Topical Reports

Task 3: Unscented Kalman Filter development

* Develop and test with ROM and Apros model as plant for measurements
» Match ROM with high-fidelity plant model - Digital Twin

* Submitted Topical Report

Task 4: Model Predictive Control platform development
» Develop and test with ROM as plant for fast ramps, efficiency improvement
» Submitted Topical Report

Task 5: Integrated Hardware-in-loop (HIL)-like environment

* Desktop simulation studies with ROM+MBE+MPC+Apros

* Real-time deployment on with Linux+Docker containers for HIL

* Demonstrate real-time application and key benefits
* Fastload ramps - up to 4%/min
» Efficiency improvement - up to 5.5% reductionin coal at 50% load
* Component health monitoring - track estimated component health

parameters
* Final report - in progress



High-Fidelity Transient Model in Apros

Reference Plant (820MW) architecture
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 Reference plant design configuration & specifications
at 100% load (TMCR)

Detailed baseline schedules & controls to enable steady-state and transient (load changes) simulations

I/O hooks for measurements (to MBE) and control knobs (from MPC)

Real-time two-way communication for I/O with MBE+MPC using Apros API

Detailed, real-time transient model — run between 100%-40% TMCR as plant model

y Combustor - 2 combustion zones + SOFA - e L L

High-fidelity modular components - use design specifications

IP steam turbine

. LP steam turbine

—

| ]
-] HP steam turbine ! ]
- L Tﬂ

B

Hjj il
Detailed modules (boiler, superheater/reheater, HP/IP/LP turbine, air preheaters, water preheaters, economizer 64 f jﬁ \ F]— TT
=




Reduced-Order Model (ROM)

Reference CFPP (820MW) architecture Modular, configurable, parameterized ROM in Simulink
| . pam— 5:'5‘"‘:_1_;; S
= al . T =
el = 4 - -

 Simplified physics with relevant dynamics, modular, & configurable - combustor, drum, SH/RH, HP/IP/LP ST, air/water preheater

» Simple P/PI unit-level controllers - drum level, steam P, MW, ...

» Tuning parameters in each module (e.g., scale factors on heat transfer coefficients, efficiency,...) to allow matching simplified model with plant
measurements to get a Digital Twin ~ ~66 parameters available (select subset to tune via MBE)

Very fast (>100x real-time!) and robust model — enable real-time MBE & MPC
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Model-Based Estimation(MBE)

Measurements

-~

Unscented
Kalman Filter

States,
Parameters

¢

Outputs
virtual sensing)

Parameters
(health monitoring)

J

Digital Twin

* Use unscented Kalman filter (UKF) for joint state & parameter estimation

* Excel-based configuration - measurements, estimated parameters, tuning

* Enable desktop simulation studies, code generation and deployment in HIL

Select measurements, Apros signal names & units, UKF tuning

Standardized Estimation library in Simulink

—umuu ”—""4@ 7
I/O measurements from | = . o
plant (ROM/Apros) O— . - a" Estimated states,
- ~= - parameters,
G SN (%) .
. otel outputs (virtual
.. . *_hatssat *5)
Initial conditions " s | SENSOrS)
7 pinit B o :@ml
oowX_init - cov¥m_sub Hﬁwag
. Var_Ye wﬂ'\.lm_mb;@
Measurement quality &2 5 .
UKF_dynamic
Embedded model (ROM) with T

standardized state-space e

representation &1/0 -~

- | [x_k.Y_k,Y_km] = model_dynamic_xKF(U_k,U_km,x_km,p_km}

Y : :z

User-defined dynamic model

User defined embedded model

|
|
|
|
|
R . ::E 1 1
|
|
|
1
|

Select estimated parameters, min/max limits, UKF tuning

Outputs [*]  unit |v| Measuel Y Estimat{v| Mominav| R |+ Name [+| cour~] APROS Name APROS Unit
fluegas xw02 1 (1] 0.030 050  Outlet flue gas fraction of 02 /SPU-BOILER/Process/PRO-FUEL_AIR/GI02#ME_OUTPUT_VALUE MassFrac
xll ft 1 0 3300 15 .Liquid level /SPU-BOILER/Process/PRO-Econ-Evap-drum/TAHO34TAL2_LIQ_LEVEL m
pd psi 1 0 2775.628 300 Drum Steam P /SPU-BOILER/Process/PRO-Econ-Evap-drum/TAHD3#TAL2_PRESSURE Mpa
Total_primair_flow Ibfs 1 [} 414321 200 Total Primary Air flow /SPU-BOILER/Process/PRO-AIR-PREHEATER/APHPIPO1#PI12_MIX_MASS_F kgfs
Total_secair_flow Ibfs 1 0 1062.067 200  Total Secondary Air flow /SPU-BOILER/Process/PRO-AIR-PREHEATER/APHPIPOBEPI12_MIX_MASS_F| ka/s
Total_coal_flow Ibfs 1 0 230.178 200 | Total Coal Flow JSPU-BOILER/Process/PRO-FUEL_AIR/PIP2B@1#PI12_MIX_MASS_FLOW ka/s
t5team_in_SH_panel degF 1 0 795.370 200 /SPU-BOILER/Process/PRO-Superheater/SH_PO42#P0L1_TEMPERATURE degC
tSteam_out_SH_fnshpltn degF 1 0 1054 915 100 Steam Temperature out Superheater finishing platen JSPU-ST/STHP/STHPPOO3#PO11_TEMPERATURE degC
pSteam_out_SH_fnshpltn psi 1 1] 2427 487 500 MCVinlet Steam P-same as SH fnshpltn outlet JSPU-ST/STHP/STHPPOO3#PO11_PRESSURE Mpa
wliquid_DesH Ib/s. 1 0 17428 300 Liquid flow in superheater attemperatar /SPU-BOILER/Process/PRO-Superheater/SH_PIP32#PI112_LIQ_MASS_FLOW kgfs
wSteam_MCV Ibfs 1 0 1410.701 100 MCVSteam flow JSPU-ST/STHR/STHPPIPO1#PI12_MIX_MASS_FLOW kg/s
Steam_out_RH_fnshpltn degF 1 0 1052.255 100 Steam Temperature out of Reheater Finishing Platen /SPU-BOILER/Process/PRO-REHEAT/RH_PO1444P011_TEMPERATURE degC
wliquid_DeRH Ib/s 1 0 6.074 300 Liquid flow in reheater attemperator /SPU-BOILER/Process/PRO-REHEAT/RH_PIP1094PI12_LIO_MASS_FLOW kgfs
wSteam_ICV Ibfs 1 0 1272.862 100 |ICV steam flow [SPU-ST/STIP/STIPPIPOL#PI12_MIX_MASS_FLOW ka/s
pSteam_out_ICV psi 1 (1] 569.951 200  Steam Pressure out of ICY /SPU-ST/STIP/STIPPO224P011_PRESSURE Mpa

MBE tuned using ROM / Apros as plant model for robust real-time estimation

rameters ~ Iil Upper Bnunlll Nomi tl Lower Bnuﬂll PO ILI Q ILI TauMardeI TauMw)‘iLI chl‘ssll

Comb UAconvrad sf i 17 1 05 0.001 0.01 600 3000 0.001
Primary_air_Scaling 1 115 1 09 0.005 0.001 500 3000 0.003
Secondary_air__Scaling 1 11 1 0.95 0.005 0.001 600 3000 0.003
SteamPSP_bias 1 2 1] = 0.5 0.01 400 3000 0.003
Fgasxw025P_bias 1 0.015 ] -0.01 0.003 0.01 600 3000 0.001
drumlevelSP_bias 1 1 ] S 0.05 0.01 150 500 0.03
htcGas_totalsf_LTSH1 1 4 100 0.05 0.1 0.01 600 3000 0.002
htcGas_totalsf_SH_panel 1 11 3.774884029 0.05 15 0.01 600 2000 0.1

flow_extr_sf_HPST 1 25 1 05 0.05 0.001 600 3000 0.002
ow_sf_HPST 1 2 1 03 0.1 0.001 600 3000 0.02
htcGas_totalsf_RH_fnshpitn 1 10 1 0.05 1 001 600 3000 002



Model-Based Estimation(MBE)
— Representative results with Apros Plant model (100% - 50% - 100% load transient)
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Model Predictive Control (MPC)

Standardized MPC library in Simulink

Dynamic Models Optimization

Forecasts Constraints Objective .
! ; |
.__..-...__._.---:: ----- A - | ch;“,nm Input s - |
o ! : : ma%;ms Control Acti :
Past Future= > | . MPC Controller |
| Estimates Diagnostics » (2 |
( : N | . . MPC |
 — v | Standardized core MPC computations |
r_ EStimatiOn r Real Time j \ : O MPCWrapperFenimpl(MPCStates, R aOa Rk VeiTarE ] :
1. 3 Optimization _}. I‘ ’I
- SO |Ver J . . . . . . | MPC Wrapper Funchion |
— v * Real-time model prediction & optimization o
AIgSTIEIME | oredictive  + . — || * Optimal control over future horizon | Continuous/Discrete-time model, analytical linearization (if available) |
L models S o) § * Implement first move & repeat | | L | I ! I |
| — |

_ e (S

J

* Use hybrid (nonlinear prediction + linear/QP optimization) - fast & robust

* Nonlinear discrete-time model for prediction + analytical (if available) or numerical model (continuous/discrete-time) linearization

* Dual objective: tracking (load ramp) + performance (min coal) optimization - tracking is the primary objective

* Input & output constraints

* Excel-based configuration - control inputs & outputs, weights, input & output constraints (soft output constraints with weights)

* Enable desktop simulation studies, code generation and deployment in HIL

Select outputs (tracking, performance, constraints) and tuning, LB/UB limits

Qutputs - Unit |~| MPCTrack|~| MPCPerfom ~ MPC Con |; Q_ii - tracking = |  L_ii- perform |~ | Qslack_ii- const ~ | Lslack_ii - const ~

y-ug |~

y1B |~

fluegas xw2 0 1] 10 1] 8 2

0.05]

0.01]

degF 10

1160]

700,

degF 10

1160

700

10

0.95

0.001

deg F 10

1160

700

10

0.95)

0.001

10

12

08

MW

10000

-10000]

3
degF 10

1800

OOl lolo|lo|lo|o o
—lolalaola|la|la|la|la
L= 0 E=0 PR P P P P O
molalaolajla|la|la|la
oo oo oo | oo oo |oa o (oo o
[ F) P P PR PAP) PP PR )

total_coal_flow filtered

Ib/s

1000

MPC tested for fast load ramps (tracking) and coal minimization (performance) with ROM

Select control inputs - tuning, magnitude and rate LB/UB limits

i Inputs Unit MPC knobs T R_ii- control cost  u-UB u-LB delta_u-UB [ sec delta_u-LB / sec

| Steam_pSP psi 1 4 2550 1100 18 -18

_|stc_MCV [%] 1 13 100 10 02 -02

_|lcommon_delta_tilt deg 1 5 15 -15 0.025 -0.025
11



Model-Based Estimation(MBE)
— Representative results with ROM Plant Model (100% = 60% = 100% at 6%/min)

MPC tracking objective
T T

850

240

< Load ramp tracking

Coal minimization = ,'
(max efficiency) ! /f

1.5% coal

reduction (relative)
MPC controls 51; 1000 1500 znlou 25I 3000 15‘00 4000 ts‘on
- 20 o 20 —— "
o~ 5 © 5 - v
EI §l g' 10 2‘ 10 fT
%' %I 3 )
g0 g0 EI 0 3' 0
% % 51 < 10 L/-
o -5 O i) g = = = am ey . 20 — — —

N
o

- e | GEndsCalicals WSS combustor zones

= 10 i =) i . . “ ” . .
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E' g 20 310 310

8 10 _ _ o - R u'.zu i f__

.200 1000 2000 3000 4000 -Snl) 1000 2000 3000 4000 0 1000 2000 3000 4000 nll 1000 2000 3000 4000 -
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Ll g e g e et 100
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o 1500

OO et D e ———

0 1000 2000 3000 4000
ts]

0 1000 2000 3000 4000

t[s]

0 1000 2000 3000 4000
ts]

2
0 1000 2000 3000 4000

ts]

30
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0
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_ Potential (exploratory) control knobs - coal/air feed trim, feed tilt in each of 3



Integrated (MBE+MPC+Plant) - Simulink Test Harness for desktop simulations

Data save, scopes

Plant model

* Option1: Use ROM as plant for initial design/testing

* Option2: Bridge to Apros high-fidelity model via two-way real-time comms over GRC network
* Read sensor measurements for MBE
* Write MPC optimal control

I PlantMeasurements
ments:
::: ,_D =
<PlantControlActions= L}
AprosDi >
MBE based on .
PlantConnectivityBridgeRefSubsystem
embedded ROM
e ements> | . F 1 . _ . | <UKFEstimates>
=] ==
e T e ,
Cor—
Source Data In Kl im: fSubsystem
e —

Auxiliary system for data

persistence e
- Store states, parameters, | [T
covariances, diagnostics ... B
/_ : : G; 1 res <MPCPredictions>
MPC based on |t r—

embedded ROM
e Can be enabled/disabled

Lig

Flexible desktop simulation for rapid tuning and testing - ready for code generation & HIL deployment

# Source Data In
User commands .
Source Data Oul Source Data In Processed Data Out P Processed Data In
Dala Producers Data Processors Data Consumers
Apros high-fidelity model
13



Integrated (MBE+MPC+Plant) - HIL deployment and testing

Data Generation
(load Setpoint)

Core Algorithm Modules

PerssientSionaRetSubayslem

Data Scopes/Save

* Auto-code generation (C ) + Docker containers
(no re-work needed for HIL)

* Deployed for real-time on Linux VM

* Test with ROM /Apros as plant model

* Live two-way communication with Apros model

Ubuntu Linux VM

Docker Containers for core algorithm modules
* APROS Bridge, Store, MBE, MPC

* Data generation (load changes, forecast)
* Data scopes, save results to file

virtual Ethernet

communication with Linux VM

APROS Model

i = 1 ‘ - _‘
e & o “ ‘ [.“l
= =]
< -
N\
T
Ll

Windows PC

¢ APROS model & API client
* Linux VM

14



Desktop & HIL simulations
- ROM as plant model



Desktop Simulation

pltn

tSteam_out RH fnsh

load tracking, NO weight for performance
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* 100% = 50% - 100% at 4%/min ramp rate

* Minimal use of tilt angle (with no weight on performance optimization)

* Baseline run with no performance metric - coal use at 50% load ~122.2 Ib/s
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Desktop Simulation - load tracking, LOW weight for performance
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Time(s) Reduced steam temperature and water spray in SH, RH attemporators
~1.6% reduction in coal (relative)
* 100% > 50% > 100% at 4%/min ramp rate - good tracking
* MPC reduced Tilt, i.e., favor steam generation vs superheating - reduce attemporation
* Low emphasis on coal reduction ~ 1.6% reduction vs. baseline run (relative)
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Desktop Simulation - load tracking, HIGH weight for performance
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Timo(®) Reduced steam temperature and water spray in SH, RH attemporators
~3.8% reduction in coal (relative)

e 100% > 50% > 100% at 4%/min ramp rate - good tracking

* MPC reduced Tilt to min limit (-15 deg), i.e., favor steam generation vs superheating = reduce attemporation
» High emphasis on coal reduction ~ 3.8% reduction vs. baseline run (relative) 18



HIL Simulation - load tracking, HIGH weight for performance
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Reproduce same result as Desktop simulation
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Simulation run on Linux VM for 4200s
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Core computation ~3x faster than real-time even on a Linux VM (would be faster on native Linux PC)
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Desktop & HIL simulations
- Apros high-fidelity plant model

» Add hooks to provide optimal MPC control (steam P SP, MCV, feeder tilt) and
bypass built-in baseline controls/schedules

» Keep underlying unit controls (boiler coal/air/water feed, drum level, ...) asis



Desktop Simulation - load tracking, NO performance weight, 2 control inputs
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0 1000 2000 000 4000 5000 * 100% = 50% > 100% at 3%/min ramp rate - good tracking

Time(s)
* abrupt change in coal feed at end of load ramp in baseline controller to avoid
overshoot (disturbance)



HIL Simulation - load tracking, NO performance weight, 2 control inputs
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* Reproduce same result as Desktop simulation
» Core computation ~3x faster than real-time even on a Linux VM (would be faster on native Linux PC)
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Desktop Simulation - load tracking, NO performance weight
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Desktop Simulation - load tracking, LOW performance weight
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Desktop Simulation
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load trackmg, HIGH performance weight
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100% - 50% > 100% at 3%/min ramp rate - good tracking

* abrupt change in coal feed at end of load ramp in baseline
controller to avoid overshoot (disturbance)

* high impact on tracking at end of ramp down with sudden
increase in coal feed (high emphasis on coal minimization)

Tilt decreasing - high performance weight for efficiency

Reduce coal use by ~5.1% (relative) at 50% load

Improve tracking by re-tuning MBE to respond quicker to jump
in coal feed
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

Plant (Apros) output measurement tracking - key outputs
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

ROM parameter estimates - key adapted parameters
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 Variation in parameter estimate with load for IP section - higher structural difference between Apros and ROM
* Use long-term trends in component health parameters, Al/ML for equipment health monitoring/maintenance 28



Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

Faster load ramps (4%/min)
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10} 1+ 100% = 50% = 100% at 4%/min ramp rate - good tracking
* abrupt change in coal feed at end of load ramp in baseline

| controller to avoid overshoot (disturbance)
- * Much reduced impact on tracking at ramp end despite jump in
coal feed at ramp end

* Room for tracking improvement for ramp up - update/retune
baseline controller to coordinate with MPC
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~5.6% reduction in coal (relative)
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

Plant (Apros) output measurement tracking - key outputs
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

ROM parameter estimates - key adapted parameters
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 Variation in parameter estimate with load for IP section - higher structural difference between Apros and ROM

* Use long-term trends in component health parameters, Al/ML for equipment health monitoring/maintenance
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Conclusions

» Successfully developed all key elements of proposed model-based optimal

control technology (matured to TRL 5)
* Close coordination between GE Research & GE Steam Power

* ROM (>100x faster than real-time) & Apros high-fidelity model
* MBE for matching ROM with plant measurements - Digital Twin

* MPC for optimal control - flexibility, efficiency

Met key goals for flexibility, efficiency and reliability
* Fast load changes - up to 4%/min ramp rates between 100-50% load

* Optimization for efficiency/coal use - up to 5.5% reduction (relative) in
coal at 50% load

* Continuous monitoring of equipment health - trending for degradation in
component health parameters (heat transfer fouling, efficiency, ...)

* Exhaustive testing in desktop simulations

* Deployment and validation in real-time HIL setup
* Leverage auto C-code generation, Docker containers in Linux

Path Forward
Follow-up program for TRL 5-7 - beta customer deployment?
* Deployment of MBE for health monitoring, virtual sensing
* Deployment of MBE+MPC for improved operation (flexibility, efficiency) -
advisory vs. closed-loop implementation

* Combination of physics & Al-based models & algorithms

» Use transient model simulations to generate data for Al/ML for fault
diagnostics, cyber security, ...

 Commercialization for sub-critical CFPP
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Program Deliverables

* Extensive model library for
coal-fired power plants

* Integrated MBE-MPC
technology

* Hardware in the Loop setup
for testing MBE-MPC
technology

Anticipated Benefits of
the Proposed Technology
* Heat rate improvements of

up to relative 5%
* Flexibility improvements of
up to 30%
* Reliability improvements
through power plant
component health estimation

* Reduced order dynamic models

embedded in MBE based on
unscented Kalman filtering

* Integrating the MBE with MPC

for improved flexibility,
efficiency, and reliability

* Model library to be able to
represent the US installed
base coal-fired power plants

* Model, MBE, MPC cohesive
integration







