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Motivation
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Coal-fired power plants (CFPPs) are critical to US power 

generation infrastructure

• providing diversity at low cost

• hardening the grid against increased penetration of 

intermittent generation sources

Coal-fired generating capacity is projected to decrease 36%

However, coal-fired generation is projected to decrease 18% 

2018 to 2035 (AE2019, EIA)

Remaining active CFPPs will have to:

operate more time at part-load

be more flexible

be more efficient

Program Goal:  Build a platform for Digital Twins (UKF + transient model) and Real-Time Optimizers (MPC)

that estimates then optimizes heat rate at all conditions

optimizes part-load to base-load transitions

Coal-Fired Power Generation Outlook



Purpose of Project
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Value: 800 MW plant 5%(relative) improvement in heat rate → $2.9M fuel savings/year
* 5% relative improvement for a plant with 37% efficiency amounts to an increase of 1.85% in overall plant efficiency to 38.85%

Project Description



Project Overview
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Model-based (Digital Twin) Optimal Controls for Coal Fired Power Plants (CFPP) 

• faster ramps (flexibility) 

• reduced coal fuel usage (efficiency)

• equipment health monitoring

• Develop & Demonstrate real-time 

model-based  estimation & optimal 

control technology (TRL5)

• Use a simplified, continuously 

matched model (Digital Twin) to 

optimize operation of power 

plant, and monitor plant 

equipment health

Plant



Key Elements of MBE+MPC Technology
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MBE+MPC for faster ramps (flexibility), better heat-rate (efficiency), and health monitoring

• Physics-based transient models
• High-fidelity model in Apros (1) –

simulate plant 

• Reduced-order model (ROM) (2) – very 

fast and robust for use as shared 

embedded model in MBE & MPC

• Model-based estimation (MBE) (3)

• Real-time adaptation of model 

parameters and states to match plant 

measurements (Digital Twin)

• Model predictive control (MPC) (4)

• Real-time optimization – fast load 

ramps, efficiency

• Develop and test individually – Topical Reports

• Integrate and test overall solution

• Desktop simulations

• Deploy and test on Hardware-in-loop (HIL) 

platform for real-time deployment

(2) Reduced-order model
(1) High-fidelity model

(3) Model based estimator (MBE) (4) Model predictive control (MPC)

Plant

Reduced order model

• Common embedded model used 

as Digital Twin for MBE and MPC

High-fidelity model

• Represent plant 

accurately
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Overall Program Summary

Task 1: Project Management

• Final Report - in progress

Task 2: Transient Model Development

• High-fidelity APROS model (based on reference 820 MW plant)

• Reduced order model (>100x faster than real time) 

• Submitted Topical Reports

Task 3: Unscented Kalman Filter development

• Develop and test with ROM and Apros model as plant for measurements

• Match ROM with high-fidelity plant model – Digital Twin

• Submitted Topical Report

Task 4: Model Predictive Control platform development

• Develop and test with ROM as plant for fast ramps, efficiency improvement

• Submitted Topical Report

Task 5: Integrated Hardware-in-loop (HIL)-like environment

• Desktop simulation studies with ROM+MBE+MPC+Apros

• Real-time deployment on with Linux+Docker containers for HIL

• Demonstrate real-time application and key benefits

• Fast load ramps – up to 4%/min

• Efficiency improvement – up to 5.5% reduction in coal at 50% load 

• Component health monitoring – track estimated component health 

parameters

• Final report – in progress
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Detailed, real-time transient model – run between 100%-40% TMCR as plant model

Reference Plant (820MW) architecture High-fidelity modular components – use design specifications

• Detailed modules (boiler, superheater/reheater, HP/IP/LP turbine, air preheaters, water preheaters, economizer

• Detailed baseline schedules & controls to enable steady-state and transient (load changes) simulations

• I/O hooks for measurements (to MBE) and control knobs (from MPC)

• Real-time two-way communication for I/O with MBE+MPC using Apros API

• Reference plant design configuration & specifications 

at 100% load (TMCR)

IP steam turbine

HP steam turbine

LP steam turbine

Combustor – 2 combustion zones + SOFA

High-Fidelity Transient Model in Apros



8

Very fast (>100x real-time!) and robust model – enable real-time MBE & MPC

Reference CFPP (820MW) architecture Modular, configurable, parameterized ROM in Simulink

• Simplified physics with relevant dynamics, modular, & configurable – combustor, drum, SH/RH, HP/IP/LP ST, air/water preheater

• Simple P/PI unit-level controllers – drum level, steam P, MW, …

• Tuning parameters in each module (e.g., scale factors on heat transfer coefficients, efficiency,…) to allow matching simplified model with plant 

measurements to get a Digital Twin       ~66 parameters available (select subset to tune via MBE)

Reduced-Order Model (ROM)
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MBE tuned using ROM / Apros as plant model for robust real-time estimation

Model-Based Estimation(MBE) Standardized Estimation library in Simulink

I/O measurements from 

plant (ROM/Apros)

Measurement quality

Initial conditions

Embedded model (ROM) with 

standardized state-space 

representation & I/O

Estimated states, 

parameters, 

outputs (virtual 

sensors)

• Use unscented Kalman filter (UKF) for joint state & parameter estimation

• Excel-based configuration – measurements, estimated parameters, tuning

• Enable desktop simulation studies, code generation and deployment in HIL

Select measurements, Apros signal names & units, UKF tuning Select estimated parameters, min/max limits, UKF tuning

Plant

Digital Twin

Model

(ROM)

Unscented 

Kalman Filter
Measurements

Outputs

Inputs

States,

Parameters

Outputs 

(virtual sensing)

Parameters

(health monitoring)
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Model-Based Estimation(MBE) 
– Representative results with Apros Plant model  (100% → 50% → 100% load transient)

Matching measured output variation

Estimated parameter variation
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MPC tested for fast load ramps (tracking) and coal minimization (performance) with ROM

Model Predictive Control (MPC)

• Use hybrid (nonlinear prediction + linear/QP optimization) – fast & robust

• Nonlinear discrete-time model for prediction + analytical (if available) or numerical model (continuous/discrete-time) linearization

• Dual objective:  tracking (load ramp) + performance (min coal) optimization – tracking is the primary objective

• Input & output constraints

• Excel-based configuration – control inputs & outputs, weights, input & output constraints (soft output constraints with weights)

• Enable desktop simulation studies, code generation and deployment in HIL

Standardized MPC library in Simulink

Standardized core MPC computations

Continuous/Discrete-time model, analytical linearization (if available)

Select outputs (tracking, performance, constraints) and tuning, LB/UB limits Select control inputs – tuning, magnitude and rate LB/UB limits

• Real-time model prediction & optimization

• Optimal control over future horizon

• Implement first move & repeat
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Model-Based Estimation(MBE) 
– Representative results with ROM Plant Model  (100% → 60% → 100% at 6%/min)

 Load ramp tracking

Coal minimization →

(max efficiency)

1.5% coal reduction (relative)

Main control knobs (steam pressure SP, MCV)

Potential (exploratory) control knobs – coal/air feed trim, feed tilt in each of 3 

combustor zones

• consolidated to single “common” feed tilt for runs with Apros



User commands

Data save, scopes
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Integrated (MBE+MPC+Plant) – Simulink Test Harness for desktop simulations
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Plant model
• Option1: Use ROM as plant for initial design/testing

• Option2: Bridge to Apros high-fidelity model via two-way real-time comms over GRC network

• Read sensor measurements for MBE

• Write MPC optimal control 

MBE based on 

embedded ROM

MPC based on 

embedded ROM
• Can be enabled/disabled

Auxiliary system for data 

persistence
• Store states, parameters, 

covariances, diagnostics …  

Apros high-fidelity model

Flexible desktop simulation for rapid tuning and testing – ready for code generation & HIL deployment



14

Integrated (MBE+MPC+Plant) – HIL deployment and testing

Windows PC
• APROS model &  API client
• Linux VM

virtual Ethernet 
communication with Linux VM

Data Generation 
(load Setpoint)

Data Scopes/SaveCore Algorithm Modules  

APROS Model

Docker Containers for core algorithm modules
• APROS Bridge, Store, MBE, MPC
• Data generation (load changes, forecast)
• Data scopes, save results to file

Ubuntu Linux VM
• Auto-code generation (C ) + Docker containers 

(no re-work needed for HIL)

• Deployed for real-time on Linux VM

• Test with ROM /Apros as plant model

• Live two-way communication with Apros model 



Desktop & HIL simulations
- ROM as plant model
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Desktop Simulation  - load tracking, NO weight for performance 

• 100% → 50% → 100% at 4%/min ramp rate   - good tracking

• Minimal use of tilt angle (with no weight on performance optimization)

• Baseline run with no performance metric – coal use at 50% load ~122.2 lb/s
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Desktop Simulation  - load tracking, LOW weight for performance 

• 100% → 50% → 100% at 4%/min ramp rate   - good tracking

• MPC reduced Tilt, i.e., favor steam generation vs superheating → reduce attemporation

• Low emphasis on coal reduction ~ 1.6% reduction vs. baseline run (relative)

~1.6% reduction in coal (relative)

Reduced steam temperature and water spray in SH, RH attemporators
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Desktop Simulation  - load tracking, HIGH weight for performance 

• 100% → 50% → 100% at 4%/min ramp rate   - good tracking

• MPC reduced Tilt to min limit (-15 deg), i.e., favor steam generation vs superheating → reduce attemporation

• High emphasis on coal reduction ~ 3.8% reduction vs. baseline run (relative)

~3.8% reduction in coal (relative)

Reduced steam temperature and water spray in SH, RH attemporators
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HIL Simulation  - load tracking, HIGH weight for performance 

• Reproduce same result as Desktop simulation

• Core computation ~3x faster than real-time even on a Linux VM (would be faster on native Linux PC)

Simulation run on Linux VM for 4200s



Desktop & HIL simulations
- Apros high-fidelity plant model

• Add hooks to provide optimal MPC control (steam P SP, MCV, feeder tilt) and 

bypass built-in baseline controls/schedules

• Keep underlying unit controls (boiler coal/air/water feed, drum level, …) as is
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Desktop Simulation - load tracking, NO performance weight, 2 control inputs

• 100% → 50% → 100% at 3%/min ramp rate - good tracking
• abrupt change in coal feed at end of load ramp in baseline controller to avoid 

overshoot (disturbance)

Tilt angle use disabled with high control input weight  
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HIL Simulation  - load tracking, NO performance weight, 2 control inputs

Tilt angle disabled with high weight (R=1000)

• Reproduce same result as Desktop simulation

• Core computation ~3x faster than real-time even on a Linux VM (would be faster on native Linux PC)
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Desktop Simulation - load tracking, NO performance weight

• 100% → 50% → 100% at 3%/min ramp rate - good tracking
• abrupt change in coal feed at end of load ramp in baseline 

controller to avoid overshoot (disturbance)

• Tilt increasing – no performance weight, i.e., focus only on 

tracking

• Baseline run with 122.95 lb/s coal feed at 50% load
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Desktop Simulation - load tracking, LOW performance weight

• 100% → 50% → 100% at 3%/min ramp rate - good tracking
• abrupt change in coal feed at end of load ramp in baseline 

controller to avoid overshoot (disturbance)

• increased impact on tracking at end of ramp down with sudden 

increase in coal feed (non-zero emphasis on coal minimization)

• Tilt increasing less – low performance weight for efficiency

• Reduce coal use by ~1.7% (relative) at 50% load

~1.7% reduction in coal (relative)
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Desktop Simulation  - load tracking, HIGH performance weight 

• 100% → 50% → 100% at 3%/min ramp rate - good tracking
• abrupt change in coal feed at end of load ramp in baseline 

controller to avoid overshoot (disturbance)

• high impact on tracking at end of ramp down with sudden 

increase in coal feed (high emphasis on coal minimization)

• Tilt decreasing – high performance weight for efficiency

• Reduce coal use by ~5.1% (relative) at 50% load  

• Improve tracking by re-tuning MBE to respond quicker to jump 

in coal feed~5.1% reduction in coal (relative)
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Desktop Simulation  - load tracking, HIGH performance weight, retuned MBE

• 100% → 50% → 100% at 3%/min ramp rate - good tracking
• abrupt change in coal feed at end of load ramp in baseline 

controller to avoid overshoot (disturbance)

• Much reduced impact on tracking at ramp end despite jump in 

coal feed at ramp end

• Tilt decreasing (increases during ramp up) – high performance 

weight for efficiency

• Reduce coal use by ~5.4% (relative) at 50% load

~5.4% reduction in coal (relative)
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

• Overall, very good transient 

tracking of measured outputs

• Good robustness despite very 

significant plant-model 

mismatch (Apros vs. ROM)

Plant (Apros) output measurement tracking - key outputs
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

• Fairly constant parameter estimate for HP/LP section

• Variation in parameter estimate with load for IP section – higher structural difference between Apros and ROM

• Use long-term trends in component health parameters, AI/ML for equipment health monitoring/maintenance

ROM parameter estimates – key adapted parameters
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

• 100% → 50% → 100% at 4%/min ramp rate - good tracking
• abrupt change in coal feed at end of load ramp in baseline 

controller to avoid overshoot (disturbance)

• Much reduced impact on tracking at ramp end despite jump in 

coal feed at ramp end

• Room for tracking improvement for ramp up – update/retune 

baseline controller to coordinate with MPC

• Tilt decreasing (increases during ramp up) – high performance 

weight for efficiency

• Reduce coal use by ~5.6% (relative) at 50% load
~5.6% reduction in coal (relative)

Faster load ramps (4%/min)
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

• Overall, very good transient 

tracking of measured outputs

• Good robustness despite very 

significant plant-model 

mismatch (Apros vs. ROM)

Plant (Apros) output measurement tracking  - key outputs
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Desktop Simulation - load tracking, HIGH performance weight, retuned MBE

• Fairly constant parameter estimate for HP/LP section

• Variation in parameter estimate with load for IP section – higher structural difference between Apros and ROM

• Use long-term trends in component health parameters, AI/ML for equipment health monitoring/maintenance

ROM parameter estimates – key adapted parameters



Conclusions
• Successfully developed all key elements of proposed model-based optimal 

control technology (matured to TRL 5)
• Close coordination between GE Research & GE Steam Power 

• ROM (>100x faster than real-time) & Apros high-fidelity model 

• MBE for matching ROM with plant measurements – Digital Twin

• MPC for optimal control – flexibility, efficiency

• Met key goals for flexibility, efficiency and reliability
• Fast load changes – up to 4%/min ramp rates between 100-50% load

• Optimization for efficiency/coal use - up to 5.5% reduction (relative) in 

coal at 50% load

• Continuous monitoring of equipment health – trending for degradation in 

component health parameters (heat transfer fouling, efficiency, …)

• Exhaustive testing in desktop simulations

• Deployment and validation in real-time HIL setup 

• Leverage auto C-code generation, Docker containers in Linux

• Path Forward

• Follow-up program for TRL 5-7 – beta customer deployment?

• Deployment of MBE for health monitoring, virtual sensing

• Deployment of MBE+MPC for improved operation (flexibility, efficiency) –

advisory vs. closed-loop implementation

• Combination of physics & AI-based models & algorithms

• Use transient model simulations to generate data for AI/ML for fault 

diagnostics, cyber security, …

• Commercialization for sub-critical CFPP




