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ABSTRACT

To curb the energy consumption of buildings and their related CO, emissions, Oak Ridge National Laboratory (ORNL)
developed the thermally anisotropic building envelope (TABE) —a multi-layer design comprising insulation materials and
metal foils connected to thermal loops. This study developed a machine learning-assisted framework to control the TABE in
residential buildings to reduce the computation load for future optimal rule-based control and application. First, a 2D finite
element model was established in COMSOL to calculate the hourly heat flux through exterior walls installed with the TABE.
Then, TABE wall heat fluxes were simulated for various indoor and outdoor boundary conditions, thermal loops fluid
temperatures and flow rates. Since the finite element simulations are computationally expensive, an artificial neural network
(ANN) was then trained to use as a proxy of the finite element (COMSOL) modeling. Finally, the trained ANN model was
coupled with the EnergyPlus model to predict the energy consumption of a US Department of Energy prototype single-family
house installed with the TABE. An optimal simple rule-based control was determined from predefined rules for a case study.
The results demonstrate that the developed machine learning—assisted framework can reduce 99.9% of the computation time
while efficiently managing residential building energy for installed TABE walls.

INTRODUCTION

In 2020, buildings accounted for 30% of global energy use and almost 14% of total direct energy-related CO, emissions
(Hamilton and Rapf 2020). Therefore, it is urgent to curb the energy consumption of buildings and the related CO, emissions.
Among the various building components, building envelopes are one of the most important components to manage building
HVAC energy consumption. Both passive (Sadineni et al. 2011; Tian et al. 2018) and active (Luo et al. 2019) building
envelope thermal management approaches have been studied to reduce unwanted heat flows passing through the envelopes.
For passive building envelope thermal management, increasing R-value by adopting high-performance insulation materials
such as vacuum insulation panels and aerogels has been extensively studied recently (Baetens et al. 2010, 2011; Biswas
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2018). However, high cost and durability issues limit their application in building envelopes (Biswas et al. 2019a).
Additionally, increasing the thermal mass of building envelopes by incorporating phase change materials has also shown the
potential to reduce heating/cooling loads (Biswas et al. 2018; Ko$ny et al. 2014). However, there is a lack of large-scale
applications to show its feasibility. For active building envelope thermal management, the concepts of the active evaporative
cooling wall (Carbonari et al. 2015), dynamic insulation system (Dabbagh and Krarti 2020), and active photovoltaic-
thermoelectric wall system (Liu et al. 2015b; a) have been studied. Similarly, they lack feasibility, and the research only
focused on numerical studies.

Recently, researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory developed a thermally
anisotropic building envelope (TABE) (Biswas et al. 2019a; b; Shrestha et al. 2020) to improve the thermal management in
building envelopes. The TABE allows heat to dissipate in a preferential direction by sandwiching highly thermally
conductive thin metal sheets, such as aluminum, between insulation layers. The TABE wall panel has nominal 2 X 4 in. studs
(actual 1.5 in. x 3.5 in. [ 3.8 cm % 8.9 cm] at 16 in. [40.6 cm] on the center, interior % in. gypsum board, R-13 (13
h.ft2.°F/Btu [2.23 m2.K/W)) fiberglass batt insulation in the cavities, two layers of ¥ in. [1.3 cm] Polyiso, and exterior
horizontal vinyl siding as shown in Figure 1. The wall panel assemblies meet the International Energy Conservation Code
2018 R-value requirements for a residential building wall in ASHRAE climate zones 3 to 5. To accelerate the heat dissipation
rates, interior and exterior thermal loops were integrated into the TABE. When connecting to a groundwater loop, the TABE
wall panel can be used as: (1) a heat sink to separate the indoor environment from the influence of the outdoor when
activating the exterior thermal loop; or (2) a heating/cooling source when activating the interior thermal loop with suitable
ground water temperature. Laboratory evaluations showed that the TABE can reduce 85% of cooling loads and 63% of
heating loads (Biswas et al. 2019a). Similar cooling and heating load reductions were observed in a series of field
evaluations.
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Figure 1  Schematic of a prototype TABE panel with both interior and exterior thermal loops

To assist experimental efforts, COMSOL and EnergyPlus models were developed to simulate the energy savings of
residential buildings installed with TABE walls. A COMSOL finite element model (FEM) was used to simulate the heat flux
and thermal performance of TABE walls. The outputs of COMSOL were then used as the inputs to EnergyPlus to simulate
the whole building’s energy consumption. The COMSOL models were calibrated using the data collected by field evaluation.
However, the COMSOL simulations were extremely time-consuming because of the geometric complexity of TABE walls.
For example, COMSOL required about 2 days to compute the annual heat flux for a given water flow rate and thermal loop
setting. Such a relatively long computation time made it difficult to test the performance of predefined control rules using a
FEM such as COMSOL. More importantly, it prevented the integration of optimization algorithms and more advanced
control algorithms, such as model predictive control into the studies of buildings installed with TABE walls. For example, the
application of an optimization algorithm (e.g., multi-objective particle swarm optimization) to find an optimal control rule
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may involve thousands of heat flux computations of TABE walls, which will be an impossible task using the physics-based
model. Therefore, an efficient surrogate model is needed, such as an artificial neural network (ANN) model, to substitute for
the computationally expensive physics-based FEM.

This study addressed the need for an efficient surrogate model by developing a machine learning—assisted framework to
replace the computationally expensive FEM to control the TABE in residential buildings and reduce energy consumption.
First, a 2D FEM of the TABE panel was established in COMSOL to calculate the hourly heat flux subject to indoor and
outdoor boundary conditions with tunable inlet water flow rate and temperature in the thermal loops. An ANN model was
then trained to substitute the computationally expensive COMSOL model. After that, the trained ANN model was integrated
with EnergyPlus to simulate the thermal performance of residential buildings. Finally, an optimal simple rule-based control
was determined from predefined rules for a case study for a DOE prototype single-family house.

METHODOLOGY

The machine learning—assisted, rule-based control framework to manage residential building energy consumption with a
hydraulic activated TABE is shown in Figure 2. The framework includes four stages.

Stage 1: TABE wall heat fluxes are output from FEM simulations based on specific boundary conditions, which are
generated by a baseline EnergyPlus model, and various constant TABE water flow rates as the inputs.

Stage 2: An ANN is trained based on the outputs from Stage 1. The ANN can predict TABE wall heat fluxes for any given
climate conditions and TABE water flow rates.

Stage 3: Using the ANN, TABE wall heat fluxes are predicted based on the Time-Of-Days (TODs) with different control
strategies. These TODs influence the water flow rate schedules used as inputs to the ANN.

Stage 4: Using the ANN predicted TABE wall heat fluxes, the energy consumption of buildings is calculated in EnergyPlus.

The developed framework was applied to a DOE prototype single-family residential building in Charleston, South Carolina
(Climate Zone 3A).
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Figure2  Machine learning—assisted rule-based control framework to manage residential building energy consumption
with the hydronic activated TABE

FEM simulation of TABE wall heat fluxes: Training Data Preparation

FEM simulations were conducted via COMSOL to calculate TABE wall heat fluxes for given climate conditions and various
constant water flow rates. The obtained TABE wall heat fluxes data were used as the training data for the ANN. A 2D
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COMSOL model was adopted because it greatly reduced the computation load compared with the 3D model. However, the
computation time of the 2D model is still not affordable if used in parametric studies, such as looking for the optimal control
rules to minimize annual energy consumption for given climate conditions. The inputs and outputs of the 2D model are listed
in Table 1. They include 11 input variables and 1 output for each wall (4 walls for the studied single-family residential
building). Only a representative area (10.76 ft* [1 m?]) of the TABE was simulated for each wall; then, the area was scaled up
to the entire opaque wall area of the prototype building. The wall surface temperature, air temperature, and radiation heat flux
inputs were obtained from a baseline EnergyPlus model that has identical construction to the TABE walls but without metal
layers and thermal loops. The groundwater temperature was obtained from the US Geological Survey database. In this study,
the interior and exterior thermal loops were computed separately.

The characteristic temperatures of Charleston are provided in Table 2. It has a cold winter and hot summer with suitable
groundwater temperature (66°F [19°C]).

Table 1. Inputs and Outputs of COMSOL Model
Inputs and Outputs  Variables

(1) Interior wall surface temperature; (2) Exterior wall surface temperature; (3) Indoor air temperature;
(4) Outdoor air temperature; (5) Interior wall surface convection coefficient; (6) Exterior wall
Inputs surface convection coefficient; (7) Inside surface radiation; (8) Surface outside face net thermal
radiation heat gain rate; (9) Surface outside face solar radiation heat gain rate; (10) Ground water
temperature; (11) Water flow rate
Outputs (1) Heat flux from the walls to the conditioned space

Table 2. Characteristic Temperatures of Charleston

AAGWT* Min OAT" Max OAT** Avg OAT™
OF (OC) OF (OC) OF (OC) OF (OC)
Temperature  66.2 (19.0) 21.9 (-5.6) 100 (37.8) 65.3 (18.5)

*AAGWT = Annual average ground water temperature
**OAT = Outdoor air temperature

ANN

ANNS s have a strong fitting capability owing to their thousands of neurons and nonlinear activation functions. An ANN may
represent a wide variety of functions when given appropriate weights and biases (Scarselli and Chung Tsoi 1998). In this
study, a multilayer perception (MLP) (Mohandes et al. 2019) was used to predict TABE wall heat fluxes based on 11 inputs
as listed in Table 1. Hourly data were used in training the ANN model. For Charleston, a dataset with a sample size of
175,200 (8,760 simulated hours X 4 walls X 5 different water flow settings) was generated. The 5 different water flow
settings include a baseline without water flow, interior thermal loop with 0.1 GPM, exterior thermal loop with 0.1 GPM,
interior thermal loop with 0.5 GPM, and exterior thermal loop with 0.5 GPM. To discrete the differences of interior and
exterior thermal loops in training the ANN, a minus sign was added to indicate the exterior thermal loop. For example, -0.1
GPM presents that the TABE wall runs the exterior thermal loop with 0.1 GPM. Considering the large data set, the MLP was
configured to have 2 hidden layers (as shown in Figure 1), each with 512 neurons. It was then randomly initialized with a
standard deviation of 0.01 for weights and trained with a stochastic gradient descent (SDG) optimizer. In addition, rectified
linear unit (ReLU) was used as activation function, 0.05 was used as the learning rate, 128 was used as the batch size, and
200 was used as the number of epochs. An epoch is one complete pass of the training data set through the algorithm, which
can be viewed as an iteration of the machine learning training process. After extensive offline training, the MLP can be
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implemented online along with water flow rate control algorithms to help manage residential building energy consumption.

Rule-based Control Design

The rule-based control strategies were designed according to the control modes of the TABE system and the TODs. Three
modes were considered, as described in Table 3, where each mode only includes complementary “ON” and “OFF” settings
from the remaining two other modes. TOD has been used to generate optimal control rules according to TOD tariffs,
especially for buildings installed with a thermal energy storage system (Kamal et al. 2019). The concept was applied to
design the control rules because the outdoor climate conditions were different in each TOD, so TOD can be used as an
indicator to activate/inactivate thermal loops of TABE. The day was divided into five TODs, which include the early morning
period, morning period, on-peak period, evening period, and late evening period, as described in Table 4.

Table 3. Control Modes of the TABE System

Control Modes Description

Mode 1 Interior thermal loop is ON and exterior thermal loop is OFF

Mode 2 Interior thermal loop is OFF and exterior loop is ON

Mode 3 Interior loop is OFF and exterior loop is OFF
Table 4. TODs

TODs Description

TOD 1 Early morning period (2:00 to 6:00 a.m.)

TOD 2 Morning period (6:00 to 10:00 a.m.)

TOD 3 On peak period (10:00 a.m. to 5:00 p.m.)

TOD 4 Evening period (5:00 to 10:00 p.m.)

TOD 5 Late evening period (10:00 p.m. — 2:00 a.m.)

According to the defined control models and TODs, four control rules were generated (Figure 3), where two different series
of control rules were developed based on different seasons. For the cooling season (April to October), it is desired to run the
interior thermal loop during the daytime (TOD 2 and TOD 3) to gain the cooling energy from cold groundwater and run the
exterior thermal loop during the evening period (TOD 4) to isolate the indoor environment from outdoor ground thermal
radiation. In TOD 1 and TOD 5, the thermal loops can be turned off to precool the building. Therefore, two control rules
were designed: cooling (Rule 1) and pre-cooling (Rule 2) in the early morning period, as shown in Figure 3(a). Similar
reasoning was used to design control rules for the heating season (November to March).

The developed machine learning assisted framework was implemented in Building Control Virtual Test Beds (BCVTB)

(Wetter 2010). The trained ANN and control rules were implemented in MATLAB which could be directly called by
BCVTB in each time-step for building energy consumption analysis in EnergyPlus.
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Figure 3  (a) control rules of TABE thermal loop for months April to October (cooling season); (b) control rules of
TABE thermal loops for months November to March (heating season).

RESULTS AND DISCUSSION

ANN Training results

The ANN with two hidden layers was trained with 80% of samples and 20% of samples for validation and testing. Figure 4
shows the mean squared error (MSE) loss of the ANN predictions. For the training set, the ANN shows a 0.2 MSE loss at 200
epochs (Figure 4 (a)), which is reasonably good. Although a smaller MSE loss is achievable, it may lead to overfitting. For
the test set, a similar MSE loss was obtained, which indicates that the four-layer ANN performs consistently. In addition, the
result shows the test error was nested around zero with an overall MSE of 23%, which indicates acceptable accuracy, see
Figure 4 (b), although it has a <20% prediction error for about 60% of the test samples. The training accuracy of the ANN
can be improved by either including more flow rates (e.g., 0.3 GPM [0.069 m>/h]) or considering a more suitable neural
network for time series data such as the recurrent neural network. The trained ANN model was applied in MATLAB, which
can be integrated into BCVTB at each timestep for the energy co-simulation. The calculation time of heat flux by using the
trained ANN model was significantly reduced compared with the FEM simulations in COMSOL, from 2 days to less than 1
min (99.9% time saving), which makes future efforts on finding optimal rules using an optimization algorithm more feasible.
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Figure 4 (a) MSE training and test losses; (b) test error.
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Annual Energy Consumption, Cost, and Heat Flux Behavior

The annual HVAC energy cost and savings for the case study building with various water flow rates and rule combinations
are presented in Figure 5. The annual HVAC energy cost was calculated by using the electricity (cooling) and natural gas
(heating) consumption (as described in Table 5) multiplied by their corresponding unit price—$0.13/kWh for electricity and
$0.063/kWh for natural gas. The studied cases were labeled by the selected control rules and water flow rates, where the
control rules label cooling and heating seasons. For example, “Rule13” represents that Rule 1 was used for the cooling
season, and Rule 3 was used for the heating season. “WRO0.1” represents the water flow rate is 0.1 GPM. In addition, constant
water flow rates of 0.1, 0.15, and 0.2 GPM (0.023, 0.034, and 0.045 m*/h) with pump powers of 33.0, 34.0, and 35.7 W are
considered in the annual energy consumption and cost analysis. The buildings with the TABE buildings have greatly reduced
annual HVAC energy cost compared with the baseline building without the TABE. More than 9% of the HVAC energy cost
was saved in all the studied cases, and Rule13 WRO0.15 reached the highest cost saving of 17.4%. On the other hand,

Rulel13 WRO.1 reached the highest energy consumption savings (see Table 5) because of the relatively higher price of
electricity, whereas Rule14 WRO0.15 had more electricity cost savings. This study did not consider the energy consumption
required to run the pumps of thermal loops, where a higher water flow rate consumes more electricity. Therefore,

Rulel13 WRO.1 is the optimal rule among the predefined rules.

The energy cost savings come from the HVAC electricity savings (cooling season) but with a slightly higher natural gas
consumption (heating season), as shown in Table 5. This is mainly because overcooling happens during the cooling season
which requires using heating energy (natural gas) to balance it. The annual heat flux behavior of the south wall and the
annual net heat gain/loss during cooling/heating hours are shown in Figure 6. Clearly, the adoption of the TABE leads to a
negative net heat gain during the cooling season. This indicates that the TABE wall will help to maintain the indoor
environment by supplying cooling energy instead of consuming it as its counterpart of the baseline case. However, the
current rule-based control did not overcome the issue of overcooling due to the relatively low temperature of the groundwater
(see Table 2). This phenomenon was confirmed by analyzing the net heat gain/loss during cooling/heating hours, where
buildings with the TABE walls lead to less heat loss compared with the baseline case during the heating season, as shown in
Figure 6(b). Therefore, future research is needed to combine the developed framework and optimization algorithms to find
optimal control rules that can address the observed overcooling issue. The cost savings by the TABE by using an optimal
control rule could likely be much higher than 20% compared with the baseline case.
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Figure S  Annual HVAC and pump energy cost and savings for Charleston for different cases
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Table 5. Annual Energy Consumptions of Different Cases

Energy Baseline Rulel3_ Rulel3_ Rulel3_ Rulel4_ Rule23_ Rule24_
(kWh) WRO.1 WRO.15 WRO.2 WRO.1 WRO.1 WRO.1
Electricity 4,484 2,539 2,420 2,380 2,555 2,799 2,816
Pump electricity 0 163 168 176 179 163 179
Natural gas 8,776 9,538 9,665 9,797 9,961 9,898 10,321
Total 13,260 12,240 12,253 12,354 12,695 12,860 13,316
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Figure 6  Annual interior surface heat flux and net heat gain/loss: (a) annual interior surface heat flux of the south wall;
(b) annual net heat gain/loss during cooling/heating hours.

CONCLUSIONS AND FUTURE RESEARCH

In this study, a machine learning—assisted framework to control the TABE in residential buildings was developed, and an
ANN model was trained to reduce the high computation cost of the FEM simulations of the TABE systems. The framework
was applied in BCVTB to calculate the energy consumption of a DOE prototype residential building in Charleston, South
Carolina, using different rule-based controls. The following conclusions are drawn:

1. The ANN model has a reasonable accuracy to substitute the physics-based FEM simulations of the TABE. However,
the training and test accuracy may need to be further improved in future research.

2. The computation time was greatly reduced from 2 days for a single case FEM simulation by COMSOL for the
annual analysis, to less than 1 min by using the ANN, indicating 99.9% savings in computation time. Such an
improvement makes future studies in finding optimal control rules more feasible.

3. The case study shows that the designed control rules based on TOD have great potential to reduce the annual energy
cost of residential buildings installed with TABE walls.

Future research can target the following efforts:

1. Extend this study to other climate zones to increase the variability of the training samples.

2. Use an optimization algorithm to identify the most suitable TOD for the cooling and heating season. Meanwhile,
overcooling will be addressed in the optimization process by considering the heating/cooling demands in each time
step.

3. Increase the accuracy of the machine learning model by using a recurrent neural network, which is more suitable for
time series data.
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