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ABSTRACT 
To curb the energy consumption of buildings and their related CO2 emissions, Oak Ridge National Laboratory (ORNL) 
developed the thermally anisotropic building envelope (TABE) —a multi-layer design comprising insulation materials and 
metal foils connected to thermal loops. This study developed a machine learning-assisted framework to control the TABE in 
residential buildings to reduce the computation load for future optimal rule-based control and application. First, a 2D finite 
element model was established in COMSOL to calculate the hourly heat flux through exterior walls installed with the TABE. 
Then, TABE wall heat fluxes were simulated for various indoor and outdoor boundary conditions, thermal loops fluid 
temperatures and flow rates. Since the finite element simulations are computationally expensive, an artificial neural network 
(ANN) was then trained to use as a proxy of the finite element (COMSOL) modeling. Finally, the trained ANN model was 
coupled with the EnergyPlus model to predict the energy consumption of a US Department of Energy prototype single-family 
house installed with the TABE. An optimal simple rule-based control was determined from predefined rules for a case study. 
The results demonstrate that the developed machine learning–assisted framework can reduce 99.9% of the computation time 
while efficiently managing residential building energy for installed TABE walls. 

INTRODUCTION 

In 2020, buildings accounted for 30% of global energy use and almost 14% of total direct energy-related CO2 emissions 
(Hamilton and Rapf 2020). Therefore, it is urgent to curb the energy consumption of buildings and the related CO2 emissions. 
Among the various building components, building envelopes are one of the most important components to manage building 
HVAC energy consumption. Both passive (Sadineni et al. 2011; Tian et al. 2018) and active (Luo et al. 2019) building 
envelope thermal management approaches have been studied to reduce unwanted heat flows passing through the envelopes. 
For passive building envelope thermal management, increasing R-value by adopting high-performance insulation materials 
such as vacuum insulation panels and aerogels has been extensively studied recently (Baetens et al. 2010, 2011; Biswas 
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2018). However,  high cost and durability issues limit their application in building envelopes (Biswas et al. 2019a). 
Additionally, increasing the thermal mass of building envelopes by incorporating phase change materials has also shown the 
potential to reduce heating/cooling loads (Biswas et al. 2018; Kośny et al. 2014). However, there is a lack of large-scale 
applications to show its feasibility. For active building envelope thermal management, the concepts of the active evaporative 
cooling wall (Carbonari et al. 2015), dynamic insulation system (Dabbagh and Krarti 2020), and active photovoltaic-
thermoelectric wall system (Liu et al. 2015b; a) have been studied. Similarly, they lack feasibility, and the research only 
focused on numerical studies. 
 
Recently, researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory developed a thermally 
anisotropic building envelope (TABE) (Biswas et al. 2019a; b; Shrestha et al. 2020) to improve the thermal management in 
building envelopes. The TABE allows heat to dissipate in a preferential direction by sandwiching highly thermally 
conductive thin metal sheets, such as aluminum, between insulation layers. The TABE wall panel has nominal 2 × 4 in. studs 
(actual 1.5 in. × 3.5 in. [ 3.8 cm × 8.9 cm] at 16 in. [40.6 cm] on the center, interior ½ in. gypsum board, R-13 (13 
h.ft2.°F/Btu [2.23 m2.K/W]) fiberglass batt insulation in the cavities, two layers of ½ in. [1.3 cm] Polyiso, and exterior 
horizontal vinyl siding as shown in Figure 1. The wall panel assemblies meet the International Energy Conservation Code 
2018 R-value requirements for a residential building wall in ASHRAE climate zones 3 to 5. To accelerate the heat dissipation 
rates, interior and exterior thermal loops were integrated into the TABE. When connecting to a groundwater loop, the TABE 
wall panel can be used as: (1) a heat sink to separate the indoor environment from the influence of the outdoor when 
activating the exterior thermal loop; or (2) a heating/cooling source when activating the interior thermal loop with suitable 
ground water temperature. Laboratory evaluations showed that the TABE can reduce 85% of cooling loads and 63% of 
heating loads (Biswas et al. 2019a). Similar cooling and heating load reductions were observed in a series of field 
evaluations. 
 

 

Figure 1 Schematic of a prototype TABE panel with both interior and exterior thermal loops 

To assist experimental efforts, COMSOL and EnergyPlus models were developed to simulate the energy savings of 
residential buildings installed with TABE walls. A COMSOL finite element model (FEM) was used to simulate the heat flux 
and thermal performance of TABE walls. The outputs of COMSOL were then used as the inputs to EnergyPlus to simulate 
the whole building’s energy consumption. The COMSOL models were calibrated using the data collected by field evaluation. 
However, the COMSOL simulations were extremely time-consuming because of the geometric complexity of TABE walls. 
For example, COMSOL required about 2 days to compute the annual heat flux for a given water flow rate and thermal loop 
setting. Such a relatively long computation time made it difficult to test the performance of predefined control rules using a 
FEM such as COMSOL. More importantly, it prevented the integration of optimization algorithms and more advanced 
control algorithms, such as model predictive control into the studies of buildings installed with TABE walls. For example, the 
application of an optimization algorithm (e.g., multi-objective particle swarm optimization) to find an optimal control rule 
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may involve thousands of heat flux computations of TABE walls, which will be an impossible task using the physics-based 
model. Therefore, an efficient surrogate model is needed, such as an artificial neural network (ANN) model, to substitute for 
the computationally expensive physics-based FEM. 
 
This study addressed the need for an efficient surrogate model by developing a machine learning–assisted framework to 
replace the computationally expensive FEM to control the TABE in residential buildings and reduce energy consumption. 
First, a 2D FEM of the TABE panel was established in COMSOL to calculate the hourly heat flux subject to indoor and 
outdoor boundary conditions with tunable inlet water flow rate and temperature in the thermal loops. An ANN model was 
then trained to substitute the computationally expensive COMSOL model. After that, the trained ANN model was integrated 
with EnergyPlus to simulate the thermal performance of residential buildings. Finally, an optimal simple rule-based control 
was determined from predefined rules for a case study for a DOE prototype single-family house.     
 

METHODOLOGY 

 The machine learning–assisted, rule-based control framework to manage residential building energy consumption with a 
hydraulic activated TABE is shown in Figure 2. The framework includes four stages.  
Stage 1: TABE wall heat fluxes are output from FEM simulations based on specific boundary conditions, which are 
generated by a baseline EnergyPlus model, and various constant TABE water flow rates as the inputs. 
Stage 2: An ANN is trained based on the outputs from Stage 1. The ANN can predict TABE wall heat fluxes for any given 
climate conditions and TABE water flow rates.  
Stage 3: Using the ANN, TABE wall heat fluxes are predicted based on the Time-Of-Days (TODs) with different control 
strategies. These TODs influence the water flow rate schedules used as inputs to the ANN. 
Stage 4: Using the ANN predicted TABE wall heat fluxes, the energy consumption of buildings is calculated in EnergyPlus.  
 
The developed framework was applied to a DOE prototype single-family residential building in Charleston, South Carolina 
(Climate Zone 3A).   
  

 
Figure 2 Machine learning–assisted rule-based control framework to manage residential building energy consumption 

with the hydronic activated TABE 

FEM simulation of TABE wall heat fluxes: Training Data Preparation  

FEM simulations were conducted via COMSOL to calculate TABE wall heat fluxes for given climate conditions and various 
constant water flow rates. The obtained TABE wall heat fluxes data were used as the training data for the ANN. A 2D 
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COMSOL model was adopted because it greatly reduced the computation load compared with the 3D model. However, the 
computation time of the 2D model is still not affordable if used in parametric studies, such as looking for the optimal control 
rules to minimize annual energy consumption for given climate conditions. The inputs and outputs of the 2D model are listed 
in Table 1. They include 11 input variables and 1 output for each wall (4 walls for the studied single-family residential 
building). Only a representative area (10.76 ft2 [1 m2]) of the TABE was simulated for each wall; then, the area was scaled up 
to the entire opaque wall area of the prototype building. The wall surface temperature, air temperature, and radiation heat flux 
inputs were obtained from a baseline EnergyPlus model that has identical construction to the TABE walls but without metal 
layers and thermal loops. The groundwater temperature was obtained from the US Geological Survey database. In this study, 
the interior and exterior thermal loops were computed separately.  
 
The characteristic temperatures of Charleston are provided in Table 2. It has a cold winter and hot summer with suitable 
groundwater temperature (66°F [19°C]). 
 

Table 1.   Inputs and Outputs of COMSOL Model 
Inputs and Outputs Variables 

Inputs 

(1) Interior wall surface temperature; (2) Exterior wall surface temperature; (3) Indoor air temperature; 
(4) Outdoor air temperature; (5) Interior wall surface convection coefficient; (6) Exterior wall 
surface convection coefficient; (7) Inside surface radiation; (8) Surface outside face net thermal 
radiation heat gain rate; (9) Surface outside face solar radiation heat gain rate; (10) Ground water 
temperature; (11) Water flow rate    

Outputs (1) Heat flux from the walls to the conditioned space 
 
 

Table 2.   Characteristic Temperatures of Charleston 
 AAGWT* Min OAT** Max OAT** Avg OAT** 
 °F (°C) °F (°C) °F (°C) °F (°C) 

Temperature 66.2 (19.0) 21.9 (-5.6) 100 (37.8) 65.3 (18.5) 
 
*AAGWT = Annual average ground water temperature 
**OAT = Outdoor air temperature  

 

 ANN 

ANNs have a strong fitting capability owing to their thousands of neurons and nonlinear activation functions. An ANN may 
represent a wide variety of functions when given appropriate weights and biases (Scarselli and Chung Tsoi 1998). In this 
study, a multilayer perception (MLP) (Mohandes et al. 2019) was used to predict TABE wall heat fluxes based on 11 inputs 
as listed in Table 1. Hourly data were used in training the ANN model. For Charleston, a dataset with a sample size of 
175,200 (8,760 simulated hours × 4 walls × 5 different water flow settings) was generated. The 5 different water flow 
settings include a baseline without water flow, interior thermal loop with 0.1 GPM, exterior thermal loop with 0.1 GPM, 
interior thermal loop with 0.5 GPM, and exterior thermal loop with 0.5 GPM. To discrete the differences of interior and 
exterior thermal loops in training the ANN, a minus sign was added to indicate the exterior thermal loop. For example, -0.1 
GPM presents that the TABE wall runs the exterior thermal loop with 0.1 GPM. Considering the large data set, the MLP was 
configured to have 2 hidden layers (as shown in Figure 1), each with 512 neurons. It was then randomly initialized with a 
standard deviation of 0.01 for weights and trained with a stochastic gradient descent (SDG) optimizer. In addition, rectified 
linear unit (ReLU) was used as activation function, 0.05 was used as the learning rate, 128 was used as the batch size, and 
200 was used as the number of epochs. An epoch is one complete pass of the training data set through the algorithm, which 
can be viewed as an iteration of the machine learning training process. After extensive offline training, the MLP can be 
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implemented online along with water flow rate control algorithms to help manage residential building energy consumption. 

Rule-based Control Design 

The rule-based control strategies were designed according to the control modes of the TABE system and the TODs. Three 
modes were considered, as described in Table 3, where each mode only includes complementary “ON” and “OFF” settings 
from the remaining two other modes. TOD has been used to generate optimal control rules according to TOD tariffs, 
especially for buildings installed with a thermal energy storage system (Kamal et al. 2019). The concept was applied to 
design the control rules because the outdoor climate conditions were different in each TOD, so TOD can be used as an 
indicator to activate/inactivate thermal loops of TABE. The day was divided into five TODs, which include the early morning 
period, morning period, on-peak period, evening period, and late evening period, as described in Table 4.  
 
 

Table 3.   Control Modes of the TABE System 
Control Modes Description 
Mode 1 Interior thermal loop is ON and exterior thermal loop is OFF 
Mode 2 Interior thermal loop is OFF and exterior loop is ON 
Mode 3 Interior loop is OFF and exterior loop is OFF 

 
Table 4.   TODs 

TODs Description 
TOD 1  Early morning period (2:00 to 6:00 a.m.) 
TOD 2 Morning period (6:00 to 10:00 a.m.) 
TOD 3 On peak period (10:00 a.m. to 5:00 p.m.) 
TOD 4 Evening period (5:00 to 10:00 p.m.) 
TOD 5 Late evening period (10:00 p.m. – 2:00 a.m.) 

 
According to the defined control models and TODs, four control rules were generated (Figure 3), where two different series 
of control rules were developed based on different seasons. For the cooling season (April to October), it is desired to run the 
interior thermal loop during the daytime (TOD 2 and TOD 3) to gain the cooling energy from cold groundwater and run the 
exterior thermal loop during the evening period (TOD 4) to isolate the indoor environment from outdoor ground thermal 
radiation. In TOD 1 and TOD 5, the thermal loops can be turned off to precool the building. Therefore, two control rules 
were designed: cooling (Rule 1) and pre-cooling (Rule 2) in the early morning period, as shown in Figure 3(a).  Similar 
reasoning was used to design control rules for the heating season (November to March). 
 
The developed machine learning assisted framework was implemented in Building Control Virtual Test Beds (BCVTB) 
(Wetter 2010). The trained ANN and control rules were implemented in MATLAB which could be directly called by 
BCVTB in each time-step for building energy consumption analysis in EnergyPlus. 
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Figure 3 (a) control rules of TABE thermal loop for months April to October (cooling season); (b) control rules of 

TABE thermal loops for months November to March (heating season). 

RESULTS AND DISCUSSION 

ANN Training results 

The ANN with two hidden layers was trained with 80% of samples and 20% of samples for validation and testing. Figure 4 
shows the mean squared error (MSE) loss of the ANN predictions. For the training set, the ANN shows a 0.2 MSE loss at 200 
epochs (Figure 4 (a)), which is reasonably good. Although a smaller MSE loss is achievable, it may lead to overfitting. For 
the test set, a similar MSE loss was obtained, which indicates that the four-layer ANN performs consistently. In addition, the 
result shows the test error was nested around zero with an overall MSE of 23%, which indicates acceptable accuracy, see 
Figure 4 (b), although it has a <20% prediction error for about 60% of the test samples. The training accuracy of the ANN 
can be improved by either including more flow rates (e.g., 0.3 GPM [0.069 m3/h]) or considering a more suitable neural 
network for time series data such as the recurrent neural network. The trained ANN model was applied in MATLAB, which 
can be integrated into BCVTB at each timestep for the energy co-simulation. The calculation time of heat flux by using the 
trained ANN model was significantly reduced compared with the FEM simulations in COMSOL, from 2 days to less than 1 
min (99.9% time saving), which makes future efforts on finding optimal rules using an optimization algorithm more feasible.   

 
 

Figure 4 (a) MSE training and test losses; (b) test error.  
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Annual Energy Consumption, Cost, and Heat Flux Behavior 

The annual HVAC energy cost and savings for the case study building with various water flow rates and rule combinations 
are presented in Figure 5. The annual HVAC energy cost was calculated by using the electricity (cooling) and natural gas 
(heating) consumption (as described in Table 5) multiplied by their corresponding unit price—$0.13/kWh for electricity and 
$0.063/kWh for natural gas. The studied cases were labeled by the selected control rules and water flow rates, where the 
control rules label cooling and heating seasons. For example, “Rule13” represents that Rule 1 was used for the cooling 
season, and Rule 3 was used for the heating season. “WR0.1” represents the water flow rate is 0.1 GPM. In addition, constant 
water flow rates of 0.1, 0.15, and 0.2 GPM (0.023, 0.034, and 0.045 m3/h) with pump powers of 33.0, 34.0, and 35.7 W are 
considered in the annual energy consumption and cost analysis.  The buildings with the TABE buildings have greatly reduced 
annual HVAC energy cost compared with the baseline building without the TABE. More than 9% of the HVAC energy cost 
was saved in all the studied cases, and Rule13_WR0.15 reached the highest cost saving of 17.4%. On the other hand, 
Rule13_WR0.1 reached the highest energy consumption savings (see Table 5) because of the relatively higher price of 
electricity, whereas Rule14_WR0.15 had more electricity cost savings. This study did not consider the energy consumption 
required to run the pumps of thermal loops, where a higher water flow rate consumes more electricity. Therefore, 
Rule13_WR0.1 is the optimal rule among the predefined rules. 
 
The energy cost savings come from the HVAC electricity savings (cooling season) but with a slightly higher natural gas 
consumption (heating season), as shown in Table 5. This is mainly because overcooling happens during the cooling season 
which requires using heating energy (natural gas) to balance it. The annual heat flux behavior of the south wall and the 
annual net heat gain/loss during cooling/heating hours are shown in Figure 6. Clearly, the adoption of the TABE leads to a 
negative net heat gain during the cooling season. This indicates that the TABE wall will help to maintain the indoor 
environment by supplying cooling energy instead of consuming it as its counterpart of the baseline case. However, the 
current rule-based control did not overcome the issue of overcooling due to the relatively low temperature of the groundwater 
(see Table 2). This phenomenon was confirmed by analyzing the net heat gain/loss during cooling/heating hours, where 
buildings with the TABE walls lead to less heat loss compared with the baseline case during the heating season, as shown in 
Figure 6(b). Therefore, future research is needed to combine the developed framework and optimization algorithms to find 
optimal control rules that can address the observed overcooling issue. The cost savings by the TABE by using an optimal 
control rule could likely be much higher than 20% compared with the baseline case.     
 

 
 

Figure 5 Annual HVAC and pump energy cost and savings for Charleston for different cases 

300

600

900

1200

1500
 Electricity  Natural gas  Pump energy

En
er

gy
 c

os
t (

$)

Bas
eli

ne

Rule1
3_

WR0.1

Rule1
3_

WR0.1
5

Rule1
3_

WR0.2

Rule1
4_

WR0.1

Rule2
3_

WR0.1

Rule2
4_

WR0.1

0

5

10

15

20  Savings

Sa
vi

ng
s 

(%
)

© 2022 U.S. Government

2022 Thermal Performance of the Exterior Envelopes of Whole Buildings XV International Conference 71



8 
 

 

Table 5.   Annual Energy Consumptions of Different Cases 
Energy 
(kWh) 

Baseline Rule13_ 
WR0.1 

Rule13_ 
WR0.15 

Rule13_ 
WR0.2 

Rule14_ 
WR0.1 

Rule23_ 
WR0.1 

Rule24_ 
WR0.1 

Electricity 4,484 2,539 2,420 2,380 2,555 2,799 2,816 
Pump electricity 0 163 168 176 179 163 179 
Natural gas 8,776 9,538 9,665 9,797 9,961 9,898 10,321 
Total 13,260 12,240 12,253 12,354 12,695 12,860 13,316 

 

 
Figure 6 Annual interior surface heat flux and net heat gain/loss: (a) annual interior surface heat flux of the south wall; 

(b) annual net heat gain/loss during cooling/heating hours. 

CONCLUSIONS AND FUTURE RESEARCH 

In this study, a machine learning–assisted framework to control the TABE in residential buildings was developed, and an 
ANN model was trained to reduce the high computation cost of the FEM simulations of the TABE systems. The framework 
was applied in BCVTB to calculate the energy consumption of a DOE prototype residential building in Charleston, South 
Carolina, using different rule-based controls. The following conclusions are drawn: 

1. The ANN model has a reasonable accuracy to substitute the physics-based FEM simulations of the TABE. However, 
the training and test accuracy may need to be further improved in future research. 

2. The computation time was greatly reduced from 2 days for a single case FEM simulation by COMSOL for the 
annual analysis, to less than 1 min by using the ANN, indicating 99.9% savings in computation time. Such an 
improvement makes future studies in finding optimal control rules more feasible. 

3. The case study shows that the designed control rules based on TOD have great potential to reduce the annual energy 
cost of residential buildings installed with TABE walls.  

Future research can target the following efforts: 
1. Extend this study to other climate zones to increase the variability of the training samples. 
2. Use an optimization algorithm to identify the most suitable TOD for the cooling and heating season. Meanwhile, 

overcooling will be addressed in the optimization process by considering the heating/cooling demands in each time 
step. 

3. Increase the accuracy of the machine learning model by using a recurrent neural network, which is more suitable for 
time series data. 
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