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It has been shown that differential privacy bounds improve when subsam-
pling within a randomized mechanism. Episodic training, utilized in many
standard machine learning techniques, uses a multistage subsampling proce-
dure which has not been previously analyzed for privacy bound amplification.
In this paper, we focus on improving the calculation of privacy bounds in
episodic training by thoroughly analyzing privacy amplification due to sub-
sampling with a multi-stage subsampling procedure. The newly developed
bound can be incorporated into existing privacy accounting methods.

1 INTRODUCTION

As more data is being utilized by algorithms and machine learning
techniques, rigorously maintaining the privacy of this data has be-
come important. Cyber security, health, and census data collection
are all examples of fields that are seeing increased scrutiny for ensur-
ing the privacy of data, and it is well known that just anonymizing
the data by removing features such as name is not sufficient to guar-
antee privacy due to vulnerabilities such as re-identification attacks,
especially in the case when an adversary has access to auxiliary
knowledge or data (see e.g. [8, 10]).

Differential privacy, first introduced by Dwork, is one technical
definition of privacy that has been studied widely in the literature
[3, 4]. This definition provides rigorous guarantees for the privacy of
data that is utilized by an algorithm and has several nice properties
like robustness to post processing and strong composition theorems.

Machine learning practitioners initially integrated differential
privacy by naively applying these composition theorems algorithm
by assuming that the algorithm accessed the entire training set on
each step of training. Abadi et al. [1] noticed the data is subsampled
into batches, so only a subset of the data is utilized for each step of
training. This allowed for improved privacy bounds; however, they
assumed that batches were created using Poisson sampling. Later
authors showed improved bounds for creating batches using simple
random sampling without replacement [14]. And most recently,
Balle et al. [2] provided a fully unified theory for determining the
privacy amplification due to subsampling as well as a complete
analysis for Poisson and simple random subsampling both with and
without replacement subsampling methods.

The subsampling methods analyzed previously include many of
the subsampling methods utilized by machine learning; however,
the methods does not capture batches formed by algorithms that use
episodic training. Episodic training methods are utilized by a variety
of machine learning algorithms, such as meta learning (e.g., [5, 9])
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or metric learning (e.g., [11, 13]) algorithms. Domain generalization
algorithms have also frequently utilized episodic training [6].

In this paper, we analyze the privacy amplification due to the
subsampling method utilized in an episodic training regime. Specifi-
cally, we notice forming batches in episodic training is a multistage
subsampling method, and we provide a complete analysis of the im-
proved differential privacy bounds when applying a mechanism to a
sample drawn using multistage subsampling. The resulting theorem
can be easily applied to episodic training methods and integrated
with privacy accounting methods such as the moment’s accoun-
tant [1]. This bound can also be utilized by practitioners of other
domains that use multistage subsampling within their algorithms.

2 BACKGROUND AND RELATED WORKS
2.1 Multistage Subsampling

In a multistage sampling procedure, the universe from which sam-
ples are drawn is partitioned. These partitions may contain the
examples we are ultimately interested in sampling or may contain
one or several levels of partitions. The subsampling procedure is
to sample partitions at each level until examples are sampled. For
example, if we are interested in the demographics of students at a
school, we could partition students by teacher, sample some number
of teachers and then sample students from each sampled teacher.

To see that episodic training is a multistage subsampling proce-
dure, consider how training batches are formed in Algorithm 2 of
[5]. In this work, a subset of tasks are sampled from a collection of
tasks, then the examples are sampled and provided to the training
algorithm. This is a 2-stage sampling procedure since the training
data is only partitioned into two levels: tasks and examples. In mul-
tistage subsampling, the first level of partitions are the primary
sampling units and the final level is called the ultimate sampling
units and this final level contains the examples we are ultimately
interested in sampling. For more details on multistage subsampling,
see e.g., [12].

2.2 Differential Privacy

Since our analysis utilizes the tools of Balle et al. [2], we introduce
the necessary notations and definitions from it. Let ¢ be an input
space equipped with a binary symmetric relation ~q, that describes
the concept of neighboring inputs. For our purposes, U is a universe
that the training data is drawn from and the relation will be the
add-one/remove-one relation, thus two training sets are related if
they differ by the addition or removal of one element.

Given a randomized algorithm or mechanism M : X — P(2),
where P(Z) is the set of probability measures on the output space Z,
M is (&, 6)-differentially private w.r.t ~q if for every pair 7~ ~q; 7’
and every measurable subset E C Z,

Pr[M(T) € E] < e“Pr[M(T”) € E] +6.



2« Vandy Tombs*, Olivera Kotevska, and Steven Young

Utilizing the tools from [2] requires expressing differential privacy
in terms of a-divergence given by

Dy (pllp’) = s%p(u(E) - ap(E))

of two probability measures y, u’ € P(Z), where E ranges over all
measurable subsets of Z. Differential privacy can then be stated
in terms of a-divergence; specifically, a mechanism M is (¢, §)-
differentially private if and only if Dee (M(T)|IM(T)) < & for
every adjacent datasets 7 ~q; 7.

We can now define the privacy profile of a mechanism M as
Im = SUpg~,, 77 Dee (M(T)|IM(T')), which associates each pri-
vacy parameter o = ef with a bound on the a-divergence between
the results of the mechanism on two adjacent datasets.

Two theorems from [2] are important in our analysis. The first
is Advanced Joint Convexity, which we restate in terms of « = e*
since we are interested in applying this theorem to improve the
privacy bounds due to multistage subsampling.

THEOREM 2.1. ([2], Advanced Joint Convexity of Dee ) Let p, pi’ €
P(Z) be measures satisfying u = (1—n)po+np1 and p’ = (1=n)po +
nu; for some n, po, 1, iy Given e > 0, let ¢’ = log(1+n(e® — 1)) and
B = e /e, the following holds:

Dyer (pllp") = nDee (p111(1 = o + Pus)

The final theorem provides the concrete privacy amplification
that we need for our analysis. Before presenting this, we need to
define when two distributions v,v” € P(Y) are dy-compatible. Let
7 be a coupling of v,v’, define dy (y,y") = dy(y, supp(v’)) where
(y,y’) € supp(r) and the distance between a point y and supp(v’)
is defined to be the distance between y and the closest point in

supp(v’).

THEOREM 2.2. Let C(v,v’) be the set of all couplings between v and
v’ and fork > 1 let Y, = {y € supp(v) : dy(y, supp(v’)) = k}. If v
and v’ are dy-compatible, then the following holds:

i % Ty.y S Mdy (3y) (€) = ]; V(YOI (€)

We are now equipped to begin an analysis of the privacy amplifi-
cation due to multistage subsampling.

3  OUR APPROACH: PRIVACY BOUNDS FOR
MULTISTAGE SAMPLING ANALYSIS
We will begin the analysis with an example. Through this example,

we will introduce the notation necessary for the general analysis.

Example 3.1. Let U be a universe of 18 examples from which the
database or training data is drawn from. Suppose we can categorize
the data from the universe at 3 different levels, so we will perform a
3-stage sampling. Let

U=U,UU,

= (U1 UU12 UU13) U (Uz1 U Uz2)
= ({wa11, w112, w113, w14} U {un21, w122} U {u131, 132, u133})

U ({u211, u212, u213, u21a} U {uz21, u22, 4223, U224, 225}

In this example, Uj, for i € {1, 2} are the primary sampling units, the
Ui, i, are the ultimate sampling units and the u; ;,;, are the examples
that would be provided to a training algorithm.

In general, let U be a universe from which the training data is
drawn and suppose a finite number of levels, Ny, partition this uni-
verse. Define U; be the primary sampling units and let Uj,;,.
be the sampling units of the Uy j,...iy, , unit. Uiji,-iy,
mate sampling unit which contain the examples we are interest in
sampling. Note that we require that each sampling unit be of finite
size except the ultimate sampling units, which may be infinite. The
multistage sampling procedure can be described by Algorithm 1:
Multistage Sampling. Most episodic training procedures only use
2- or 3-stage sampling but we analyze the general case; which may
have applications to other scientific domains (e.g. medical domains)
where multistage sampling may have more levels.

viNg
is an ulti-

Algorithm 1: Multistage Sampling

Set PrevLevel := | U;
Set CurrentLevel := 0
Given n;: the number of units to be sampled at each level
(1<j<Np)
for j € {1,..,N;} do
for S € PrevLevel do
sample without replacement n; elements from S
add sampled elements to CurrentLevel
end
PrevLevel = CurrentLevel

CurrentLevel := ()
end

Now, let 7~ € U be the training data or database we are analyzing.
We will require that the training data has at least one element from
each sampling unit described above. Thus we only allow the ultimate
sampling units of the training data T j,...iy;,  C Ujip--in, > to be
a non-empty finite subset of the ultimate sampling units with at
least ny, elements (i.e. at least the number of units that will be
sampled from the ultimate sampling units). All other sampling units
defined for the universe will remain the same for the training set.

We want to analyze the privacy bound on algorithms that use a
multistage subsampling procedure on 7. To do this, we will apply
the theorems from [2] and will analyze this sampling procedure
under the add-one/remove one relation. We begin by defining a
probability measure for this sampling procedure. We can do this by
simply defining

N
T2 n

|Ui1||Ui1i2| e |Ti1iz-

H(tiyiy-ing ) :
cing |
where t;,i,...iy;, belongs to the ultimate unit T ;,...iy, -

Now consider 7 created by removing one element from 7, say
without loss of generality, tiyip-rein, 1 for some iy, i3, ...,in;_,- The
probability measure p’ for sampling from 7 can be defined similar
to above. We wish to compute the total variational distance between
these two measure so that we can apply the Advanced Coupling



Theorem from [2]. We just need to compute:

TV (i) =1~ " min (u(u), 4 ()
uelU
Note we can easily extend our probability measures p, i’ to the
entire universe by setting the inclusion probability to 0 for any
element not in T or T”. For all elements t € 77\ Tiyj,...i, ,, We
have min(u(t), ' (1)) = p(t) = p’(t). Since tijy...iy, 1 € T, we
also have min(u(tiliz...iNL_ll), :u’(tiliz‘“iNL_ll)) = 0. So we just
need to consider the elements of the ultimate unit from which
we removed an element. Since, we removed an element from this
unit, the probability p’(t) > u(#) since Tl’1 iy (the ultimate
unit missing an element in T’) has fewer elements than T;,;,.
therefore for all #;j,...i5 !

“iNL—l 5

i and i # 1, we have

-1 iyig-+ing _y
ll(tiliz“-iNL_li) < 'u/(ti/liz"'iNL—li) where
Ny .
(t ) Hj:1 nj
Plliviy-in, i) =

1127 N |Ui1||Ui1iz|"'ITiliz"'iNL—l|

Ny .

Hj:1 nj
iy ) = .
L-1 |Ui1||Ui1iz|"'ITiliz“'iNL-1|

Thus
D% min (p(w), p' () = Y p(t) = 1= p(tiy iy 1)-

uel teT’
Hence the total variational distance is just the inclusion probability
of the element we removed. Determining the total variational dis-
tance when adding an element from U to 7~ is similar to the above
argument.
We can now provide an amplified privacy bound for multistage
subsampling.

THEOREM 3.2. Let M’ be a subsampled mechanism on T~ described
by Algorithm 1 and let mymy ... my, _1 be the index of the penulti-
mate sampling unit that satisfies

. mln (|Ui1||Ui1i2|“'|Ti1i2“'l’NL71 |)
1502, 5INy
Then, for any € > 0, we have S o (€”) < népq(€) wheree’ = log(1+
[ n
j=1"j
‘Uml ||Um1m2 |'”|Tm1m2---mNIfl |
one/remove-one relation.

n(e€ —1)) andn = under the add-

To fully complete the proof, let 7, 7’ be training sets drawn from
U with T ~, 7 under the add-one/remove-one relation ~, and let
Sy(7") denote the subsampling mechanism described by Algorithm
1 wherey = TV (p, p'). Let 7o = 7 N T/, then by definition of =,
To=T orTo =T Let wg = Sy(T0), = Sy(T) and i’ = S, (7).
Then the decompositions of y and p’ induced by their maximal
coupling have that y1 = wo when 7 = 7 or pif = wo when 75 = 7.
We only need to consider 75 = 7 since this is when the maximum
is obtained in applying advanced joint convexity. Finally, we note
that one can easily create a d~, -compatible pair according to the
definition provided in [2] by first sampling y from y and building
y’ by adding v (which may be empty) to y. Thus for each dataset
pair, by Theorem 7 of [2], we have Spp(e’) < ydm(e). In order
to get a bound for all possible training set pairs, we need to take
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n = min(q,77) (y7=~,77). This occurs exacty when we remove an
element from the penultimate unit with index mymjy - my; —; which
completes the proof. O

We briefly mention how one might incorporate this new bound
into a privacy accounting method. Many accounting methods, like
the moments accountant [1], use the moment generating function
in conjunction with the Gaussian mechanism to calculate the pri-
vacy bounds while a machine learning algorithm is training. Using
Theorem 4 from [2] with our new bound one can easily derive a
subsampled Gaussian that can be utilized in algorithms like those
described in [1, 7].

4 CONCLUSION

This paper completely analyzes the privacy amplification due to
multistage subsampling. This provides the correct privacy bounds
for any algorithm that utilizes multistage subsampling, such as ma-
chine learning algorithms that use episodic training. Our future goal
is to perform experiments to better understand privacy in machine
learning algorithms that use episodic training like meta-learning
algorithms. We hope our presented approach and discussion will
prove useful to other researchers wanting to apply privacy bounds
on multistage sampling in other studies and applications.
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