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It has been shown that di�erential privacy bounds improve when subsam-

pling within a randomized mechanism. Episodic training, utilized in many

standard machine learning techniques, uses a multistage subsampling proce-

durewhich has not been previously analyzed for privacy bound ampli�cation.

In this paper, we focus on improving the calculation of privacy bounds in

episodic training by thoroughly analyzing privacy ampli�cation due to sub-

sampling with a multi-stage subsampling procedure. The newly developed

bound can be incorporated into existing privacy accounting methods.

1 INTRODUCTION
As more data is being utilized by algorithms and machine learning

techniques, rigorously maintaining the privacy of this data has be-

come important. Cyber security, health, and census data collection

are all examples of �elds that are seeing increased scrutiny for ensur-

ing the privacy of data, and it is well known that just anonymizing

the data by removing features such as name is not su�cient to guar-

antee privacy due to vulnerabilities such as re-identi�cation attacks,

especially in the case when an adversary has access to auxiliary

knowledge or data (see e.g. [8, 10]).

Di�erential privacy, �rst introduced by Dwork, is one technical

de�nition of privacy that has been studied widely in the literature

[3, 4]. This de�nition provides rigorous guarantees for the privacy of

data that is utilized by an algorithm and has several nice properties

like robustness to post processing and strong composition theorems.

Machine learning practitioners initially integrated di�erential

privacy by naively applying these composition theorems algorithm

by assuming that the algorithm accessed the entire training set on

each step of training. Abadi et al. [1] noticed the data is subsampled

into batches, so only a subset of the data is utilized for each step of

training. This allowed for improved privacy bounds; however, they

assumed that batches were created using Poisson sampling. Later

authors showed improved bounds for creating batches using simple

random sampling without replacement [14]. And most recently,

Balle et al. [2] provided a fully uni�ed theory for determining the

privacy ampli�cation due to subsampling as well as a complete

analysis for Poisson and simple random subsampling both with and

without replacement subsampling methods.

The subsampling methods analyzed previously include many of

the subsampling methods utilized by machine learning; however,

the methods does not capture batches formed by algorithms that use

episodic training. Episodic training methods are utilized by a variety

of machine learning algorithms, such as meta learning (e.g., [5, 9])
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or metric learning (e.g., [11, 13]) algorithms. Domain generalization

algorithms have also frequently utilized episodic training [6].

In this paper, we analyze the privacy ampli�cation due to the

subsampling method utilized in an episodic training regime. Speci�-

cally, we notice forming batches in episodic training is a multistage

subsampling method, and we provide a complete analysis of the im-

proved di�erential privacy bounds when applying a mechanism to a

sample drawn using multistage subsampling. The resulting theorem

can be easily applied to episodic training methods and integrated

with privacy accounting methods such as the moment’s accoun-

tant [1]. This bound can also be utilized by practitioners of other

domains that use multistage subsampling within their algorithms.

2 BACKGROUND AND RELATED WORKS

2.1 Multistage Subsampling
In a multistage sampling procedure, the universe from which sam-

ples are drawn is partitioned. These partitions may contain the

examples we are ultimately interested in sampling or may contain

one or several levels of partitions. The subsampling procedure is

to sample partitions at each level until examples are sampled. For

example, if we are interested in the demographics of students at a

school, we could partition students by teacher, sample some number

of teachers and then sample students from each sampled teacher.

To see that episodic training is a multistage subsampling proce-

dure, consider how training batches are formed in Algorithm 2 of

[5]. In this work, a subset of tasks are sampled from a collection of

tasks, then the examples are sampled and provided to the training

algorithm. This is a 2-stage sampling procedure since the training

data is only partitioned into two levels: tasks and examples. In mul-

tistage subsampling, the �rst level of partitions are the primary
sampling units and the �nal level is called the ultimate sampling
units and this �nal level contains the examples we are ultimately

interested in sampling. For more details on multistage subsampling,

see e.g., [12].

2.2 Di�erential Privacy
Since our analysis utilizes the tools of Balle et al. [2], we introduce

the necessary notations and de�nitions from it. LetU be an input

space equipped with a binary symmetric relation 'U that describes

the concept of neighboring inputs. For our purposes,U is a universe

that the training data is drawn from and the relation will be the

add-one/remove-one relation, thus two training sets are related if

they di�er by the addition or removal of one element.

Given a randomized algorithm or mechanism M : - → P(/ ),
where P(/ ) is the set of probability measures on the output space / ,

M is (Y, X)-di�erentially private w.r.t 'U if for every pair T 'U T ′

and every measurable subset � ⊆ / ,

Pr[M(T ) ∈ �] ≤ 4YPr[M(T ′) ∈ �] + X.
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Utilizing the tools from [2] requires expressing di�erential privacy

in terms of U-divergence given by

�U (` | |` ′) := sup

�

(` (�) − U` (�))

of two probability measures `, ` ′ ∈ P(/ ), where � ranges over all

measurable subsets of / . Di�erential privacy can then be stated

in terms of U-divergence; speci�cally, a mechanism M is (Y, X)-
di�erentially private if and only if �4n (M(T )| |M(T ′)) ≤ X for

every adjacent datasets T 'U T ′
.

We can now de�ne the privacy pro�le of a mechanism M as

XM = supT'UT′ �4n (M(T )| |M(T ′)), which associates each pri-

vacy parameter U = 4Y with a bound on the U-divergence between

the results of the mechanism on two adjacent datasets.

Two theorems from [2] are important in our analysis. The �rst

is Advanced Joint Convexity, which we restate in terms of U = 4Y

since we are interested in applying this theorem to improve the

privacy bounds due to multistage subsampling.

Theorem 2.1. ([2], Advanced Joint Convexity of �4Y ) Let `, ` ′ ∈
P(/ ) be measures satisfying ` = (1−[)`0 +[`1 and ` ′ = (1−[)`0 +
[` ′

1
for some [, `0, `1, ` ′

1
. Given Y > 0, let Y ′ = ;>6(1 + [ (4Y − 1)) and

V = 4Y/4Y′ , the following holds:

�4Y
′ (` | |` ′) = [�4Y (`1 | | (1 − V)`0 + V` ′

1
)

The �nal theorem provides the concrete privacy ampli�cation

that we need for our analysis. Before presenting this, we need to

de�ne when two distributions h,h ′ ∈ P(. ) are 3. -compatible. Let
c be a coupling of h,h ′, de�ne 3. (~,~′) = 3. (~, supp(h ′)) where
(~,~′) ∈ supp(c) and the distance between a point ~ and supp(h ′)
is de�ned to be the distance between ~ and the closest point in

supp(h ′).

Theorem 2.2. Let� (h,h ′) be the set of all couplings between h and
h ′ and for : ≥ 1 let .: = {~ ∈ supp(h) : 3. (~, supp(h ′)) = :}. If h
and h ′ are 3. -compatible, then the following holds:

min

c ∈� (h,h′)

∑
~,~′

c~,~′XM,3. (~,~′) (Y) =
∑
:≥1

h (.: )XM,: (Y)

We are now equipped to begin an analysis of the privacy ampli�-

cation due to multistage subsampling.

3 OUR APPROACH: PRIVACY BOUNDS FOR
MULTISTAGE SAMPLING ANALYSIS

We will begin the analysis with an example. Through this example,

we will introduce the notation necessary for the general analysis.

Example 3.1. Let U be a universe of 18 examples from which the

database or training data is drawn from. Suppose we can categorize

the data from the universe at 3 di�erent levels, so we will perform a

3-stage sampling. Let

U = *1 ∪*2

= (*11 ∪*12 ∪*13) ∪ (*21 ∪*22)
=
(
{D111, D112, D113, D114} ∪ {D121, D122} ∪ {D131, D132, D133}

)
∪
(
{D211, D212, D213, D214} ∪ {D221, D222, D223, D224, D225}

)

In this example,*81 for 8 ∈ {1, 2} are the primary sampling units, the

*8182 are the ultimate sampling units and theD818283 are the examples

that would be provided to a training algorithm.

In general, let U be a universe from which the training data is

drawn and suppose a �nite number of levels, #! , partition this uni-

verse. De�ne *8 be the primary sampling units and let *8182 · · ·8#!−1
be the sampling units of the*8182 · · ·8#!−2

unit.*8182 · · ·8#!−1
is an ulti-

mate sampling unit which contain the examples we are interest in

sampling. Note that we require that each sampling unit be of �nite

size except the ultimate sampling units, which may be in�nite. The

multistage sampling procedure can be described by Algorithm 1:

Multistage Sampling. Most episodic training procedures only use

2- or 3-stage sampling but we analyze the general case; which may

have applications to other scienti�c domains (e.g. medical domains)

where multistage sampling may have more levels.

Algorithm 1: Multistage Sampling

Set %A4E!4E4; :=
⋃
*8

Set �DAA4=C!4E4; := ∅
Given = 9 : the number of units to be sampled at each level

(1 ≤ 9 ≤ #!)
for 9 ∈ {1, ...., #!} do

for ( ∈ PrevLevel do
sample without replacement = 9 elements from (

add sampled elements to �DAA4=C!4E4;

end
%A4E!4E4; = �DAA4=C!4E4;

�DAA4=C!4E4; := ∅
end

Now, let T ⊂ U be the training data or database we are analyzing.

We will require that the training data has at least one element from

each sampling unit described above. Thus we only allow the ultimate

sampling units of the training data )8182 · · ·8#!−1
⊂ *8182 · · ·8#!−1

, to be

a non-empty �nite subset of the ultimate sampling units with at

least =#!
elements (i.e. at least the number of units that will be

sampled from the ultimate sampling units). All other sampling units

de�ned for the universe will remain the same for the training set.

We want to analyze the privacy bound on algorithms that use a

multistage subsampling procedure on T . To do this, we will apply

the theorems from [2] and will analyze this sampling procedure

under the add-one/remove one relation. We begin by de�ning a

probability measure for this sampling procedure. We can do this by

simply de�ning

` (C8182 · · ·8#!
) =

∏#!

9=1
= 9

|*81 | |*8182 | · · · |)8182 · · ·8#!−1
|

where C8182 · · ·8#!
belongs to the ultimate unit )8182 · · ·8#!−1

.

Now consider T ′
created by removing one element from T , say

without loss of generality, C8182 · · ·8#!−11
for some 81, 82, ..., 8#!−1 . The

probability measure ` ′ for sampling from T ′
can be de�ned similar

to above. We wish to compute the total variational distance between

these two measure so that we can apply the Advanced Coupling
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Theorem from [2]. We just need to compute:

)+ (`, ` ′) = 1 −
∑
D∈*

min (` (D), ` ′(D))

Note we can easily extend our probability measures `, ` ′ to the

entire universe by setting the inclusion probability to 0 for any

element not in ) or ) ′
. For all elements C ∈ T ′ \ )8182 · · ·8#!−1

, we

have min(` (C), ` ′(C)) = ` (C) = ` ′(C). Since C8182 · · ·8#!−11
∉ T ′

, we

also have min(` (C8182 · · ·8#!−11
), ` ′(C8182 · · ·8#!−11

)) = 0 . So we just

need to consider the elements of the ultimate unit from which

we removed an element. Since, we removed an element from this

unit, the probability ` ′(C) > ` (C) since ) ′
8182 · · ·8#!−1

(the ultimate

unit missing an element in ) ′
) has fewer elements than )8182 · · ·8#!−1

,

therefore for all C8182 · · ·8#!−1 8
∈ ) ′

8182 · · ·8#!−1
and 8 ≠ 1, we have

` (C8182 · · ·8#!−1 8
) < ` ′(C ′

8182 · · ·8#!−1 8
) where

` (C8182 · · ·8#!−1 8
) =

∏#!

9=1
= 9

|*81 | |*8182 | · · · |)8182 · · ·8#!−1
|

` ′(C ′8182 · · ·8#!−1 8
) =

∏#!

9=1
= 9

|*81 | |*8182 | · · · |) ′
8182 · · ·8#!−1

| .

Thus ∑
D∈U

min (` (D), ` ′(D)) =
∑
C ∈T′

` (C) = 1 − ` (C8182 · · ·8#!−11
) .

Hence the total variational distance is just the inclusion probability

of the element we removed. Determining the total variational dis-

tance when adding an element from U to T is similar to the above

argument.

We can now provide an ampli�ed privacy bound for multistage

subsampling.

Theorem 3.2. LetM ′ be a subsampled mechanism on T described
by Algorithm 1 and let<1<2 . . .<#!−1 be the index of the penulti-
mate sampling unit that satis�es

min

81,82,...,8#!−1
( |*81 | |*8182 | · · · |)8182 · · ·8#!−1

|) .

Then, for any n ≥ 0, we have XM′ (n ′) ≤ [XM′ (n) where n ′ = ;>6(1+

[ (4n − 1)) and [ =

∏#!
9=1

= 9

|*<
1
| |*<

1
<

2
| · · · |)<

1
<

2
···<#!−1

| under the add-

one/remove-one relation.

To fully complete the proof, let T ,T ′
be training sets drawn from

U with T 'A T ′
under the add-one/remove-one relation 'A and let

(W (T ) denote the subsampling mechanism described by Algorithm

1 where W = )+ (`, ` ′). Let T0 = T ∩ T ′
, then by de�nition of 'A ,

T0 = T or T0 = T ′
. Let l0 = (W (T0), ` = (W (T ) and ` ′ = (W (T ′).

Then the decompositions of ` and ` ′ induced by their maximal

coupling have that `1 = l0 when T0 = T or ` ′
1
= l0 when T0 = T ′

.

We only need to consider T0 = T ′
since this is when the maximum

is obtained in applying advanced joint convexity. Finally, we note

that one can easily create a 3'A
-compatible pair according to the

de�nition provided in [2] by �rst sampling ~ from ` and building

~′ by adding E (which may be empty) to ~. Thus for each dataset

pair, by Theorem 7 of [2], we have X"′ (Y ′) ≤ WX" (Y). In order

to get a bound for all possible training set pairs, we need to take

[ = <8= (T,T′) (WT'A T′). This occurs exacty when we remove an

element from the penultimate unit with index<1<2 ·<#!−1 which
completes the proof. �
We brie�y mention how one might incorporate this new bound

into a privacy accounting method. Many accounting methods, like

the moments accountant [1], use the moment generating function

in conjunction with the Gaussian mechanism to calculate the pri-

vacy bounds while a machine learning algorithm is training. Using

Theorem 4 from [2] with our new bound one can easily derive a

subsampled Gaussian that can be utilized in algorithms like those

described in [1, 7].

4 CONCLUSION
This paper completely analyzes the privacy ampli�cation due to

multistage subsampling. This provides the correct privacy bounds

for any algorithm that utilizes multistage subsampling, such as ma-

chine learning algorithms that use episodic training. Our future goal

is to perform experiments to better understand privacy in machine

learning algorithms that use episodic training like meta-learning

algorithms. We hope our presented approach and discussion will

prove useful to other researchers wanting to apply privacy bounds

on multistage sampling in other studies and applications.
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