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Abstract. This work focuses on the study of the stability of trapped soliton-like

solutions of a (1+1)-dimensional nonlinear Schrödinger equation (NLSE) in a nonlocal,

nonlinear, self-interaction potential of the form [ |ψ(x, t)|2 + |ψ(−x, t)|2 ]κ where κ is an

arbitrary nonlinearity parameter. Although the system with κ = 1 (i.e., fully integrable

case) was first reported by Yang (Phys. Rev. E 98 (2018) 042202), in the present work,

we extend this model to the one in which κ is arbitrary. This allows us to compare the

stability properties of the now trapped solutions to previously found solutions of the

more usual NLSE with κ 6= 1 which are moving soliton solutions. We show that there

is a simple, one-component, nonlocal Lagrangian and corresponding action governing

the dynamics of the system. Using a collective coordinate method derived from the

action as well as assuming the validity of Derrick’s theorem, we find that these trapped

solutions are stable for 0 < κ < 2 and unstable when κ > 2. At the critical value of

κ, i.e. κ = 2, the solution can either collapse or blowup linearly in time when q0 = 0,

where q0 is the center of the initial density ρ(x, t = 0) = ψ?ψ of the solution. For

q0 6= 0 the displaced solution collapses. When κ > 2 initial small displacements from

the origin also lead to collapse of the wave function. This phenomenon is not seen in

the usual NLSE.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) arises in many areas of physics including

Bose-Einstein condensation, plasmas, water waves and nonlinear optics [1], among many

others. A good summary of the history of the NLSE and its appearance and uses in

many arenas is found in the article of Ablowitz and Prinari [2]. The NLSE in one spatial

dimension is given by

i∂tψ(x, t) + ∂xxψ(x, t) + g |ψ(x, t)|2ψ(x, t) = 0 . (1.1)

This has been generalized in the past to include arbitrary nonlinearity parameter κ (i.e.

2→ 2κ) and spatial dimension d in order to study the self-focusing property of solitary

waves as a function of these two parameters (see for example the work by Rose and

Weinstein in [3]). It was soon realized by Cooper, Lucheroni and Shepard [4], that the

numerical results of Rose and Weinstein on the criteria for solitary wave blowup could be

understood using a simple Gaussian trial wave function in Dirac’s variational approach

for obtaining the NLSE. Namely, using the fact that the NLSE can be considered as the

stationary point of the Dirac action in d-dimensions:

Γ[ψ, ψ∗] =

∫
dt L[ψ, ψ∗], (1.2a)

L[ψ, ψ∗] =
i

2

∫
ddx [ψ∗(∂tψ)− (∂tψ

∗)ψ ]−H[ψ, ψ∗] , (1.2b)

H[ψ, ψ∗] =

∫
ddx [ (∂xψ

∗)(∂xψ)− g (ψ∗ψ)κ+1/(κ+ 1)] , (1.2c)

and inserting a time-dependent Gaussian trial wave function for ψ(x, t), the equations

derived for the variational parameters enabled one to determine quite accurately the

critical mass of the solitary wave needed for blowup as a function of κd when compared

to the numerics. In Eq. (1.2), the nonlinearity is generalized to arbitrary κ and the

dimension to arbitrary d as in Ref. [4]. Later trial wave functions of a post-Gaussian

type led to even better agreement with numerical simulations [5].

More recent applications of the variational approach have considered trial wave

functions based on the exact solitary wave solutions of the NLSE in the absence

of external forces to study situations where the solitary waves have been placed in

external potentials both real and complex. For complex potentials, a dissipation

functional approach has been used in [6]. In this approach, one utilizes trial wave

functions which promote the parameters of the unperturbed solitary wave solutions to

become time dependent, as well as introduces time dependent conjugate variables in the

phase of the trial wave functions. These time dependent parameters, called collective
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coordinates (CCs) hereafter, are related to the low-order moments of the wave function

and satisfy the exact low-order moment equations. In Ref. [6], it was shown that the

dissipation functional method of obtaining the equations for the CCs was equivalent

to an alternative approach of Quintero et al. of obtaining equations for CCs called

the generalized traveling wave method [7]. More recently in Refs. [6, 8], the stability

of exact solutions of a single component NLSE in a class of external potentials having

supersymmetry (SUSY) and parity-time, i.e., PT symmetry was studied. These results

were then extended to two-component NLSEs in PT -symmetric and supersymmetric

external potentials in Refs. [9, 10]. The system consisting of two coupled NLSEs is

called a Manakov system, and is completely integrable. Generalizing the nonlinearity

to arbitrary nonlinearity to study the stability as a function of the nonlinearity power

κ, this system is described by:

{ i ∂t + ∂2x + 2 g [ |ψ1(x, t)|2 + |ψ2(x, t)|2 ]κ }ψ1(x, t) = 0 , (1.3a)

{ i ∂t + ∂2x + 2 g [ |ψ1(x, t)|2 + |ψ2(x, t)|2 ]κ }ψ2(x, t) = 0 . (1.3b)

Manakov first investigated this system (i.e., Eqs. (1.3) for κ = 1) as a model for

the propagation of electric fields in a waveguide [11]. Subsequently, the system was

derived as a key model for lightwave propagation in optical fibers [12]. The possibility

of experimentally coupling two-component NLSEs in matrix complex potentials has

recently been investigated in nonlinear optics situations in which two waveguides are

locally coupled through an antisymmetric medium [13].

The nonlocal, nonlinear Schrödinger equations (NNLSEs) that are currently being

discussed in the literature are of two types. The original proposal of Ablowitz and

Musslimani [14] replaced ψ∗(x, t) in the NLSE for ψ(x, t) with ψ∗(−x, t) which now

possesses PT symmetry. Here instead we follow Yang’s suggestion [15] and set

ψ2(x, t) = ψ1(−x, t) in Eqs. (1.3). The NNLSE, its variants and soliton solutions,

have been studied in a variety of physical contexts [14–30]. Specifically, the NNLSE

finds applications in the context of self-induced potentials in classical optics, coupled

waveguides and photonic lattices. Yang’s proposal renders the system of Eqs. (1.3)

nonlocal.

In this paper, we generalize these considerations by introducing an arbitrary

nonlinearity with exponent denoted as κ hereafter (again, note that the resulting system

is integrable only for κ = 1). In particular, we extend our previous discussion of two

coupled NLSEs to the present case in order to compare the nonlocal stability results with

those known for the usual one- and two-component local NLSEs. A major difference in

the solution space is that when we impose the above mentioned constraint, there are

no longer moving single solitary wave solutions; instead they are trapped at the origin.

To study the effect of small distortions of the initial solution, we use a variational

approximation as well as perform numerical simulations. Small perturbations on an

exact solution cause a slight increase in the energy of the solution.

We find that the domains of stability with respect to blowup or collapse of the

solutions in terms of the parameter κ are the same as those found for the solitons in
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the usual Manakov system, whence instability occurs for κ > 2, and there is a critical

“mass” for the width instability to occur when κ = 2. For 0 < κ < 2 the behavior of

the perturbed solutions is well captured by the small oscillation equations of the CC

approach. Following our previous use of CCs, we introduce two pairs of canonically

related collective coordinates: G and Λ which are related to the width parameter and

its conjugate, and q and p related to the position and its conjugate variable. The

CC approach also gives qualitative agreement for the motion of the perturbed soliton

for all κ > 0 with what is found in numerical simulations of the NNLSE. The exact

single solitary wave solution obeys the symmetry ψ(x, t) = ψ(−x, t). However, once we

perturb the solution away from the origin we break this symmetry and the behavior of

the perturbed solution has to be determined by the full NNLSE. In the CC approach

the parameters q and p break the parity symmetry, and allow us to study the effect of

an initial small translation of the wave function. In the CC approach, we find that these

parameters are stable for all values of κ ∈ (0, 2), in that q(t) and p(t) just make small

oscillations around zero. This result is verified by numerical simulations of the NNLSE.

For the critical value of κ = 2 as well as for κ > 2, having a small perturbation in q at

t = 0 causes the solitary wave to collapse. In the regime κ > 2, choosing at t = 0, a

small perturbation with Ġ < 0 (the dot stands for time differentiation) causes the wave

function to blowup (i.e., the width goes to zero) at finite time; whereas choosing Ġ > 0

induces collapse of the wave function. The CCs for q(t) and p(t) behave quite differently

in the NNLSE from those of the usual NLSE which has Galilean invariance.

The structure of the paper is as follows. In Sec. 2 we present our generalized model

and give the exact yet trapped solitary wave solutions to the coupled equations discussed

therein. In Sec. 3, we discuss the derivation of the equations of motion from an action

principle. The conservation laws resulting from the action are presented in Sec. 4. In

Sec. 5 we use Derrick’s theorem to show that for κ > 2 the solutions are unstable.

We also study the stability of the solitary wave to translational perturbations using an

energy argument and find that the solitary waves stay trapped. In Sec. 6, we consider

a four collective coordinates (4CC) variational approximation and derive the associated

equations of motion. We consider initial values where both Ġ as well as the center of

the wave are displaced from the exact solution. We compare the variational results with

numerical simulations of the NNLSE. We find no evidence for a translational instability

using either the 4CC equations or the (full) NNLSE equation. Indeed, we show that

the small oscillation equations derived from the CC equations describe the behavior of

perturbations when 0 < κ < 2, showing the stability of the exact solution, and that

when κ > 2 the wave function either blows up or collapses. The new phenomenon found

for this NNLSE, is that when we just perturb the position of the solitary wave for κ ≥ 2,

it leads to collapse of the wave function. We find that for blowup, there is a critical time

which we can estimate, and for collapse, G grows linearly in time with a rate controlled

by E/M where E and M are the conserved energy and mass of the wave, respectively.

In Sec. 7, we focus on the critical value of κ. Upon choosing a positive or negative

value for the time derivative of the width parameter G leads to linear collapse or blowup.
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The effect of a small initial displacement q0 ··= q(t = 0) of the center of wave function

leads to collapse of the wave function. In Sec. 8 we explain our numerical approach and

then compare the numerical results to those of the CC approximation. Finally we state

our main conclusions in Sec. 9.

2. The nonlocal and nonlinear Schrödinger equation: Yang’s version and

exact solutions

In [15], special solutions (κ = 1) of the Manakov system given by Eq. (1.3) were studied.

Upon imposing the solution constraint

ψ2(x, t) = ψ1(−x, t) , (2.1)

the system of Eqs. (1.3) reduces to the single nonlinear and nonlocal Schrödinger

equation (NNLSE) of the form:

{ i ∂t + ∂2x + 2 g [ |ψ(x, t)|2 + |ψ(−x, t)|2 ]κ}ψ(x, t) = 0 , (2.2)

where now ψ(x, t) ≡ ψ1(x, t). The solitary wave solution to Eq. (2.2) for arbitrary κ

can be found explicitly, and is given by

ψ(x, t) = A(β, γ) sechγ(βx) eiω t , γ = 1/κ , (2.3)

provided that

ω = (γβ)2 , 2g [ 2A2(β, γ) ]1/γ = β2 γ(γ + 1) , (2.4)

or, explicitly

A(β, γ) =
1√
2

[
β2 γ(γ + 1)

2g

]γ/2
, (2.5)

with β being kept arbitrary. We also note in passing that the case with κ = 1 is integrable

in terms of the Inverse Scattering Transform (IST). The NNLSE is a Hamiltonian

dynamical system for all κ. It is integrable only for κ = 1. At arbitrary κ it only

has a few conservation laws.

Indeed, upon using the IST, Yang in [15] found not only one-soliton solutions of

the form:

ψ(x, t) =
β√
2

sech(βx) eiβ
2 t (2.6)

but also two- and three-soliton solutions of the NNLSE, all for g = 1 (the focusing case)

and κ = 1 (integrable case). For this choice of the parameters (i.e., g = κ = 1), Eq. (2.3)

agrees with Eq. (2.6). It should also be noted that the constraint given by Eq. (2.1)

is different from the one first suggested by Ablowitz and Musslimani in [14, 16]; they

considered a different system consisting of two coupled NLSEs, namely:

{ i ∂t + ∂2x + 2 g ψ1(x, t)ψ2(x, t) }ψ1(x, t) = 0 , (2.7a)

{−i ∂t + ∂2x + 2 g ψ2(x, t)ψ1(x, t) }ψ2(x, t) = 0 . (2.7b)
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Imposing the solution constraint: ψ2(x, t) = ψ∗1(−x, t), Eqs. (2.7) reduce to the single

nonlocal and nonlinear equation:

{ i ∂t + ∂2x + 2 g ψ(x, t)ψ∗(−x, t) }ψ(x, t) = 0 . (2.8)

The advantage of the system proposed by Yang is that it is accessible in nonlinear optics,

and the first three conserved quantities are real by construction. Also the stability of

the solutions can be studied by using the same techniques as the ones we used for the

usual two-component NLSEs [8].

3. Action principle

The Manakov system of Eq. (1.3) can be written in vector form as

{ i ∂t + ∂2x + 2 g [ Ψ†(x, t) Ψ(x, t) ]κ }Ψ(x, t) = 0 , (3.1)

with

Ψ(x, t) =
( ψ1(x, t)

ψ2(x, t)

)
∈ C2 . (3.2)

It can be shown that Eq. (3.1) can be derived from an action principle. Indeed, let

Γ[Ψ†,Ψ] =

∫
dt L[Ψ†,Ψ] (3.3)

be the action of the system where L stands for its Lagrangian given by

L[Ψ†,Ψ] = T [Ψ†,Ψ]−H[Ψ†,Ψ] , (3.4)

with

T [ Ψ†,Ψ ] =

∫
dx

i

2

{
Ψ†(x, t)[ ∂tΨ(x, t) ]− [ ∂tΨ

†(x, t) ] Ψ(x, t)
}
, (3.5a)

H[ Ψ†,Ψ ] =

∫
dx
{
| ∂xΨ(x, t) |2 − 2 g

κ+ 1
[ Ψ†(x, t)Ψ(x, t) ]κ+1

}
. (3.5b)

Once we impose the constraint of Yang, then Eq. (2.2) can be obtained from the following

nonlocal yet one-component action principle:

S[ψ, ψ∗] =

∫
dt L[ψ, ψ∗] , {ψ, ψ∗ } ∈ C , (3.6)

L[ψ, ψ∗] = T [ψ, ψ∗]−H[ψ, ψ∗] , (3.7)

with

T [ψ, ψ∗ ] =
i

2

∫
dx
{
ψ∗(x, t)[ ∂tψ(x, t) ]− [ ∂tψ

∗(x, t) ]ψ(x, t)
}
, (3.8a)

H[ψ, ψ∗ ] =

∫
dx
{
| ∂xψ(x, t) |2 − g

κ+ 1
[ |ψ(x, t)|2 + |ψ(−x, t)|2 ]κ+1

}
,

= H1 −H2. (3.8b)

Here (taking g > 0) H1 and H2 are positive. We will choose in our simulations g = 1.

This way, the Lagrange’s equation of motion

δL[ψ, ψ∗]

δψ∗(x, t)
− d

dt

[
L[ψ, ψ∗]

δψ∗t (x, t)

]
= 0 (3.9)
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reproduces Eq. (2.2). Note that in the derivation here we used

δψ(−x, t)
δψ(x′, t′)

= δ(x+ x′) δ(t− t′) , (3.10)

which provides a factor of 2 g multiplying the nonlocal term. The existence of this action

formulation immediately leads to the fact that the Hamiltonian H given by Eq. (3.8b)

is conserved.

4. Conservation laws

It is straightforward to see from Eq. (2.2) that the mass

M =

∫
dx |ψ(x, t)|2 (4.1)

is conserved for any initial condition. For the exact solution of (2.3), M is explicitly

given by

M(β, γ) =
1

2β

[
γ(γ + 1) β2

2g

]γ
c1(γ) , (4.2)

where c1(γ) is given in Eq. (A.1a). In addition, the energy (or the Hamiltonian) given

by Eq. (3.8b) is also conserved, and for the solution of Eq. (2.3), E(β, γ) is given by

E(β, γ) = −M(β, γ) β2 γ
2(2γ − 1)

2γ + 1
= −β

2

γ2(2γ − 1)

2γ + 1

[
γ(γ + 1) β2

2g

]γ
c1(γ) . (4.3)

It can be discerned from Eq. (4.3) that E(β, γ) < 0 for γ > 1/2 or κ < 2, and E(β, γ) > 0

for γ < 1/2 or κ > 2, and E = 0 for κ = 2. When κ = 2, the mass of the solution

becomes independent of the width parameter β. In fact, we will show that when κ = 2,

the exact solution has the critical mass, above which any initial wave function becomes

unstable. At g = 1 and κ = 2, the mass reads

M =
π

4

√
3

2
= 0.9619123726213981 , (4.4)

which is independent of β, and (which we will find from our variational calculation)

is equivalent to the critical mass. We note in passing that the parity operator has

the effect: Pψ(x, t) = ψ(−x, t) = ±ψ(x, t) which is satisfied by the exact solution of

Eq. (2.3) to Eq. (2.2) (also note that the solution has even parity). Moreover, there are

other conservation laws that are directly obtainable from the equations of motion for

ψ1 and ψ2. These are the two pseudo-masses

M21 =

∫
dxψ∗2(x, t)ψ1(x, t) =

∫
dxψ∗(−x, t)ψ(x, t) , (4.5)

M12 =

∫
dxψ∗1(x, t)ψ2(x, t) =

∫
dxψ∗(x, t)ψ(−x, t) .

For the exact soliton solution [cf. Eq. (2.3)], these two pseudo-masses are equal, and

also are equal to the regular mass. However, once we distort the initial state from the

exact solution, these two conserved quantities are complex conjugates of one another.
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5. Derrick’s theorem

Derrick’s theorem [31] states that a solitary wave solution of a local Hamiltonian

dynamical system is unstable if it is unstable to scale transformations of the form:

x 7→ αx (α > 0) when we keep the mass of the solitary wave fixed. Here, we are

dealing with a nonlocal Hamiltonian. However the Lagrangian was derived from a local

two-component Manakov system whose stability has been considered earlier by using

Derrick’s theorem [32]. Let us consider exact solitary wave solutions of the (separation

of variables) form

ψ(x, t) = r(x) e−iωt , (5.1)

with an even r(x), i.e., r(−x) = r(x). If we let x→ αx, then

ψα(x, t) = α1/2 r(αx) e−iωt , (5.2)

which itself preserves the mass M given by

M =

∫
dx|ψα(x, t)|2 =

∫
dx|ψ(x, t)|2. (5.3)

Defining H(α) the value of H for the stretched solution, we have that

H(α) = H1(α)−H2(α) , (5.4a)

H1(α) =

∫
dx |∂xψα(x, t)|2 = α2

∫
dz |∂zr(z)|2 > 0 , (5.4b)

H2(α) =
g

κ+ 1

∫
dx [ |ψα(x, t)|2 + |ψα(−x, t)|2 ]κ+1

=
g 2κ+1ακ

κ+ 1

∫
dz [ r∗(z) r(z) ]κ+1 > 0 , (5.4c)

and thus we can write it as

H(α) = α2H1 − ακH2 , H1 > 0 , H2 > 0 . (5.5)

The minimum of H(α) at α = 1 is consistent with the equations of motion. From
∂H(α)
∂α

∣∣∣
α=1

= 0 one obtains H1 = (κ/2)H2. For stability, the second derivative of H(α)

with respect to α and evaluated at α = 1 must be positive:

∂2H(α)

∂α2

∣∣∣∣
α=1

= 2 (2− κ)H1 ≥ 0 . (5.6)

This result indicates that solutions are unstable to changes in the width, compatible

with the conserved mass, when κ > 2. The case κ = 2 is a marginal case where it is

known that blowup occurs at a critical mass [5].

The exact solution of the NNLSE, Eq. (2.3) indeed has the property that it

extremizes H(α) at α = 1. We find

H1 =
γ2

2γ + 1

β

2

[
γ(γ + 1)β2

2 g

]γ
c1(γ) , (5.7a)

H2 =
2γ3

2γ + 1

β

2

[
γ(γ + 1)β2

2 g

]γ
c1(γ) , (5.7b)

which satisfies H1 = (κ/2)H2.
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NNLSE 9

5.1. Translational Landscape

Using Derrick’s theorem we explored whether the solution was a maximum or minimum

of the energy landscape as a function of the stretching parameter α. Here, we would

like to do a similar analysis to study whether the energy increases or decreases as we let

x→ x+a where a is a small translation. Again we will posit that there is a translational

instability if the energy H[a] decreases as a departs from zero. Let us again consider

the NNLSE defined in Eqs. (1.3a)-(1.3b). We want to see how the energy of the system

changes under the translation x→ x+a with the normalization fixed by the requirement

that the mass is unchanged. This criterion was used to study the stability of solutions

of the NLSE trapped in a Pöschl-Teller potential [33]. Clearly, ψ → ψ(x+ a) preserves

the mass of the wave function although it breaks the parity symmetry. The translated

solution is given by:

ψ(x+ a, t) = A(β, γ) sechγ[β(x+ a)]eiωt , γ = 1/κ . (5.8)

It is also clear that H1 remains unchanged under x → x + a. Only H2 is not

translationally invariant since

H2 = − g

κ+ 1

∫ ∞
−∞

dx [ sech2(β(x− a)) + sech2(β(a+ x)) ]κ+1 . (5.9)

At small a, and setting g = β = 1 for simplicity, we find (up to quadratic terms) that

H2[a, κ] = a222κ+6κ2 [ 2F1(1,−κ− 2;κ+ 2;−1)− 1 ]2 −
√
π a2κ+1 Γ(κ+ 1)

(κ+ 1)Γ(κ+ 3/2)
, (5.10)

where 2F1 is a hypergeometric function. This potential is confining at all κ > 0. Thus

on account of the trapping nature of the self-interaction, we do not expect that there

is a translational instability. We indeed find that perturbed solutions just oscillate

about the origin. However, because the translations couple to the width parameter, the

displacement of the center of the initial wave function by q0 will cause the solitary wave

to collapse for κ ≥ 2. Also, if one chooses κ = 2 and blowup initial conditions with

Λ < 0, such a displacement of the center of the initial wave function accelerates the

blowup phenomenon.

6. Four collective coordinate variational ansätz

Unlike the NLSE which is translation invariant as well as Galilean invariant, for the

NNLSE, if we displace the position of the trapped solution, we no longer have an exact

solution, and our initial condition for the wave function no longer has parity symmetry.

However, one can ask what happens to such an initial condition? Does it just oscillate

around the origin or does it escape the effective trap for some critical value of κ? What

we find both from our variational approach as well as from numerical simulations is that

the displaced solitary wave just oscillates around the origin independent of the value of

κ. However, in the unstable regime, displacing the solitary wave from the origin induces

collapse of the wave function.
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NNLSE 10

In this section, we study the behavior of the displaced solution by choosing a parity-

breaking, four collective coordinate (4CC) ansätz for our variational wave function of

the form:

ψ̃(x,Q(t)) = A(t) sechγ[ (x− q(t))/G(t) ] eiφ(x) , (6.1a)

φ(x,Q(t)) = −θ(t) + p(t) (x− q(t)) + Λ(t) (x− q(t))2 , (6.1b)

which allows us to choose displaced initial conditions where q(0) 6= 0. The variational

parameters are related to moments of the density as well as the moments of the

momentum distribution (see Appendix B for details). This ansätz is similar to the

time dependent Hartree-Fock approximation of quantum field theory if we replace the

sechγ[ (x − q(t))/G(t) ] term by the Gaussian exp[−(x − q(t))2/G(t)]. This ansätz has

been used in the past to discuss the stability of solitary waves in the NLSE in external

trapping potentials [6, 8], as well as solitary waves in two-component NLSE systems

in external complex confining potentials [9]. Note that for the NNLSE, this ansatz,

on account of the variables q(t) and p(t) does not satisfy the conservation laws for

the pseudo-masses M12 and M21 [cf. Eqs. (4.5)], whereas the numerical solutions of

the NNLSE do satisfy these conservation laws. This approximation does satisfy the

conservation of the usual mass of the NLSE, namely

M =

∫
dx |ψ̃(x,Q(t))|2 = G(t)A2(t) c1(γ) , (6.2)

where c1(γ) is given in Eq. (A.1a). This way, A(t) and G(t) are not independent

variables, and we can set A2(t) = M/[G(t) c1(γ) ]. One obtains the effective Lagrangian

for the CCs

Q(t) = { q(t), p(t), G(t),Λ(t), φ(t) } (6.3)

by substituting this ansätz into the Lagrangian from which we obtain the NNLSE

equation, namely Eq. (3.7). The phase φ(t) does not enter in the dynamics, and so

it can be ignored. Thus, we are left with four variational parameters or CCs:

Q(t) = { q(t), p(t), G(t),Λ(t) } . (6.4)

The Lagrangian in this case is given by

L[Q, Q̇] = T [Q, Q̇]−H[Q] , (6.5)

where

T [Q, Q̇] = M

{
p q̇ −G2 Λ̇

c2(γ)

c1(γ)

}
, (6.6)

H[Q] = M

{
p2 + 4G2Λ2 c2(γ)

c1(γ)
+

1

G2

[
1− 2 γ

(G0

G

)1/γ−2
f(q/G, γ)

] γ2

2γ + 1

}
, (6.7)

together with

f(z, γ) =
2γ + 1

21/γ+2 γ c1(γ)

∫
dy
[

sech2γ(y − z) + sech2γ(y + z)
]1/γ+1

, (6.8)
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NNLSE 11

where G0 ··= G(t = 0). Note that the energy is conserved, and is given by:

E/M = p2 + 4G2Λ2 c2(γ)

c1(γ)
+

1

G2

[
1− 2 γ

(
G0

G

)1/γ−2

f(q/G, γ)

]
γ2

2γ + 1
. (6.9)

Thus, the equations of motion are given by:

q̇ = 2 p ,

ṗ =
2 γ3

2γ + 1

1

G3

(
G0

G

)1/γ−2

f ′(q/G, γ) ,

Ġ = 4GΛ ,

Λ̇ = −4 Λ2 +
γ2

2γ + 1

c1(γ)

c2(γ)

×

{
1

G4

[
1−

(
G0

G

)1/γ−2

f(q/G, γ)
]
− γ q

G5

(
G0

G

)1/γ−2

f ′(q/G, γ)

}
. (6.10)

6.1. Small Oscillation Regime (κ < 2)

Let us consider 0 < κ < 2. Since E/M is conserved, this conservation law [cf. Eq. (6.9)]

prevents collapse (G→∞) as well as blowup (G→ 0). Thus for small perturbations of

the CC parameters Λ, q from zero, one is in a small oscillation region. In the small

oscillation regime, choosing G0 = 1 for convenience, we have that (ignoring terms

quadratic in δq)

f(z, γ) = 1; f ′(z, γ) = −4
γ + 1

2γ + 3
z . (6.11)

So in that regime, we get the equations:

δq̇ = 2δp ,

δṗ = −8γ3
γ + 1

(2γ + 1)(2γ + 3)
δq ,

δĠ = 4 δΛ ,

δΛ̇ = −γ (2γ − 1)

(2γ + 1)

c1(γ)

c2(γ)
δG , (6.12)

together with the ones corresponding to the small oscillations:

δG̈+ 4
γ (2γ − 1)

(2γ + 1)

c1(γ)

c2(γ)
δG = 0,

δq̈ + 16γ3
γ + 1

(2γ + 1)(2γ + 3)
δq = 0 . (6.13)

We see that in this regime, the oscillations of the position and width are not coupled.

Coupling only occurs when the wave function is collapsing or blowing up so that δG is not

small. As far as the general behavior of the perturbed wave function is concerned, when

0 < κ < 2 the period of oscillation of q and p slowly increases over the entire domain.

Moreover, the oscillation frequency of the width goes to zero as κ→ 2 indicative of the
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Figure 1. Period of G and q oscillations as a function of κ (the inset is a zoom-in)

for the 4CC approximation.

instability setting in. This is seen in Fig. 1. Concerning the stability of this trapped

solution, the small oscillation behavior at κ = 1, when the system becomes integrable,

shows no special features.

As a typical example of how the solution in the stable regime responds to three

different perturbations, we will look at the case κ = 3/2. The best agreement between

the variational approximation and the numerical simulation occurs when we choose

initial conditions that do not break parity; i.e. p0 = q0 (the subscript zero appearing in

the CCs stands for their respective initial value, i.e., at t = 0). Then we find the results

shown in Fig. 2.

To generate both small oscillations, we choose as initial conditions q0 = 1/100 and

Λ0 = −1/100, and the respective results are shown in Fig. 3. Note that the period

of oscillations is given by T = 2π
ω

, and the period derived from the small oscillations

equations give Tq = 7.10774 and TG = 12.5998, respectively. Upon ignoring the effects

of q from energy and mass conservation, one can determine the maximum value of G

in the oscillatory regime as follows. At first, if we choose p0 = 0 and G0 = 1, the

initial energy (divided by the conserved mass) is given by (ignoring tiny corrections to

f(0, γ) = 1)

E

M
= 4 Λ2

0

c2(γ)

c1(γ)
+

1

G2

[
1− 2 γ

] γ2

2γ + 1
.

(6.14)

Note that the initial energy density depends only on Λ2
0, so the oscillation frequencies

are independent of the sign of Λ0. The maximum value of G, denoted by Gm is reached

when Λ = 0. So we have that Gm satisfies the equation

E(Gm, γ) =

{
1

G2
m

[
1− 2 γ

(
1

Gm

)1/γ−2 ]
γ2

2γ + 1

}
. (6.15)

The maximum value of G for κ = 3/2 when we choose Λ0 = ±0.01, G0 = 1 is given
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Figure 2. Dynamics for κ = 1.5 with q0 = 0, p0 = 0, G0 = 1, and Λ0 = 0.01. The

variational results are shown in blue and the numerical ones (with L = 10) in red.

by Gm = 1.087874. This value of Gm is seen in both the CC approximation and in

the numerical simulations as seen in Figs. 2 and 3. The disparity between the 4CC

approximation and numerics for the variables q and p is due to the fact that for this

case the 4CC approximation violates the two conservation laws, namely M21 and M12

(see Eqs. (4.5)). The final case of interest is to just displace the solution from the origin.

This also generates via the coupling oscillations in G and Λ as well. The agreement with

the numerical simulations is qualitatively good. (See Fig. 4). This third case is of course

not found in the usual NLSE situation which in turn is translation invariant.

For the numerical simulations, we solve the NNLSE with initial conditions of

ψ(x, 0) = ψ̃(x, 0), for comparison. The numerical solutions were obtained by using

MATLAB’s ODE113 integrator which is a variable-step, variable-order (VSVO) Adams-
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Figure 3. Dynamics for κ = 1.5 with q0 = 0.01, p0 = 0, G0 = 1, and Λ0 = −0.01.

The variational results are shown in blue and the numerical ones (with L = 10) in red.

Bashforth method (see [34], and references therein). We solve the NNLSE on x ∈
[−L,L] (where L is the domain’s half-width) supplemented by zero Dirichlet boundary

conditions (see the relevant figure captions for the values of L that were used). We

should note in passing that the position of the boundary of the computational domain

(x = ±L) strongly depends on the initial condition. Indeed, the functional form of

ψ̃(x, 0) as |x| → L < ∞ suggests tiny oscillations of the solution at the boundaries

over time which are effectively considered to be of zero amplitude, i.e., zero Dirichlet

boundary conditions. As per the spatial discretization, we considered a centered yet

fourth-order accurate finite difference approximation. We further tested our numerical

simulation results by considering other integrators and spatial discretizations such as

the ETDRK4 integrator and Fourier spectral collocation [35], and we obtained essentially
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Figure 4. Dynamics for κ = 1.5 with q0 = 0.1, p0 = 0, G0 = 1, and Λ0 = 0. The

variational results are shown in blue and the numerical ones (with L = 10) in red.

similar results.

6.2. Blowup or Collapse regime κ > 2

When κ > 2, choosing Λ (Ġ) positive or making a small displacement of the exact

solution, q0 6= 0, leads to the collapse of the wave function. Choosing Λ positive leads

to blowup of the perturbed trapped solution. First, let us look at the blowup regime

from the CC perspective. Setting q0 = 0 and also setting G0 = 1, then from energy

conservation and the equation of motion for G(t), the scaled energy of Eq. (6.9) can be

rewritten as:

E

M
=
Ġ2

4

c2(γ)

c1(γ)
+

1

G2

γ2

2γ + 1
− 2 γ3

G1/γ(2γ + 1)
. (6.16)
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Figure 5. Dynamics when κ = 2.2 with q0 = 0, p0 = 0, G0 = 1, and Λ0 = −0.01.

The numerical results in red (with L = 30) as well as the variational results in blue

show blowup of the solution.

Upon rewriting the energy equation as

Ġ2 = 4
c1(γ)

c2(γ)

(
E

M
+

2 γ3

G1/γ(2γ + 1)
− 1

G2

γ2

2γ + 1

)
, (6.17)

and considering G→ 0, we can ignore the first and last terms, thus obtaining

Ġ = −

√
c1(γ)

c2(γ)

2 γ3

G1/γ(2γ + 1)
(6.18)

for blowup. In other words, when we get near the critical time t∗, we have [5]

G(t) ∝ (t− t∗)2/(κ+2) . (6.19)

This blowup behavior is seen both in the numerical simulations and variational

approximation. For a typical case corresponding to κ = 2.2 and Λ0 = −1/100, we

obtain the result of Fig. 5.
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Figure 6. Dynamics when κ = 2.2 with q0 = 0, p0 = 0, G0 = 1, and Λ0 = 0.01. The

numerical results in red (with L = 30) as well as the variational results in blue show a

collapse.

If instead we choose Λ0 > 0, then the solitary wave collapses. Once G(t) gets large,

only the first term in the energy equation becomes important. Therefore we find that

asymptotically, the final value of Ġ becomes a constant determined by the ratio E/M :

E

M
=
Ġ2

4

c2(γ)

c1(γ)
. (6.20)

This is borne out in the late time simulations of the collapse case. For κ = 2.2, and

Λ0 = 1/100 we obtain the result of Fig. 6. Finally we find a new phenomenon, not

present in the NLSE equation in the unstable regime because there is no translation

invariance, making a small translation of the initial state induces collapse of the wave

function. This is not anticipated by Derrick’s theorem. Because of the nonlinear

coupling between q and G, one can initiate soliton collapse when κ > 2 by just giving

q0 a non-zero value. This is seen for two cases with G0 = 0.5 in Fig. 7, and G0 = 1 in

Fig. 8.
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Figure 7. Dynamics when κ = 2.1 with q0 = 0.01, p0 = 0, G0 = 0.5, and Λ0 = 0. The

variational results are shown in blue and the numerical ones (with L = 30) in red.

7. Behavior when κ = 2

When κ = 2, the exact solution is at the critical mass. So depending on how it is

perturbed, it either collapses or blows up (linearly in time) if there are no perturbations

in the position. When q0 is not zero, and no perturbation is given to the width, then the

wave function collapses. In the blowup case, since G can get large, having q0 6= 0 initially

can alter the nature of the blowup. We will give examples below, with Λ0 = 0,±0.01

and q0 = 0.01. The most interesting behavior is the collapse of the wave function when

we give the initial wave function a slight translation. In that case, we get the result

shown in Fig. 9. When Λ > 0, the wave function collapses linearly in time. When we

add q0 6= 0, the collapse is slightly hastened, but now the periods of q and p increase in

time when compared to the periodic regime. This is seen in Fig. 10. When Λ < 0, the

wave function blows up (G → 0) linearly in time. When we add q0 6= 0, the blowup is

slightly hastened, but now the periods of q and p decrease in time when compared to

the periodic regime. Both solutions fail at the blowup time. This is seen in Fig 11.
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Figure 8. Dynamics when κ = 2.1 with q0 = 0.01, p0 = 0, G0 = 1, and Λ0 = 0. The

variational results are shown in blue and the numerical ones in red (with L = 80).

8. Numerical simulations of the NNLSE

In this Section, we briefly discuss the stability and spatio-temporal evolution of the exact

solution (2.3) to the NNLSE (2.2). To do so, we employ the separation of variables ansätz

ψ(x, t) = ψ(0)(x)eiωt, which is inserted into Eq. (2.2), thus obtaining:

d2ψ(0)(x)

dx2
+ 2g

[
|ψ(0)(x)|2 + |ψ(0)(−x)|2

]κ
ψ(0)(x)− ωψ(0)(x) = 0. (8.1)

Then, Eq. (8.1) is solved by means of a Newton-Krylov method as implemented in

MATLAB with nsoli [36]. A sufficiently good initial guess to the nonlinear solver is

provided by Eq. (2.3). Having identified a stationary solution ψ(0)(x) (upon convergence

of nsoli), we perform a spectral stability analysis around it using the ansatz:

ψ̃(x, t) = eiωt
[
ψ(0)(x) + ε

(
a(x)eλt + b∗(x)eλ

∗t
)]
, ε� 1. (8.2)

Upon inserting Eq. (8.2) into Eq. (2.2), we arrive (at order O(ε)) at the eigenvalue
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Figure 9. Dynamics when κ = 2 with q0 = 0.01, p0 = 0, G0 = 1, and Λ0 = 0. The

numerical results in red (with L = 80) show collapse of the wave function in agreement

with the variational results in blue.

problem of the form of(
A11 A12

−A∗12 −A∗11

)(
a

b

)
= λ̃

(
a

b

)
, λ̃ = −iλ, (8.3)

with matrix elements given by

A11 =
dd

dx 2
+ 2g

{
κ
[
|ψ(0)(x)|2 + |ψ(0)(−x)|2

]κ−1 [|ψ(0)(x)|2 + ψ0(x)ψ∗0(−x)P
]

+
[
|ψ(0)(x)|2 + |ψ(0)(−x)|2

]κ }− ω ,
A12 = 2gκ

[
|ψ(0)(x)|2 + |ψ(0)(−x)|2

]κ−1 [(
ψ(0)(x)

)2
+ ψ0(x)ψ0(−x)P

]
, (8.4a)

where P stands for the space reflection operator, i.e., Pf(x) = f(−x), for a general

function f(x).

The results of the eigenvalue problem [cf. Eq. (8.3)] are shown in Fig. 12 with g = 1

and β = 1. It can be discerned from the right panel of the figure, the emergence of a real
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Figure 10. Dynamics when κ = 2 with q0 = 0.01, p0 = 0, G0 = 1, and Λ0 = 0.01.

The numerical results (with L = 80) in red and the variational results in blue both

describe collapse. Note that results from numerical simulations for the variables G(t)

and Λ(t) are shown with red open circles to ease visualization.

eigenvalue at κ = 2, thus rendering the solution to be spectrally unstable (and similar

to the local case). Although a detailed study and understanding of the underlying

instability mechanism is of paramount importance (see, e.g., [37] as well as [38] and

references therein), it is beyond the scope of the present work. Subsequently, Fig. 13

presents results on the spatio-temporal evolution of the exact solution for various values

of κ. These numerical results were obtained by using a fourth-order accurate, central

finite difference scheme for the (one-dimensional) Laplacian on a computational domain

with half-width L = 50 and resolution ∆x = 0.1. Note that Fig. 13(d) demonstrates an

unstable solution (i.e., a blowup case), and the time integration was stopped when the

full-width-at-half-maximum (FWHM) was less than ∆x (for instance, the blow-up time

happens at a later time tblowup ≈ 474 in this panel, as per the discretization employed

herein).
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Figure 11. Dynamics when κ = 2 with q0 = 0.01, p0 = 0, G0 = 1, and Λ0 = −0.01.

The numerical results (with L = 80) are in red, and the variational results are in

blue. Both solutions fail at the blowup time around t ≈ 22.5. Again, the results from

numerical simulations for the variables G(t) and Λ(t) are shown with red open circles

to ease visualization.
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Figure 12. The imaginary λi (left) and real λr (right) parts of the eigenvalue λ as

functions of κ with g = 1 and β = 1. At the critical value of κc = 2, the solution [cf.

Eq. (2.3)] becomes unstable.
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Figure 13. Spatio-temporal evolution of the density |ψ|2 for different values of κ:

κ = 1 (top left), κ = 1.5 (top right), κ = 1.95 (bottom left), and κ = 2.1 (bottom

right).

9. Conclusions

In this work, we have considered the stability of the trapped soliton solution of a

generalized Manakov system of two coupled NLSEs with the particular constraint

ψ2(x, t) = ψ1(−x, t) both numerically and analytically, and in a four collective

coordinate (4CC) approximation for arbitrary nonlinearity parameter κ. We were able

to show that this system is equivalent to a nonlocal NLSE (i.e., NNLSE) derivable from a

nonlocal action. We found by a variety of methods, that the stability to width changes

of this NNLSE had exactly the same behavior as the counterpart single component

NLSE. That is, for κ < 2 there is stability, for κ > 2 there is instability (either collapse

or blowup), and at κ = 2, the solution is at the critical mass and the solution blows

up or collapses linear in time when perturbed. Unlike the NLSE which has Galilean

invariance and a conserved momentum which can be nonzero, the NNLSE has zero value

for the conserved momentum. This leads to a different response to shifting the initial

conditions on the wave function to be centered slightly away from the origin.

When we shift the trapped “solitary wave” solution slightly from the origin, the

ensuing oscillations of the solitary wave are reasonably well captured by the 4CC

approximation which violates parity conservation. We find no evidence numerically

or in the 4CC approximation of any translation instability. However, in the unstable

regime, i.e., κ ≥ 2, a slight translation causes the wave function to collapse. When

one is in the blowup regime, having q0 6= 0 accelerates the blowup. These phenomena

are quite different than what are found for the NLSE. In conclusion, we have mapped
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out the stability regions for the NNLSE with arbitrary nonlinearity parameter κ, and

have studied the response of the exact solutions both analytically (in the realm of a CC

approximation) as well as numerically, and found the two approaches are in accordance

with respect to the time evolution of the width parameter. The 4CC approximation,

which violates the symmetry ψ(−x) = ψ(x) when q(t) 6= 0 gives results for q(t) and p(t)

which are only qualitative.
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Appendix A. Useful integrals and identities

For given κ, the c1, c2, and c3 functions are explicitly given by

c1(γ) =

∫ +∞

−∞
dz sech2γ(z) =

√
π Γ[γ]

Γ[γ + 1/2]
, (A.1a)

c2(γ) =

∫ +∞

−∞
dz z2 sech2γ(z) (A.1b)

= 22γ−1
4F3[γ, γ, γ, 2γ; 1 + γ, 1 + γ, 1 + γ;−1]/γ3 ,

c3(γ) =

∫ +∞

−∞
dz sech2γ(z) tanh2(z) (A.1c)

= c1(γ)− c1(γ + 1) =
c1(γ)

2γ + 1
,

where 4F3 is a hypergeometric function (see also the top panels of Fig. A1 for the

dependence of c1 and c2 on γ). A useful result is

c1(γ + 1)

c1(γ)
=

2γ

2γ + 1
. (A.2)

We have defined the integral f(z, κ) in (6.8):

f(z, γ) =
2γ + 1

21/γ+2 γ c1(γ)

∫
dy [ sech2γ(y − z) + sech2γ(y + z) ]1/γ+1 . (A.3)

Then

f(0, γ) =
2γ + 1

2γ c1(γ)

∫
dy sech2γ+2(y) =

2γ + 1

2γ

c1(γ + 1)

c1(γ)
= 1 . (A.4)

Plots of f(z, γ) are shown in the bottom left panel of Fig. A1. The derivative of f(z, γ)

wrt z is given by

f ′(z, γ) =
(γ + 1)(2γ + 1)

21/γ+1γ c1(γ)

∫
dy [ sech2γ(y − z) + sech2γ(y + z) ]1/γ (A.5)
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Figure A1. The top panels present c1(γ) (left panel) and c2(γ) (right panel) as

a function of γ (for their definition, see Eqs. (A.1a) and (A.1b), respectively). The

bottom panels demonstrate the dependence of f(z, γ) (left panel), and f ′(z, γ) (right

panel) on z, and for various values of γ = 0.1, 0.5, 1, 1.5, and 2 depicted by solid

blue, orange, yellow, purple, and green lines, respectively (see Eqs. (A.3) and (A.5),

respectively).

× [ sech2γ(y − z) tanh(y − z)− sech2γ(y + z) tanh(y + z) ] ,

where f ′(0, γ) = 0. Plots of f ′(z, γ) are shown in the bottom right panel of Fig. A1. A

short calculation using Mathematica gives

f ′′(0, γ) = −4
γ + 1

2γ + 3
. (A.6)

Expanding f(z, γ) about the origin gives

f(z, γ) = f(0, γ) + f ′(0, γ) z +
1

2
f ′′(0, γ) z2 + · · · = 1− 2

γ + 1

2γ + 3
z2 + · · · , (A.7a)

f ′(z, γ) = −4
γ + 1

2γ + 3
z + · · · . (A.7b)
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Appendix B. Moments and collective coordinates

The variational wave function of Eq. (6.1) is of the form

ψ(x, t) =
[ M

G(t) c1(γ)

]1/2
sechγ

[ x− q(t)
G(t)

]
eiφ(x,t) , (B.1a)

φ(x, t) = p(t) (x− q(t)) + Λ(t) (x− q(t))2 . (B.1b)

Let us define the nth moment of the density distribution by

Mn(t) =

∫ +∞

−∞
dx xn |ψ(x, t) |2 (B.2)

=
M

G(t) c1(γ)

∫ +∞

−∞
dx xn sech2γ[ (x− q(t) )/G(t) ]

=
M

c1(γ)

∫ +∞

−∞
dy [G(t) y + q(t) ]n sech2γ(y) .

Explicitly, we find:

M0(t) = M , (B.3a)

M1(t) = M q(t) , (B.3b)

M2(t) = M

[
q2(t) +G2(t)

c2(γ)

c1(γ)

]
, (B.3c)

from which we can find q(t) and G(t). The zeroth moment, i.e., the mass of the soliton

must be conserved. In a similar way, let us define the nth moment of the momentum

distribution by

Pn(t) =
1

2i

∫ +∞

−∞
dx xn

[
ψ∗(x, t)

∂ψ(x, t)

∂x
− ∂ψ∗(x, t)

∂x
ψ(x, t)

]
(B.4)

=

∫ +∞

−∞
dx xn Im

{
ψ∗(x, t)

∂ψ(x, t)

∂x

}
=

∫ +∞

−∞
dx xn

∂φ(x, t)

∂x
|ψ(x, t) |2

=

∫ +∞

−∞
dx xn { p(t) + 2 Λ(t) [x− q(t)] } |ψ(x, t) |2

=
M

G(t) c1(γ)

∫ +∞

−∞
dx xn { p(t) + 2 Λ(t) [x− q(t)] } sech2γ[(x− q(t))/G(t)]

=
M

c1(γ)

∫ +∞

−∞
dy [ q(t) +G(t) y ]n [ p(t) + 2 Λ(t)G(t) y ] sech2γ(y) .

Explicitly, we find:

P0(t) = M p(t) , (B.5a)

P1(t) = M

[
p(t) q(t) + 2 Λ(t)G2(t)

c2(γ)

c1(γ)

]
. (B.5b)

This way, p(t) can be obtained from (B.5a), and Λ(t) from:

Λ(t) =
1

2G2(t)

[
P1(t)

M
− p(t) q(t)

]
c1(γ)

c2(γ)
. (B.6)
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