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Abstract. This work focuses on the study of the stability of trapped soliton-like
solutions of a (141)-dimensional nonlinear Schrédinger equation (NLSE) in a nonlocal,
nonlinear, self-interaction potential of the form [ | (z,t)|> + [¢)(—x, t)|?]* where & is an
arbitrary nonlinearity parameter. Although the system with x = 1 (i.e., fully integrable
case) was first reported by Yang (Phys. Rev. E 98 (2018) 042202), in the present work,
we extend this model to the one in which « is arbitrary. This allows us to compare the
stability properties of the now trapped solutions to previously found solutions of the
more usual NLSE with x # 1 which are mowving soliton solutions. We show that there
is a simple, one-component, nonlocal Lagrangian and corresponding action governing
the dynamics of the system. Using a collective coordinate method derived from the
action as well as assuming the validity of Derrick’s theorem, we find that these trapped
solutions are stable for 0 < k < 2 and unstable when x > 2. At the critical value of
K, i.e. K = 2, the solution can either collapse or blowup linearly in time when gy = 0,
where ¢o is the center of the initial density p(z,t = 0) = ¥*¢ of the solution. For
qo # 0 the displaced solution collapses. When x > 2 initial small displacements from
the origin also lead to collapse of the wave function. This phenomenon is not seen in
the usual NLSE.
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1. Introduction

The nonlinear Schrédinger equation (NLSE) arises in many areas of physics including
Bose-Einstein condensation, plasmas, water waves and nonlinear optics [1], among many
others. A good summary of the history of the NLSE and its appearance and uses in
many arenas is found in the article of Ablowitz and Prinari [2]. The NLSE in one spatial
dimension is given by

00 (2, £) + Dy, 1) + g [, )26 (1) = 0. (L1)

This has been generalized in the past to include arbitrary nonlinearity parameter x (i.e.
2 — 2k) and spatial dimension d in order to study the self-focusing property of solitary
waves as a function of these two parameters (see for example the work by Rose and
Weinstein in [3]). It was soon realized by Cooper, Lucheroni and Shepard [4], that the
numerical results of Rose and Weinstein on the criteria for solitary wave blowup could be
understood using a simple Gaussian trial wave function in Dirac’s variational approach
for obtaining the NLSE. Namely, using the fact that the NLSE can be considered as the
stationary point of the Dirac action in d-dimensions:

i) = [ de Lo, (1.22)
L] = 5 [ e[ (0w) = @) - Bl (1.2b)
Hlp. 07 = [ e [(@0)0) - g (6701 (). (1.2¢)

and inserting a time-dependent Gaussian trial wave function for ¢(z,t), the equations
derived for the variational parameters enabled one to determine quite accurately the
critical mass of the solitary wave needed for blowup as a function of kd when compared
to the numerics. In Eq. (1.2), the nonlinearity is generalized to arbitrary s and the
dimension to arbitrary d as in Ref. [4]. Later trial wave functions of a post-Gaussian
type led to even better agreement with numerical simulations [5].

More recent applications of the variational approach have considered trial wave
functions based on the exact solitary wave solutions of the NLSE in the absence
of external forces to study situations where the solitary waves have been placed in
external potentials both real and complex. For complex potentials, a dissipation
functional approach has been used in [6]. In this approach, one utilizes trial wave
functions which promote the parameters of the unperturbed solitary wave solutions to
become time dependent, as well as introduces time dependent conjugate variables in the
phase of the trial wave functions. These time dependent parameters, called collective
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coordinates (CCs) hereafter, are related to the low-order moments of the wave function
and satisfy the exact low-order moment equations. In Ref. [6], it was shown that the
dissipation functional method of obtaining the equations for the CCs was equivalent
to an alternative approach of Quintero et al. of obtaining equations for CCs called
the generalized traveling wave method [7]. More recently in Refs. [6, 8], the stability
of exact solutions of a single component NLSE in a class of external potentials having
supersymmetry (SUSY) and parity-time, i.e., PT symmetry was studied. These results
were then extended to two-component NLSEs in PT-symmetric and supersymmetric
external potentials in Refs. [9,10]. The system consisting of two coupled NLSEs is
called a Manakov system, and is completely integrable. Generalizing the nonlinearity
to arbitrary nonlinearity to study the stability as a function of the nonlinearity power
k, this system is described by:

{10, + 0% + 29[ [t (x, )2 + [tha(, ) 2]* }thu(,8) = 0, (1.3a)
{10+ 07 + 29 [ [ (2, )] + [¢a(2, 8)[*]" } a(w,1) = 0. (1.3b)

Manakov first investigated this system (i.e., Egs. (1.3) for x = 1) as a model for
the propagation of electric fields in a waveguide [11]. Subsequently, the system was
derived as a key model for lightwave propagation in optical fibers [12]. The possibility
of experimentally coupling two-component NLSEs in matrix complex potentials has
recently been investigated in nonlinear optics situations in which two waveguides are
locally coupled through an antisymmetric medium [13].

The nonlocal, nonlinear Schrodinger equations (NNLSEs) that are currently being
discussed in the literature are of two types. The original proposal of Ablowitz and
Musslimani [14] replaced ¢*(z,t) in the NLSE for ¢ (x,t) with ¢*(—z,¢) which now
possesses PT symmetry. Here instead we follow Yang's suggestion [15] and set
Ua(x,t) = Y1(—a,t) in Egs. (1.3). The NNLSE, its variants and soliton solutions,
have been studied in a variety of physical contexts [14-30]. Specifically, the NNLSE
finds applications in the context of self-induced potentials in classical optics, coupled
waveguides and photonic lattices. Yang’s proposal renders the system of Egs. (1.3)
nonlocal.

In this paper, we generalize these considerations by introducing an arbitrary
nonlinearity with exponent denoted as x hereafter (again, note that the resulting system
is integrable only for k = 1). In particular, we extend our previous discussion of two
coupled NLSEs to the present case in order to compare the nonlocal stability results with
those known for the usual one- and two-component local NLSEs. A major difference in
the solution space is that when we impose the above mentioned constraint, there are
no longer moving single solitary wave solutions; instead they are trapped at the origin.
To study the effect of small distortions of the initial solution, we use a variational
approximation as well as perform numerical simulations. Small perturbations on an
exact solution cause a slight increase in the energy of the solution.

We find that the domains of stability with respect to blowup or collapse of the
solutions in terms of the parameter s are the same as those found for the solitons in
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the usual Manakov system, whence instability occurs for k > 2, and there is a critical
“mass” for the width instability to occur when x = 2. For 0 < kK < 2 the behavior of
the perturbed solutions is well captured by the small oscillation equations of the CC
approach. Following our previous use of CCs, we introduce two pairs of canonically
related collective coordinates: G and A which are related to the width parameter and
its conjugate, and ¢ and p related to the position and its conjugate variable. The
CC approach also gives qualitative agreement for the motion of the perturbed soliton
for all kK > 0 with what is found in numerical simulations of the NNLSE. The exact
single solitary wave solution obeys the symmetry ¢ (x,t) = ¢)(—x,t). However, once we
perturb the solution away from the origin we break this symmetry and the behavior of
the perturbed solution has to be determined by the full NNLSE. In the CC approach
the parameters ¢ and p break the parity symmetry, and allow us to study the effect of
an initial small translation of the wave function. In the CC approach, we find that these
parameters are stable for all values of x € (0,2), in that ¢(¢) and p(¢) just make small
oscillations around zero. This result is verified by numerical simulations of the NNLSE.
For the critical value of kK = 2 as well as for x > 2, having a small perturbation in ¢ at
t = 0 causes the solitary wave to collapse. In the regime x > 2, choosing at t = 0, a
small perturbation with G' < 0 (the dot stands for time differentiation) causes the wave
function to blowup (i.e., the width goes to zero) at finite time; whereas choosing G >0
induces collapse of the wave function. The CCs for ¢(t) and p(t) behave quite differently
in the NNLSE from those of the usual NLSE which has Galilean invariance.

The structure of the paper is as follows. In Sec. 2 we present our generalized model
and give the exact yet trapped solitary wave solutions to the coupled equations discussed
therein. In Sec. 3, we discuss the derivation of the equations of motion from an action
principle. The conservation laws resulting from the action are presented in Sec. 4. In
Sec. 5 we use Derrick’s theorem to show that for x > 2 the solutions are unstable.
We also study the stability of the solitary wave to translational perturbations using an
energy argument and find that the solitary waves stay trapped. In Sec. 6, we consider
a four collective coordinates (4CC) variational approximation and derive the associated
equations of motion. We consider initial values where both G as well as the center of
the wave are displaced from the exact solution. We compare the variational results with
numerical simulations of the NNLSE. We find no evidence for a translational instability
using either the 4CC equations or the (full) NNLSE equation. Indeed, we show that
the small oscillation equations derived from the CC equations describe the behavior of
perturbations when 0 < k < 2, showing the stability of the exact solution, and that
when xk > 2 the wave function either blows up or collapses. The new phenomenon found
for this NNLSE, is that when we just perturb the position of the solitary wave for k > 2,
it leads to collapse of the wave function. We find that for blowup, there is a critical time
which we can estimate, and for collapse, G grows linearly in time with a rate controlled
by E/M where E and M are the conserved energy and mass of the wave, respectively.

In Sec. 7, we focus on the critical value of k. Upon choosing a positive or negative
value for the time derivative of the width parameter G leads to linear collapse or blowup.

Page 4 of 29
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The effect of a small initial displacement gy := ¢(t = 0) of the center of wave function
leads to collapse of the wave function. In Sec. 8 we explain our numerical approach and
then compare the numerical results to those of the CC approximation. Finally we state
our main conclusions in Sec. 9.

2. The nonlocal and nonlinear Schrodinger equation: Yang’s version and
exact solutions

In [15], special solutions (x = 1) of the Manakov system given by Eq. (1.3) were studied.
Upon imposing the solution constraint

¢2<xat) = ¢1(_J}7t) ) (2'1)

the system of Egs. (1.3) reduces to the single nonlinear and nonlocal Schrédinger
equation (NNLSE) of the form:

{10+ 07 + 29[z, ) + [(=2,1)]* "} (2,8) = 0, (2.2)

where now ¢ (z,t) = 1(x,t). The solitary wave solution to Eq. (2.2) for arbitrary s
can be found explicitly, and is given by

U(x,t) = A(B,7y) sech”(Bz)e“t, v =1/k, (2.3)
provided that

w=(y8)*, 29[24°(B,M]"" =B v(v+1), (2.4)

or, explicitly

o) = L [FA0E0]”

V2 29
with 3 being kept arbitrary. We also note in passing that the case with x = 1 is integrable
in terms of the Inverse Scattering Transform (IST). The NNLSE is a Hamiltonian
dynamical system for all k. It is integrable only for k = 1. At arbitrary x it only

(2.5)

has a few conservation laws.
Indeed, upon using the IST, Yang in [15] found not only one-soliton solutions of
the form:

Wz, t) = % sech(fz) Pt (2.6)

but also two- and three-soliton solutions of the NNLSE, all for g = 1 (the focusing case)
and k = 1 (integrable case). For this choice of the parameters (i.e., g = k = 1), Eq. (2.3)
agrees with Eq. (2.6). It should also be noted that the constraint given by Eq. (2.1)
is different from the one first suggested by Ablowitz and Musslimani in [14, 16]; they
considered a different system consisting of two coupled NLSEs, namely:

{ 10, +0; +2g¢(x,t)va(a,t) (2, t) =0, (2.7a)
{104+ 02 + 2.9 o, ) a2, ) } (i, 1) = 0. (2.7b)
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Imposing the solution constraint: ¥y(z,t) = ¥} (—x,t), Egs. (2.7) reduce to the single
nonlocal and nonlinear equation:

{10, + 07 +2g¢(x,t) " (—,t) } (2, t) = 0. (2.8)
The advantage of the system proposed by Yang is that it is accessible in nonlinear optics,
and the first three conserved quantities are real by construction. Also the stability of
the solutions can be studied by using the same techniques as the ones we used for the
usual two-component NLSEs [8].

3. Action principle

The Manakov system of Eq. (1.3) can be written in vector form as

{10, + 0> +2g [V (x,t) U(x,t)]"} ¥(x,t) =0, (3.1)
with
_ wl(x7t) 2
U(z,t) = ( et ) cC?. (3.2)

It can be shown that Eq. (3.1) can be derived from an action principle. Indeed, let

INVARVIES / dt L[¥T ] (3.3)
be the action of the system where L stands for its Lagrangian given by

LW, W] = T, U] — H[V' ¥], (3.4)
with

(ol 0] :/dx%{\lﬁ(x,t)[at\ﬂ(x,t)] [0 1) Wat) ) (350)

HU, 0] :/dx{\@xklf(x,t) 2 j—fl [0 )0 1)} (350)

Once we impose the constraint of Yang, then Eq. (2.2) can be obtained from the following
nonlocal yet one-component action principle:

Sl ] = / at Lip,y*], {47} eC, (3.6)
L,y =T, "] — H[y, ¢, (3.7)
with ‘
T[,4'] = 1 / e { 0 (e, ) (e )] — [0 (2.0)] (e, ) } (3.80)

*1 _ 2 9 2 _ 2 1k+1
H6,0) = [ do {1000 ) P = 2 (10 OF + 10—, P11}
= H, — H,. (3.8b)
Here (taking g > 0) H; and Hs are positive. We will choose in our simulations g = 1.
This way, the Lagrange’s equation of motion
otivv]_ATH

ou*(z,t)  dt

501 (. 1) (39)

Page 6 of 29
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reproduces Eq. (2.2). Note that in the derivation here we used

S (~a,1)
— 2= No(t -t 3.10
6?/)($/,t/) (ZL‘ +T ) ( ) ) ( )
which provides a factor of 2 g multiplying the nonlocal term. The existence of this action
formulation immediately leads to the fact that the Hamiltonian H given by Eq. (3.8b)

is conserved.

4. Conservation laws

It is straightforward to see from Eq. (2.2) that the mass

M:/dxw(x,m? (A1)

is conserved for any initial condition. For the exact solution of (2.3), M is explicitly
given by

M(B,7) 1 [M

gl
~ 55 | . (1.2
where ¢;1(7y) is given in Eq. (A.la). In addition, the energy (or the Hamiltonian) given
by Eq. (3.8b) is also conserved, and for the solution of Eq. (2.3), E(f,7) is given by
2 2 277

B8, = ~m(g. ) ) - B 0D ) 4
It can be discerned from Eq. (4.3) that E(5,v) < 0fory > 1/2ork < 2, and E(3,7) >0
for v < 1/2 or k > 2, and E = 0 for K = 2. When x = 2, the mass of the solution
becomes independent of the width parameter . In fact, we will show that when x = 2,

the exact solution has the critical mass, above which any initial wave function becomes
unstable. At ¢ = 1 and xk = 2, the mass reads

3
M = %\/; = 0.9619123726213981 (4.4)

which is independent of 3, and (which we will find from our variational calculation)
is equivalent to the critical mass. We note in passing that the parity operator has
the effect: Py(x,t) = ¢(—x,t) = £1p(x,t) which is satisfied by the exact solution of
Eq. (2.3) to Eq. (2.2) (also note that the solution has even parity). Moreover, there are
other conservation laws that are directly obtainable from the equations of motion for
11 and 5. These are the two pseudo-masses

M21:/dx¢§(m,t)¢1(x,t):/dxw*(—x,t)@/z(x,t), (4.5)
Miz = [ dewilet)a(ot) = [ dov (@) vl-a.).

For the exact soliton solution [cf. Eq. (2.3)], these two pseudo-masses are equal, and
also are equal to the regular mass. However, once we distort the initial state from the
exact solution, these two conserved quantities are complex conjugates of one another.
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5. Derrick’s theorem

Derrick’s theorem [31] states that a solitary wave solution of a local Hamiltonian
dynamical system is unstable if it is unstable to scale transformations of the form:
x — ax (o > 0) when we keep the mass of the solitary wave fixed. Here, we are
dealing with a nonlocal Hamiltonian. However the Lagrangian was derived from a local
two-component Manakov system whose stability has been considered earlier by using
Derrick’s theorem [32]. Let us consider exact solitary wave solutions of the (separation
of variables) form

Uz, t) = r(z)e ™, (5.1)
with an even r(z), i.e., r(—z) = r(z). If we let z — ax, then
Yoz, 1) = a2 r(az) e ™t (5.2)

which itself preserves the mass M given by

M = [ dafpufe, ) = [ delute o), 5.3
Defining H(«) the value of H for the stretched solution, we have that
H(a) = Hi(a) — Ha(a) (5.4a)

Hi(a) = / Az [0,10a (2, 1) > = a2/ dz |0.r(2)* >0, (5.4b)

() = L [ el + (a0 1

2n+1 K
- —g/i - 104 / dz[r*(2)r(2) "' >0, (5.4c)
and thus we can write it as
H(a)=a*H, —a" Hy, H, >0, Hy > 0. (5.5)

The minimum of H(«) at o = 1 is consistent with the equations of motion. From

OH (o) = 0 one obtains H; = (k/2) H,. For stability, the second derivative of H ()

oo _
with respect to a and evaluated at o = 1 must be positive:
0?H ()
=212—-—k)H; >0. 5.6
Gor | =20z (56)

This result indicates that solutions are unstable to changes in the width, compatible
with the conserved mass, when x > 2. The case k = 2 is a marginal case where it is
known that blowup occurs at a critical mass [5].

The exact solution of the NNLSE, Eq. (2.3) indeed has the property that it
extremizes H(a) at « = 1. We find

2 18217

Hy = 277_1_ 1 § [7(7 ;—g )8 } a(y), (5.7a)
2 3 1 2717

27 271 1 g {7(7 ;_g i } (), (5.7b)

which satisfies Hy = (k/2) Ho.

Page 8 of 29



Page 9 of 29

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-115749.R1

NNLSE 9

5.1. Translational Landscape

Using Derrick’s theorem we explored whether the solution was a maximum or minimum
of the energy landscape as a function of the stretching parameter a. Here, we would
like to do a similar analysis to study whether the energy increases or decreases as we let
x — x+a where a is a small translation. Again we will posit that there is a translational
instability if the energy H[a| decreases as a departs from zero. Let us again consider
the NNLSE defined in Egs. (1.3a)-(1.3b). We want to see how the energy of the system
changes under the translation x — x+a with the normalization fixed by the requirement
that the mass is unchanged. This criterion was used to study the stability of solutions
of the NLSE trapped in a Pdschl-Teller potential [33]. Clearly, ¥ — ¢ (x + a) preserves
the mass of the wave function although it breaks the parity symmetry. The translated
solution is given by:

Yz +a,t) = A(B,v)sech”[B(x + a)le™, ~v=1/k. (5.8)

It is also clear that H; remains unchanged under x* — x 4+ a. Only H, is not
translationally invariant since

Hy = — i . /Z da [ sech?(B(x — a)) + sech?(8(a + z)) " . (5.9)

At small a, and setting g = § = 1 for simplicity, we find (up to quadratic terms) that

VT a2t T (k4 1)
(k+1DI'(k+3/2)

where o F) is a hypergeometric function. This potential is confining at all x > 0. Thus

Hyla, k] = a?2% 70k [, F(1, —k — 2,k 4+ 2; —1) — 1]° — (5.10)

on account of the trapping nature of the self-interaction, we do not expect that there
is a translational instability. We indeed find that perturbed solutions just oscillate
about the origin. However, because the translations couple to the width parameter, the
displacement of the center of the initial wave function by ¢y will cause the solitary wave
to collapse for K > 2. Also, if one chooses k = 2 and blowup initial conditions with
A < 0, such a displacement of the center of the initial wave function accelerates the
blowup phenomenon.

6. Four collective coordinate variational ansatz

Unlike the NLSE which is translation invariant as well as Galilean invariant, for the
NNLSE, if we displace the position of the trapped solution, we no longer have an exact
solution, and our initial condition for the wave function no longer has parity symmetry.
However, one can ask what happens to such an initial condition? Does it just oscillate
around the origin or does it escape the effective trap for some critical value of kK7 What
we find both from our variational approach as well as from numerical simulations is that
the displaced solitary wave just oscillates around the origin independent of the value of
k. However, in the unstable regime, displacing the solitary wave from the origin induces
collapse of the wave function.
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In this section, we study the behavior of the displaced solution by choosing a parity-
breaking, four collective coordinate (4CC) ansétz for our variational wave function of
the form:

D(x,Q(1)) = A(t) sech™[ (z — q(1)) /G(1) ] ¥, (6.1a)

d(x, Q1) = —0(t) +p(t) (x — q(t)) + At) (z — q(1))*, (6.1b)
which allows us to choose displaced initial conditions where ¢(0) # 0. The variational
parameters are related to moments of the density as well as the moments of the
momentum distribution (see Appendix B for details). This ansétz is similar to the
time dependent Hartree-Fock approximation of quantum field theory if we replace the
sech”[ (z — q(t))/G(t)] term by the Gaussian exp|—(z — ¢(t))?/G(t)]. This ansitz has
been used in the past to discuss the stability of solitary waves in the NLSE in ezternal
trapping potentials [6, 8], as well as solitary waves in two-component NLSE systems
in external complex confining potentials [9]. Note that for the NNLSE, this ansatz,
on account of the variables ¢(t) and p(t) does not satisfy the conservation laws for
the pseudo-masses My and My [cf. Eqgs. (4.5)], whereas the numerical solutions of
the NNLSE do satisfy these conservation laws. This approximation does satisfy the
conservation of the usual mass of the NLSE, namely

M= /dxwm@w)r G(t) A%(t) 1 (7). (6.2)

where ¢1(7) is given in Eq. (A.la). This way, A(t) and G(t) are not independent
variables, and we can set A%(t) = M/[G(t) c1(7)]. One obtains the effective Lagrangian
for the CCs

Q) = {q(®),p(t), G(t), A(t), o(t) } (6.3)
by substituting this ansitz into the Lagrangian from which we obtain the NNLSE

equation, namely Eq. (3.7). The phase ¢(t) does not enter in the dynamics, and so
it can be ignored. Thus, we are left with four variational parameters or CCs:

Q(t) = {q(t),p(t), G(1), At) } . (6.4)
The Lagrangian in this case is given by
where
T(Q,0] = M{ ~G2A EV; } (6.6)
i

HIQ) :M{ 2 4 4G2A2 CTEW; + [1—27(%0) e (q/G,’y)} 277_11 } (6.7)
together with

f(z,v) = 2y +1 o) / dy [ sech® (y — z) + sech® (y + 2)

1/v+1
21/y+2 v e :|

: (6.8)

Page 10 of 29
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where Gy := G(t = 0). Note that the energy is conserved, and is given by:

B —ptaceaz ) LT, (G W?f( 1G] =L (6.9)
-7 aly)  G? "\ @ W= 2v+1° '

Thus, the equations of motion are given by:

q =2p,

1/v—2

_ 2y 1 (G

R e (5) f'a/G.).

G=4GA,

A=—4A%+ 7 a®y)

2y +1 c2(7)

1 a 1/y—2 a 1/y—2
X{G4 [1— (5) f(q/G,v)} - % <G0) f’(q/G,v)} . (6.10)

6.1. Small Oscillation Regime (k < 2)

Let us consider 0 < k < 2. Since E/M is conserved, this conservation law [cf. Eq. (6.9)]
prevents collapse (G — 00) as well as blowup (G — 0). Thus for small perturbations of
the CC parameters A, g from zero, one is in a small oscillation region. In the small
oscillation regime, choosing Gy = 1 for convenience, we have that (ignoring terms
quadratic in dq)

flz7) =1 fl(z7)=-4
So in that regime, we get the equations:

0q = 20p,
+1

5p = 8P — 5q
P Ty Dy 3
6G = 45A
- 72y =1) aly)
oA = — 5G

27 +1) cfy)

together with the ones corresponding to the small oscillations:

y+1.
27+ 3

(6.11)

: (6.12)

Lo Y@y =1aly) .,
T O ="

. v+1
5 + 163 5q=0
T e e )

We see that in this regime, the oscillations of the position and width are not coupled.

(6.13)

Coupling only occurs when the wave function is collapsing or blowing up so that 6G is not
small. As far as the general behavior of the perturbed wave function is concerned, when
0 < Kk < 2 the period of oscillation of ¢ and p slowly increases over the entire domain.
Moreover, the oscillation frequency of the width goes to zero as kK — 2 indicative of the
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Figure 1. Period of G and ¢ oscillations as a function of x (the inset is a zoom-in)
for the 4CC approximation.

instability setting in. This is seen in Fig. 1. Concerning the stability of this trapped
solution, the small oscillation behavior at x = 1, when the system becomes integrable,
shows no special features.

As a typical example of how the solution in the stable regime responds to three
different perturbations, we will look at the case k = 3/2. The best agreement between
the variational approximation and the numerical simulation occurs when we choose
initial conditions that do not break parity; i.e. po = qo (the subscript zero appearing in
the CCs stands for their respective initial value, i.e., at ¢ = 0). Then we find the results
shown in Fig. 2.

To generate both small oscillations, we choose as initial conditions ¢y = 1/100 and
Ao = —1/100, and the respective results are shown in Fig. 3. Note that the period
of oscillations is given by T' = %’r, and the period derived from the small oscillations
equations give T, = 7.10774 and T = 12.5998, respectively. Upon ignoring the effects
of ¢ from energy and mass conservation, one can determine the maximum value of G
in the oscillatory regime as follows. At first, if we choose py = 0 and Gy = 1, the
initial energy (divided by the conserved mass) is given by (ignoring tiny corrections to

f(0,7)=1)

K ey) 1 g
— =4A] —|1-2 :
M 001(7)+G2[ ’Y] 2v+1

(6.14)

Note that the initial energy density depends only on A3, so the oscillation frequencies
are independent of the sign of Ag. The maximum value of GG, denoted by G, is reached
when A = 0. So we have that G,, satisfies the equation

s oo (&) ) )

The maximum value of G for kK = 3/2 when we choose Ay = +0.01,Gy = 1 is given

Page 12 of 29
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Figure 2. Dynamics for k = 1.5 with ¢ = 0, pgp = 0, Go = 1, and Ag = 0.01. The
variational results are shown in blue and the numerical ones (with L = 10) in red.

by G,, = 1.087874. This value of GG,, is seen in both the CC approximation and in
the numerical simulations as seen in Figs. 2 and 3. The disparity between the 4CC
approximation and numerics for the variables ¢ and p is due to the fact that for this
case the 4CC approximation violates the two conservation laws, namely My, and M,
(see Egs. (4.5)). The final case of interest is to just displace the solution from the origin.
This also generates via the coupling oscillations in G and A as well. The agreement with
the numerical simulations is qualitatively good. (See Fig. 4). This third case is of course
not found in the usual NLSE situation which in turn is translation invariant.

For the numerical simulations, we solve the NNLSE with initial conditions of
¥(x,0) = t(z,0), for comparison. The numerical solutions were obtained by using
MATLAB’s 0DE113 integrator which is a variable-step, variable-order (VSVO) Adams-
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Figure 3. Dynamics for kK = 1.5 with ¢o = 0.01, pp = 0, Gg = 1, and Ag = —0.01.
The variational results are shown in blue and the numerical ones (with L = 10) in red.

Bashforth method (see [34], and references therein). We solve the NNLSE on x €
[—L, L] (where L is the domain’s half-width) supplemented by zero Dirichlet boundary
conditions (see the relevant figure captions for the values of L that were used). We
should note in passing that the position of the boundary of the computational domain
(x = +L) strongly depends on the initial condition. Indeed, the functional form of
12(1’,0) as x| — L < oo suggests tiny oscillations of the solution at the boundaries
over time which are effectively considered to be of zero amplitude, i.e., zero Dirichlet
boundary conditions. As per the spatial discretization, we considered a centered yet
fourth-order accurate finite difference approximation. We further tested our numerical
simulation results by considering other integrators and spatial discretizations such as

the ETDRK4 integrator and Fourier spectral collocation [35], and we obtained essentially
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Figure 4. Dynamics for k = 1.5 with ¢g = 0.1, pp = 0, Gg = 1, and Ay = 0. The
variational results are shown in blue and the numerical ones (with L = 10) in red.

similar results.

6.2. Blowup or Collapse regime k > 2

When £ > 2, choosing A (G) positive or making a small displacement of the exact
solution, gg # 0, leads to the collapse of the wave function. Choosing A positive leads
to blowup of the perturbed trapped solution. First, let us look at the blowup regime
from the CC perspective. Setting qo = 0 and also setting Gy = 1, then from energy
conservation and the equation of motion for G(t), the scaled energy of Eq. (6.9) can be
rewritten as:

£ - @cm)

M 4 c1()

1 72 2~3
G22y+1 GY(2y+1)

(6.16)
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Figure 5. Dynamics when k = 2.2 with qg = 0, pp = 0, Gy = 1, and Ag = —0.01.
The numerical results in red (with L = 30) as well as the variational results in blue
show blowup of the solution.

Upon rewriting the energy equation as

. E 273 1 92
e\ T ) @y r1) (6.17)

and considering G — 0, we can ignore the first and last terms, thus obtaining
_ a(v) 27° (6.18)
a(7) GV (27 +1) '
for blowup. In other words, when we get near the critical time t*, we have [5]

G(t) o (t — %)=+ (6.19)

This blowup behavior is seen both in the numerical simulations and variational
approximation. For a typical case corresponding to k = 2.2 and Ay = —1/100, we
obtain the result of Fig. 5.
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Figure 6. Dynamics when x = 2.2 with ¢ = 0, pg = 0, Go = 1, and Ag = 0.01. The
numerical results in red (with L = 30) as well as the variational results in blue show a
collapse.

If instead we choose Ag > 0, then the solitary wave collapses. Once G(t) gets large,
only the first term in the energy equation becomes important. Therefore we find that
asymptotically, the final value of G becomes a constant determined by the ratio E/M:

Ezgczw)
M 4 c1(y)

This is borne out in the late time simulations of the collapse case. For k = 2.2, and

(6.20)

Ay = 1/100 we obtain the result of Fig. 6. Finally we find a new phenomenon, not
present in the NLSE equation in the unstable regime because there is no translation
invariance, making a small translation of the initial state induces collapse of the wave
function. This is not anticipated by Derrick’s theorem. Because of the nonlinear
coupling between ¢ and (G, one can initiate soliton collapse when & > 2 by just giving
qo a non-zero value. This is seen for two cases with Gy = 0.5 in Fig. 7, and Gy = 1 in
Fig. 8.
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Figure 7. Dynamics when x = 2.1 with ¢y = 0.01, pg = 0, Gog = 0.5, and Ag = 0. The
variational results are shown in blue and the numerical ones (with L = 30) in red.

7. Behavior when sk = 2

When x = 2, the exact solution is at the critical mass. So depending on how it is
perturbed, it either collapses or blows up (linearly in time) if there are no perturbations
in the position. When ¢q is not zero, and no perturbation is given to the width, then the
wave function collapses. In the blowup case, since G can get large, having qg # 0 initially
can alter the nature of the blowup. We will give examples below, with Aqg = 0, +0.01
and ¢o = 0.01. The most interesting behavior is the collapse of the wave function when
we give the initial wave function a slight translation. In that case, we get the result
shown in Fig. 9. When A > 0, the wave function collapses linearly in time. When we
add gy # 0, the collapse is slightly hastened, but now the periods of ¢ and p increase in
time when compared to the periodic regime. This is seen in Fig. 10. When A < 0, the
wave function blows up (G — 0) linearly in time. When we add ¢y # 0, the blowup is
slightly hastened, but now the periods of ¢ and p decrease in time when compared to
the periodic regime. Both solutions fail at the blowup time. This is seen in Fig 11.

Page 18 of 29



Page 19 of 29

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-115749.R1

NNLSE 19

-3
0015 . . . . . 50

0.01

0.005 f

q(t)

-0.005 f

-0.01

-0.015
0

4
1.02 x10__

1015

1.01f

G(1)

1.005

Figure 8. Dynamics when x = 2.1 with gg = 0.01, pg =0, Go = 1, and Ag = 0. The
variational results are shown in blue and the numerical ones in red (with L = 80).

8. Numerical simulations of the NNLSE

In this Section, we briefly discuss the stability and spatio-temporal evolution of the exact
solution (2.3) to the NNLSE (2.2). To do so, we employ the separation of variables ansétz
Y(z,t) = YO (z)e!, which is inserted into Eq. (2.2), thus obtaining:
d2O) (z K
D 1 2g (WO @) + 8O (~2) )" O(@) () = 0
Then, Eq. (8.1) is solved by means of a Newton-Krylov method as implemented in
MATLAB with nsoli [36]. A sufficiently good initial guess to the nonlinear solver is

(8.1)

provided by Eq. (2.3). Having identified a stationary solution ¢(*)(z) (upon convergence
of nsoli), we perform a spectral stability analysis around it using the ansatz:

bz, t) = [pO(2) + ¢ (a(x)eM + 0" (2)eX)], < 1.

Upon inserting Eq. (8.2) into Eq. (2.2), we arrive (at order O(e)) at the eigenvalue

(8.2)
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Figure 9. Dynamics when k = 2 with ¢y = 0.01, pg =0, Go = 1, and Ag = 0. The
numerical results in red (with L = 80) show collapse of the wave function in agreement
with the variational results in blue.

problem of the form of

All A12 a 5 a "’__.
(4 )(3)-5(2), 5o .

with matrix elements given by
d

An = S + 20k [WO@)P + WO ()P [O@)P + vola)i () P]

dz 2

+ [WO@P + O ()"} —w,
A = 2g5 [[vO(2)* + |¢(0)(_x)|2]“_1 [(w(o)(:c)f + wo(a:)wo(—:c)P} , (8.4a)

where P stands for the space reflection operator, i.e., Pf(x) = f(—=x), for a general
function f(z).
The results of the eigenvalue problem [cf. Eq. (8.3)] are shown in Fig. 12 with g =1

and 8 = 1. It can be discerned from the right panel of the figure, the emergence of a real
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Figure 10. Dynamics when k = 2 with gg = 0.01, pg = 0, Gop = 1, and Ag = 0.01.
The numerical results (with L = 80) in red and the variational results in blue both
describe collapse. Note that results from numerical simulations for the variables G(t)
and A(t) are shown with red open circles to ease visualization.

eigenvalue at x = 2, thus rendering the solution to be spectrally unstable (and similar
to the local case). Although a detailed study and understanding of the underlying
instability mechanism is of paramount importance (see, e.g., [37] as well as [38] and
references therein), it is beyond the scope of the present work. Subsequently, Fig. 13
presents results on the spatio-temporal evolution of the exact solution for various values
of k. These numerical results were obtained by using a fourth-order accurate, central
finite difference scheme for the (one-dimensional) Laplacian on a computational domain
with half-width L = 50 and resolution Az = 0.1. Note that Fig. 13(d) demonstrates an
unstable solution (i.e., a blowup case), and the time integration was stopped when the
full-width-at-half-maximum (FWHM) was less than Az (for instance, the blow-up time
happens at a later time tyjowup ~ 474 in this panel, as per the discretization employed
herein).
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Figure 11. Dynamics when x = 2 with g9 = 0.01, pg = 0, Gy = 1, and Ag = —0.01.
The numerical results (with L = 80) are in red, and the variational results are in
blue. Both solutions fail at the blowup time around t ~ 22.5. Again, the results from
numerical simulations for the variables G(t) and A(t) are shown with red open circles
to ease visualization.
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Figure 12. The imaginary X; (left) and real A, (right) parts of the eigenvalue A as
functions of k with g = 1 and 8 = 1. At the critical value of k. = 2, the solution [cf.
Eq. (2.3)] becomes unstable.
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Figure 13. Spatio-temporal evolution of the density |i|? for different values of k:
k =1 (top left), kK = 1.5 (top right), x = 1.95 (bottom left), and x = 2.1 (bottom
right).

9. Conclusions

In this work, we have considered the stability of the trapped soliton solution of a
generalized Manakov system of two coupled NLSEs with the particular constraint
Yo(z,t) = 1(—x,t) both numerically and analytically, and in a four collective
coordinate (4CC) approximation for arbitrary nonlinearity parameter k. We were able
to show that this system is equivalent to a nonlocal NLSE (i.e., NNLSE) derivable from a
nonlocal action. We found by a variety of methods, that the stability to width changes
of this NNLSE had exactly the same behavior as the counterpart single component
NLSE. That is, for k < 2 there is stability, for x > 2 there is instability (either collapse
or blowup), and at k = 2, the solution is at the critical mass and the solution blows
up or collapses linear in time when perturbed. Unlike the NLSE which has Galilean
invariance and a conserved momentum which can be nonzero, the NNLSE has zero value
for the conserved momentum. This leads to a different response to shifting the initial
conditions on the wave function to be centered slightly away from the origin.

When we shift the trapped “solitary wave” solution slightly from the origin, the
ensuing oscillations of the solitary wave are reasonably well captured by the 4CC
approximation which violates parity conservation. We find no evidence numerically
or in the 4CC approximation of any translation instability. However, in the unstable
regime, i.e., k > 2, a slight translation causes the wave function to collapse. When
one is in the blowup regime, having gy # 0 accelerates the blowup. These phenomena
are quite different than what are found for the NLSE. In conclusion, we have mapped
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out the stability regions for the NNLSE with arbitrary nonlinearity parameter s, and
have studied the response of the exact solutions both analytically (in the realm of a CC
approximation) as well as numerically, and found the two approaches are in accordance
with respect to the time evolution of the width parameter. The 4CC approximation,
which violates the symmetry )(—x) = ¢(x) when ¢(t) # 0 gives results for ¢(¢) and p(¢)
which are only qualitative.
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Appendix A. Useful integrals and identities

For given k, the ¢y, ¢, and c3 functions are explicitly given by

c(y) = /:Odz sech?(z) = % : (A.1a)
e(7) = / 0 2 sech®(2) (A.1D)
- 2;”OEI4F3{%%%2% L+, 149,149 -1/7°,
c3(y) = /+Oodz sech®(z) tanh?(z) (A.1c)
- c1(7)

=a(y)—aly+1) = 1

where 4F3 is a hypergeometric function (see also the top panels of Fig. Al for the
dependence of ¢; and ¢; on ). A useful result is

ci(y+1) 27y

= . A2
a1 2
We have defined the integral f(z, k) in (6.8):
2v+1
f(Z,")/) = m/dy[ Sech%f(y — Z) + SeCh2’Y(y + Z) ]1/’Y+1 ) (AB)
Then
2y +1 oo 2y+1c(y+1)
f(0,v) = /dysech7+ y) = =1. A4
(0:7) 2vei(v) ) 2y al) (84

Plots of f(z,) are shown in the bottom left panel of Fig. A1. The derivative of f(z,~)
wrt z is given by
vy+1)(2y+1
flan) = LD D
21y ey ()

/dy [ sech® (y — z) + sech® (y 4 z)]*/7 (A.5)
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Figure A1l. The top panels present c;(y) (left panel) and co(y) (right panel) as
a function of v (for their definition, see Eqgs. (A.la) and (A.1b), respectively). The
35 bottom panels demonstrate the dependence of f(z,7v) (left panel), and f/(z,~) (right
36 panel) on z, and for various values of v = 0.1,0.5,1,1.5, and 2 depicted by solid
37 blue, orange, yellow, purple, and green lines, respectively (see Egs. (A.3) and (A.5),
38 respectively).

41 x [ sech®(y — z) tanh(y — z) — sech®(y + z) tanh(y + 2) ],

43 where f'(0,7) = 0. Plots of f'(z,7) are shown in the bottom right panel of Fig. A1. A
44 short calculation using Mathematica gives

+1
46 "0,7) = —4 L~
47 770,7) 2v+3

Expanding f(z,) about the origin gives
1
51 f(277) = f(077> +f,(077)2+ §f”(077>22 +o=1-2

+1
53 /z, :—47 z
- f(z,7) 2713

(A.6)

v+1
2v+3

2 (A.Ta)

(A.7b)
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Appendix B. Moments and collective coordinates

The variational wave function of Eq. (6.1) is of the form

M 1/2 % T — Q(t) ip(x,t
W(x,t) = [W} sech [ D) ] elo@t) (B.1a)
¢(x,t) = p(t) (x — q(t)) + At) (x — q(t))*. (B.1b)
Let us define the n'® moment of the density distribution by
M, (1) = /_ Cdw s () (B.2)
_ % /_ dw o™ sech?] (2 — (1) )/GD)]
+oo
- WG+ 0] s ().
Explicitly, we find:
My(t) = M, (B.3a)
Mi(t) = Mq(t), (B.3b)
— 2 2/ 2(7) .
My(t) =M {q (1) + G=(t) 01(7)} : (B.3c)

from which we can find ¢(t) and G(t). The zeroth moment, i.e., the mass of the soliton
must be conserved. In a similar way, let us define the n'* moment of the momentum
distribution by

Pu(t) = % / :de " [w*(a:,t) awéi’ b_ ang’“ ¢(m,t)} (B.4)
_ /_:odm" Im{ ) (%’éi’t) } _ /_:odm" a“béi’ D\ (1) 2

= /_ oodx " {p(t) + 2A(t) [z — q(t)] } | ¥(a,t) |

[e.9]

M i n 2y T —
=G0t /_OO do 2" {p(t) + 2 A(t) [z — q(t)] } sech™[(z — q(t))/G(?)]
+o00
= [ Wl + GO [0 + 20 GO ] sech® (3).
Explicitly, we find:
Py(t) = M p(t), (B.5a)
Pi(t)y=M {p(t) q(t) + 2 A(t) G2(t) Zj—::;] : (B.5b)
This way, p(t) can be obtained from (B.5a), and A(t) from:
MO = s | oy 0t | 2. (B:6)
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