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Abstract— A particle filter algorithm is presented to estimate
the position, strength, and cardinality of an unknown number
of radioactive point sources in an obstacle-rich environment
using count measurements. The algorithm addresses gaps in the
prior literature by incorporating two novel elements. The first
is a precomputation step in which local terrain and obstacle
data is processed to compute attenuation kernels throughout
the search area. This enables rapid estimation performance in
obstacle-rich environments as measurements are gathered. The
second novel feature is a dynamic particle allocation technique
in which the number of particles is adjusted in real time to
meet convergence goals. This feature allows the algorithm to
scale more efficiently to scenarios with a larger number of
sources. A series of computational experiments using simulated
data demonstrates the algorithm’s performance in a cluttered
environment with up to eight sources.

I. INTRODUCTION

Governments and emergency responders are increasingly
interested in using robotics to address nuclear accidents [1],
radiological materials trafficking [2], and weapons prolifera-
tion [3]. There is now significant historical precedent for the
deployment of robotic systems for nuclear disaster mitigation
and surveying of sites with radiation contamination [4]–[7].
Missions for nuclear detection robots typically fall into two
categories: mapping and source term estimation (STE). Map-
ping missions usually involve sites with widespread radiation
contamination and require the robotic system to characterize
the radiation environment over a defined area [8]–[10]. In
contrast, radiological STE is the process of localizing and
identifying parameters (location, strength, cardinality, etc.) of
point sources of radiation [11]–[14]. Such STE missions may,
for instance, stem from cases where nuclear materials are
stolen or trafficked and must be located by law enforcement.

The STE problem for a single source has been solved
by a variety of authors using least-squares regression [15],
Kalman filters [16], particle filters [17]–[21], neural networks
[22], and other heuristic algorithms [23]. STE for multiple
sources can be much more difficult, however. In this case, the
difficulty of the problem depends on whether measurements
at all locations are only influenced by a single source (non-
overlapping sources), or whether measurements at certain
locations are influenced by multiple sources (overlapping
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sources). The degree to which sources overlap depends on
their spacing, strengths, and the obstacle and terrain environ-
ment. The non-overlapping STE problem may be solved by
estimating the source parameters independently, one source
at a time (decomposing the problem into multiple single-
source STE problems). This was the approach taken by
Peterson et al. [24] and Chin et al. [25]. In [25], the authors
introduce the concept of “fusion range,” which limits the spa-
tial range of influence that measurements can have, thereby
restricting the method to use in non-overlapping cases only.
Several authors have addressed overlapping STE problems,
including Cook et al. [26], [27], Vavrek et al [28], Bandstra
et al [29], Anderson et al. [30], and Ristic et al. [31].
In [26] and [27], the authors performed radiation contour
mapping using simulated measurements but do not consider
attenuation from obstacles or terrain. The work in [28] uses
a sparse parametric imaging algorithm to reconstruct the 3D
positions and activities of multiple gamma-ray point sources
which works well for their custom sensing platform, and al-
though obstacles were present for measurements, their effects
were neglected due to the location of their measurements.
Obstacles were later addressed in the single source case by
the same group of researchers in [29]. The work in [30]
proposes a particle filter (PF) capable of localizing multiple
overlapping sources, but the sources in question must be
of different isotopes. Thus the problem simplifies to single
source STE for each isotope. Furthermore, the method was
tested only for a two-source scenario in which the obstacle
absorption parameters were known exactly a priori. On the
other hand, Ristic et al. [31] propose a particle filter that
handles multiple overlapping sources without requiring that
they be different isotopes. While the algorithm was shown
to exhibit good performance using experimental data, it was
only validated with up to two sources and did not include a
mechanism to account for attenuation by obstacles or terrain.

Prior work on STE has revealed several challenges. First,
STE for larger numbers of sources (i.e., three to ten) remains
a challenging problem due to the ambiguity caused by
overlapping sources. Second, for particle filters, which have
commonly been applied to STE, scalability problems arise
due to the very large number of particles needed to represent
hypotheses associated with numerous sources. Additionlly,
STE in obstacle-rich environments has proven challenging
for algorithms that are designed to run in real-time. This
is because radiation transport modeling must be performed
from each hypothesized source to calculate the predicted
measurement at a particular location. For this reason, the
majority of STE work has focused on a small number of



sources (two or less) in mostly obstacle-free environments.
The current work seeks to address the gaps above through

the design of a novel particle filter algorithm dubbed the
Dynamic Discrete Particle Filter (DDPF). The goal of the
algorithm is to find point-sources of gamma radiation in a
defined search area that may include obstacles and terrain
features. The number, location, and strengths of the sources
is assumed to be unknown. The particle filter is designed to
fuse multiple count measurements from Geiger-Müller (GM)
counters, which may be fielded by personnel or mounted
on vehicles. The DDPF improves upon existing particle
filters for STE (such as that in [31]) by including two
unique elements designed to improve runtime performance
in cases with multiple sources and attenuation from terrain
and obstacles. First, there is a discrete pre-processing step
in which attenuation kernels are computed from discrete
source locations to discrete measurement locations. Since
attenuation calculations can be computationally intensive,
this pre-processing step enables heavy computation to be
done offline prior to the search, with results stored in a
database for use in online processing of measurements. Such
a decomposition allows the online portion of the algorithm
to run on computationally-lightweight hardware (e.g., em-
bedded computers) while also incorporating modeling results
from complex 3-D radiation transport codes [32], [33]. The
second innovation is the dynamic adjustment of the number
of particles and their distribution over particle sets associated
with different source cardinalities. This dynamic modifica-
tion of the number and allocation of particles, modeled on the
algorithm proposed in [34], allows the algorithm to handle
scenarios with a large number of sources efficiently.

The paper proceeds as follows. Section II provides an
overview of the problem statement. Section III details the
particle filter design and includes detailed descriptions of the
attenuation kernel computations and dynamic particle adjust-
ment steps. Section IV provides a description of the simu-
lation setup and metrics used for performance evaluation.
Section V provides an extensive set of simulation results,
demonstrating the benefits of the novel algorithm features
by comparing performance to a benchmark algorithm based
on that proposed in [31]. Overall, the proposed algorithm
is shown to efficiently solve the STE problem for multiple
sources in complex scenarios involving numerous obstacles
with uncertain attenuation characteristics.

II. PROBLEM STATEMENT

Consider a search volume A containing known obstacles,
terrain, and constant background radiation µb. The coordinate
system is defined as (x, y, h) with respect to a local ground
frame, where x and y represent Easterly and Northerly
directions, respectively, and h is height above a reference
altitude. There are an unknown number rtrue > 0 of sources
of gamma radiation present in A. Point sources are indexed
by s ∈ {1, ..., rtrue}.

Each point source is parameterized by both its spatial
coordinates (xs, ys, hs) ∈ A and its equivalent strength φs.
The equivalent strength characterizes the source’s activity

and photon energy level, along with conversions and scaling
factors [35]. A set of K measurements, indexed by k ∈
{1, ...,K}, are taken in the space and parameterized by
spatial coordinates (xk, yk, hk) ∈ A and value zk ∈ N which
represents the total number of counts observed over time
interval τ .

The problem statement is then to infer the source pa-
rameters (xs, ys, hs) and φs ∀ s given the measurements.
Furthermore, for the purposes of this work, it is desired that
estimates for the source parameters be updated in real-time
as new measurements are gathered.

It is known that the likelihood of measuring z counts
during time interval τ from a source emitting an ideal count
rate µ at a given measurement location is Poisson distributed
[16], [31], [36]. Specifically, given the ideal number of
counts λ = µτ , an idealized measurement ζ is drawn from
Eq. (1) where P denotes the Poisson distribution. However,
due to the effects of saturation, the actual measured value z
is given according to Eq. (2) which means z not necessarily
Poisson distributed and is instead sampled from a saturated
Poisson distribution P̃ with parameters λ and µsat as shown
by Eqs. (3) and (4),

ζ ∼ P (λ) (1)
z = min (ζ, µsat) (2)

z ∼ P̃ (λ, µsat) (3)

P̃ (z;λ, µsat) =


P (z;λ) z < µsat∑

z≥µsat

P (z;λ) z = µsat

0 z > µsat

(4)

where µsat is the detector saturation value. This is the
maximum number of counts the meter can report given its
dead/recovery time, which is usually on the order of a few
hundred microseconds [37]. As the radiation field propagates
through the environment, the mean ideal count rate µ is
subject to attenuation through the phenomena of absorption,
scattering, and reflection.

III. METHODOLOGY

A. Overview

The structure of the DDPF proposed in this work is shown
in Fig. 1. Two innovative aspects of the algorithm are high-
lighted in this figure. First, prior to gathering measurements,
a radiation transport model is used to compute so-called “at-
tenuation kernels”. This pre-computation is meant to be done
offline using a transport model of any desired complexity. As
described in Section III-B, the attenuation kernels encode
radiation transport modeling from a discrete set of candidate
source locations to a discrete set of measurement locations.
These attenuation kernels are used online as measurements
are taken to perform recursive Bayesian estimation via se-
quential Monte Carlo methods (i.e., particle filtering). During
the estimation process, the particle filter uses the Dynamic
Particle Count Adjustment (DPCA) algorithm based on [34]
to adjust the number of particles in order to balance speed



Fig. 1. Overview of Dynamic Discrete Particle Filter Algorithm.

and accuracy. This element comprises the second major
innovation of the DDPF design. The current best estimate
of the source terms is updated online, as new measurements
are gathered, via a maximum a posteriori estimation routine
applied to the particle set. The various algorithm components
are described in detail below with an emphasis on the novel
elements.

Prior to describing each algorithm component, several
brief definitions are provided. Since the particle filter is up-
dated after each new measurement, iterations of the algorithm
correspond to the current measurement index k. The particle
filter uses a set of N particles Xk, indexed by n ∈ {1, ..., N}.
A single “particle” at iteration k, denoted X

(n)
k , consists of

a source parameter matrix θ and weight w, and represents a
single hypothesis for the solution of the STE problem posed
in Section II. Unlike other particle filters designed for STE
[16]–[21], [25], [30], a particle in this work can represent a
combination of any number of sources, r ∈ {1, ..., rmax}.1

The source parameter matrix for each particle is an r × 3
matrix, θ = (θ1, · · · , θr), where each row is a 1 × 3
source parameter vector θs = [xs, ys, φs] representing an
individual source hypothesized by the particle. It is assumed
that all sources lie on the terrain surface, and thus the height
coordinates of the sources hs = hs (xs, ys) are not included
as independent parameters.

B. Precomputation of Attenuation Kernels

Let X
(n)
k be an arbitrary particle at iteration k, and let

measurement zk be taken at coordinate (xk, yk, hk). Define
λ(X

(n)
k ) as the ideal counts observed at location (xk, yk, hk)

due to the sources described by Xk as,

λ(X
(n)
k ) = µk,nτ (5)

where µk,n is the ideal count rate due to the arbitrary particle
X

(n)
k . Then the likelihood of observing zk given λ(X

(n)
k ),

including the effects of detector saturation, is given by the

1Note that in this work the null hypothesis of no sources present (r = 0)
is excluded. This differs from [31].

saturated Poisson distribution, P̃ ,

p
(
zk|X(n)

k

)
= P̃

(
zk;λ

(
X

(n)
k

)
, µsat

)
(6)

The particle filter requires that the likelihood in Eq. (6) be
computed at least N +NS times every time a new measure-
ment is obtained, where N is the number of particles and S
is the number of progressive correction stages (described in
Section III-C.5). Computing λ(X

(n)
k ) requires knowledge of

the ideal count rate µk,n given the source parameters in X
(n)
k .

In settings involving obstacle and terrain occlusions, µk,n

must be determined via a radiation transport model. Such
models exhibit varying levels of fidelity (e.g., [32], [33]), but
in general models that capture complex phenomena such as
obstacle absorption or scattering can be so computationally
intensive that they are infeasible to run online N+NS times
every time a measurement is obtained.

To address this computational bottleneck, the proposed
DDPF replaces online radiation transport modeling with
offline transport modeling over a set of hypothesis-
measurement pairs. The linear relationship between source
strength and ideal count rate that the kernels exploit allows
the online likelihood calculation step to be reduced to a
simple linear algebra operation. First, the search volume
A is discretized into a set of I discrete source locations
and J discrete measurement locations. Define a so-called
attenuation kernel Θi,j between source location i ∈ I and
measurement location j ∈ J which may model the effects of
attenuation, reflection, transmission, etc. Then the ideal count
rate µ̂k,n,j due to particle n at iteration k, not accounting for
background interference, at location j is given by,

µ̂k,n,j =

rk,n∑
s=1

φ
(n)
k (s)Θi,j (7)

In (7), rk,n is the maximum number of sources hypothesized
by particle X

(n)
k , and φ

(n)
k (s) is the strength of hypothesized

source s of particle X
(n)
k . The ideal count rate accounting

for background radiation is then be obtained as,

µk,n,j = µb + µ̂k,n,j (8)

where µb is the average count rate due to background
radiation.

Each time a new measurement is obtained, the particle
filter computes the likelihood associated with all N particles.
This likelihood calculation requires that the ideal count
rates for all particles be recomputed and compared with
the observed count rate. The simplicity with which the
ideal count rates can be computed using the attenuation
kernels makes this process fairly trivial computationally.
Define vector Θk,n = [Θi(k,n,1),j , · · · ,Θi(k,n,rk,n),j ] where
i(k, n, s) is the source location of source s of particle X

(n)
k .

Likewise, define vector φk,n = [φ
(n)
k (1), · · · , φ(n)

k (rk,n)].
Then, using Eq. (7), the ideal count rates for all particles
can be computed at the kth measurement update (assumed to
occur at location j) through the following N inner products:



 µ̂k,1,j

...
µ̂k,N,j

 =

 Θk,1·φk,1
...

Θk,N ·φk,N

 (9)

Note that Eqs. (7) and (9) only make sense if source loca-
tions in each hypothesis X(n)

k are restricted to lie at locations
in I. This assumption enables radiation transport modeling to
be shifted offline, allowing for arbitrarily complex models to
be used in real-time filtering. In practice, the discretization
of A limits the spatial accuracy that can be achieved by
the filter, and thus the resolution of the discretization must
be chosen such that the solution for the source locations
meets the desired accuracy requirements. An obvious trade-
off exists between the spatial accuracy that can be achieved
and the number of attenuation kernels that must be computed
offline and stored. Note that, while the source locations are
converted to discrete variables, the source strengths remain
continuous variables.

For purposes of illustration, a simplified radiation transport
model as described in [35] and [38] is used in this paper. This
model is capable of modeling absorption through various
media and mean background radiation, but it does not model
reflection, scattering, or transmission.

Given a set of sources φs, s ∈ {1, ..., r}, the ideal count
rate observed at a particular location (x, y, h) is given by,

µ = µb +

r∑
s=1

φs

d2s
e−βmdds (10)

where ds =
√

(x− xs)2 + (y − ys)2 + (h− hs)2. In (10),
βmd is the absorption coefficient of the medium. Since the
path from measurement to source may pass through various
media, (10) is only valid along paths with a constant βmd.
One method to handle this is through ray (or path) tracing.
In this work, ray tracing is used to compute the attenuation
kernels from a grid of possible source locations to a grid of
measurement locations. This process is depicted in Figs. 2
and 3. In Fig. 2, the source grid is shown with light dots,
and the measurement grid is shown with heavy dots. Starting
from the source location, a ray is cast to the measurement
location and the intersections where the ray passes through
obstacles of different absorption coefficients are recorded
(dashed lines in Fig. 3). Using a reference source strength of
φs = 1 at the source location, Eq. (11) is used to compute a
count rate at the first intersection using the βmd value of the
first region (initial red line in Fig. 3 from 0-20 m).

µs =
φs

d2s
e−βmdds (11)

Then, a new equivalent source strength is computed by
solving Eq. (11) using the βmd of the next segment and
the count rate at the first intersection. These two steps
are repeated consecutively over all segments until the mea-
surement location is reached, resulting in a count rate at
the measurement location (µi,j) given a unit source at
the original source location. The attenuation kernel is then

Fig. 2. Example of Discretized Ray Tracing Over Source and Measurement
Grids.

Fig. 3. Example of Equivalent Source Strength Values Computed Over
Ray.

simply Θi,j = µi,j . While this ray tracing approach is
used in this work to compute the attenuation kernels, any
radiation transport model of desired complexity may be used
as discussed above.

C. Particle Filter Update Step

1) Initialization: The filter is initialized by sampling N
particles. Each particle has an associated source cardinality r.
In [31], the r values are sampled uniformly from the integers
in the set {1, · · · , rmax}. While this correctly models the
fact that the source cardinality is (presumably) unknown a
priori, as the number of sources grows the spatial coverage
of the particle set becomes very poor in high dimensions.
For example, 100 particles may be adequate to represent
possible source locations in a 2-dimensional space, but 100
particles in a 6-dimensional space results in extremely sparse
coverage of the spatial domain. In this work, better results
were obtained by initializing the particle set such that the
number of particles allocated to higher dimensions grows
exponentially with r. Specifically, r is sampled from a
probability distribution wherein the probability of selecting



Algorithm 1 Particle Filter Update Step
1: function Xk = UPDATE(Xk−1, z)
2: X = Xk−1

3: for r = 1, ..., rmax do ▷ Begin PC
4: m = 0
5: for n = 1, ..., N do
6: if size(X, 2) = r then
7: m = m+ 1
8: I(m) = n
9: Y (m) = X(n)

10: end if
11: end for
12: Select coefficients γs s.t.

∑
s
γs = 1

13: for s = 1, ..., S do
14: Mr = m
15: for m = 1, ...,Mr do
16: w(m) = C∗ Likelihood (X(m), z)γs

17: end for
18: Resampling: Y = Resample(Y ,w)
19: Regularization: Y = RegularizeParams(Y )
20: end for
21: for m = 1, ...,Mr do
22: X(I(m)) = Y (m)

23: end for
24: end for
25: for n = 1, ..., N do ▷ Begin FF
26: w(m) = C∗ Likelihood (X(n), z)
27: end for
28: Resampling: X = Resample(X ,w)
29: Regularize R: X = RegularizeR(X)
30: Xk = X
31: end function
32: function w = LIKELIHOOD(X , z)
33: wlast = 1
34: for k = 1:K do
35: w = wlast ∗ p(zk|X)
36: wlast = w
37: end for
38: end function

r = r′ is given by

P (r = r′) = pr
′

(12)

where r′ ∈ {1, · · · , rmax} and p is the solution to

1 =

rmax∑
r=rmin

pr (13)

The maximum source cardinality rmax is chosen by the
operator based on external information about the number of
possible sources for which to search. Given N particles,
each with a sampled r value, the spatial coordinates of
each source for each particle may be sampled from uniform
distributions dictated by the boundaries of A. Likewise, the
source strengths may be sampled from a uniform distribution
within selected minimum and maximum values2. Note that
additional a priori information may of course be used to
change the initial sampling approach as desired in a specific
scenario.

2) Likelihood Calculation: Algorithm 1 shows the particle
filter update (i.e. Bayesian inference) step, which is executed
every time a new measurement zk is obtained. The algorithm
takes as input all past measurements z and the source

2Results show a low sensitivity to initial φ, and thus the range is not
critical for performance.

parameter hypotheses at the previous update step, denoted
Xk−1. The update step outputs an updated set of hypotheses
(particles) given the current measurement. There are three
critical operations in the update step: likelihood computation,
resampling, and regularization.

The likelihood computation steps are shown in Algorithm
1, line 32. This is accomplished using Eq. (6) which shows
that the probability of a measurement given a source param-
eter array X is given by sampling a saturated Poisson distri-
bution with parameter λ found by using Eq. (5). This com-
putation is not just performed on the current measurement,
but on all past measurements for a given particle. Since each
measurement is independent of the others, the probabilities
of each measurement resulting from a given particle can be
cumulatively multiplied together. This returns the probability
that every measurement could have come from the given
particle. The reasoning for using all the measurements (prior
and current) is explained further in Section III-C.4. The
particle weights are found by normalizing the probabilities
of each particle by a constant, C, such that the weights sum
to one.

3) Resampling Algorithm: The second critical operation
is resampling as shown in Algorithm 1, lines 18 and 28.
Systematic resampling [39], [40] is used in this work. This
process involves computing the cumulative sum vector of the
weights and using it to build a vector of indices representing
the particles to be resampled. Further details of systematic
resampling can be found in [39], [40] as well as other
references, and thus are omitted here.

4) Regularization: The final major element of the update
step is regularization (lines 19 and 29 of Algorithm 1). In
line 19, the parameters themselves are regularized. Each
parameter, xs, ys, and φs is perturbed by a Gaussian kernel,
ν ∼ N (0, σ) (hs is not directly perturbed as the terrain
dictates the mapping from (xs, ys) to hs). Here σ is selected
as either σx,y or σφ, which are the variances for the spatial
coordinates and source strengths respectively.3 Regulariza-
tion helps counter particle degeneracy [41] by increasing
particle coverage. A variance that is too small will result
in insufficient coverage of the space for small numbers of
particles, while a variance that is too large invalidates the
Markov assumption (i.e., particles could retread old ground,
losing information from past measurements). In this work,
a larger variance is selected for greater coverage, and an
informed “retraining” step is added to overcome information
loss. Informed retraining is a strategy wherein the weights
of the particle set are computed based on a selection of prior
measurements instead of just the most recent one. In this
work, since the set of measurements is limited and the search
space is relatively small, all previous measurements are used
for retraining. Note that this retraining step is further enabled
by the ability to rapidly compute the ideal count rates using
the attenuation kernels per Eq. (9) – this step would be far

3In the discrete PF, the spatial parameters are fixed to a grid of points.
During regularization, the new perturbed coordinates are rounded to the
nearest discrete point.



more expensive if complex transport models had to be used
online.

Regularization is also performed on the estimated number
of sources r for each particle (line 29 of Algorithm 1).
This creates a small probability of increasing or decreasing
r for a particle based on tunable parameters pup and pdn,
which represent the probability of adding a new source or
removing a source from the particle. A new source is added
to a particle by copying a randomly and uniformly selected
source from the combined set of all hypothesized sources
in the PF. When removing a source, a source is randomly
and uniformly selected from those of a given particle and
removed.

5) Progressive Correction: Progressive correction (PC) is
a stochastic form of the particle flow with log-homotopy
designed to reduce particle degeneracy [42]–[44]. More
particles survive the correction step (the correction step is
the combination of the regularization and resampling steps)
during PC because the variance in the likelihood is reduced
by the exponent γs. Essentially, PC splits the correction step
into several smaller substeps. The progressive correction step
begins on line 3 of Algorithm 1. Note the particles are only
competing against particles of the same source cardinality
which is in contrast to full field correction in line 25 where
all particles compete against all other particles. Normally, PC
is a substitute for the correction step. In this case, since PC is
performed separately for each source cardinality hypothesis,
the full field correction is needed to allow particles of
different source cardinalities to compete against each other.

6) Maximum A Posteriori Estimate: The posterior PDF
for all measurements up to step k, p(Xk|z1:k), is ap-
proximated by the empirical distribution of particles
{w(n),X

(n)
k }Nn=1, where w(n) is the weight of the nth

particle. The maximum a posteriori (MAP) estimate for a
source parameter is the mean of the marginal PDF of the
parameter—since the weights are uniform after each update
step, this simplifies to the mean of the given parameter
across the particle set. The first step in estimating the source
parameters from the particle set is to find the estimated
source cardinality according to,

r̂ = nint

(
1

N

N∑
n=1

∣∣∣X(n)
k

∣∣∣) (14)

where | · | extracts the cardinality, or number of sources,
of a particle and nint() is a function that rounds to the
nearest integer. Then, particles for which r ̸= r̂ are removed
from the particle set. k-means clustering is then performed
on the remaining particles where k = r̂. These clusters
represent individual location and source strength hypotheses
for each of the identified point sources. The MAP estimates
of (xs, ys, φs) are then found as the centroid of each cluster.
The heights of each source may then be estimated by
interpolating a terrain map using the MAP estimates of xs

and ys.

D. Dynamic Particle Count Adjustment Algorithm
The number of particles N is a tunable parameter with

well-known tradeoffs between computational burden (high
N ) and inaccurate estimates due to sparse coverage of the
domain (low N ). Elvira et al. [34] developed an algorithm
to dynamically adapt N in response to estimates of filter
convergence as measurements are gathered. This method
was shown to effectively balance the above tradeoffs. In the
context of the current work, the ability to accurately identify
large numbers of sources in the environment (e.g., more than
five) hinges on use of a sufficiently large number of particles
that produce adequate spatial coverage. By dynamically
adjusting N , the filter maintains sufficient coverage when
initial measurements are gathered but is not saddled with
large numbers of extraneous particles later on, once the
particles converge to the likely source parameters.

A Dynamic Particle Count Adjustment (DPCA) algorithm
is developed in this work based on [34]. This method, shown
in Algorithm 2, is executed after the PF’s update step. All
of the measurements taken up to the latest measurement
step k are used, denoted as Z1:k = {z1, · · · , zk} . Each
measurement is paired with a set of fictitious measurements
Z̃ = {z̃1, · · · , z̃J} drawn from J particles randomly and
uniformly sampled from the PF (line 5) to compute a set
of the negative log Poisson likelihoods Q = {q1, · · · , qk}
(line 8) that each of the true measurements could have come
from the set of fictitious measurements given by the PF. The
set is represented by its mean measurement value, z̄. Using
a negative log likelihood means a higher value represents
a less likely source configuration. The maximum value of
Q, qmax, is compared to tunable qh and ql values, and the
particle count is increased or decreased according to tunable
functions, fh or fl (Lines 20 and 25). If more particles
are added, they are added according to the initialization
function used at the start of the PF algorithm (line 21). If
the number of particles decreases, they are randomly and
uniformly removed (line 26). Tuning J , qh, ql, fh, and fl is
required to achieve a suitable balance between runtime and
accuracy (e.g. a higher qh indicates a higher tolerance for
unlikely particles, and a more aggressive fh would prioritize
accuracy over runtime).

IV. EXPERIMENTAL SETUP

A. Simulation Setup
Simulation results are presented in the next section to

demonstrate performance of the algorithm and compare it
to the particle filter design in [31]. All results in this
paper use the search area shown in Fig. 4, which measures
100m × 200m. Building footprints were obtained from
OpenStreetMaps (OSM) [45], and for ease of implementation
were treated as solid structures. Furthermore, the terrain in
this example location is relatively flat, so for the purposes
of this work all terrain and source heights are assumed to be
zero. Buildings are modeled as prisms such that the ground
footprint extends upward uniformly to the building height.
Building height data was taken from OSM, and buildings
without height data were assumed to be 4.3m tall.



Algorithm 2 Dynamic Particle Count Adjustment Algorithm
1: function Xk = DYNAMIC(Xk , Z1:k)
2: for κ = 1 : k do
3: for j = 1 : J do
4: i ∼ U{1, N}
5: z̃j ∼ p

(
zκ|X(i)

k

)
6: end for
7: z̄ = mean({z̃1, · · · , z̃J})
8: qκ = − log P̃(zκ; z̄, µsat)
9: end for

10: qmax = max(Q)
11: if qmax > qh then
12: X,N = fup(X,N)
13: end if
14: if qmax < ql then
15: X,N = fdn(X,N)
16: end if
17: Xk = X
18: end function
19: function [X,N ] = fup(X,Nold)
20: N = fh(Nold)
21: Xnew = initialize(N −Nold)
22: X = Xnew ∪X
23: end function
24: function [X,N ] = fdn(X,Nold)
25: N = fl(Nold)
26: s ∈ N, s ∈ [1, N −Nold]
27: X = X(s)

28: end function

Fig. 4. Search Area for Simulation Trials. (left) Satellite view of search
area with buildings outlined in green. (center) Ray-traced radiation intensity
from three example sources (red = high intensity). (right) Combined plot of
radiation and environment.

The attenuation kernels were calculated across this domain
at a grid of 44 measurement locations and 4,900 possible
source locations. The number of measurements was chosen
to be as sparse as possible considering the range of possible
source strengths and the size of the environment. This is why
it is much less than the number of possible source locations,
which was chosen to allow for a high resolution solution.
The assumed measurement height was 3 m (simulating,
for example, a detector mounted on top of a truck) and
measurement locations are restricted to lie outside buildings.
The grid of measurement locations is shown in Fig. 5 by
yellow dots. When computing the attenuation kernels, linear
absorption coefficients of βobs = 1 × 10−2 m-1 and βair =
1× 10−6 m-1 were used for transmission through buildings
and air, respectively.

In the examples below, simulating measurements requires

Fig. 5. Example Boustrophedon Search Pattern.

TABLE I
SIMULATION PARAMETERS.

Parameter Value Parameter Value
N varies rmax varies

Number of measurements 44 rtrue varies
Possible source location points 4,900 φmin (counts/s) 5,000

βobs m-1 varies φmax (counts/s) 12,000
βair m-1 1.00E-06 S 20

µb (counts/s) 1 σpos (m) 3
µsat (counts/s) 5,000 σφ (counts/s) 20

SNRmin(dB) 25 pup 0.003
τmax(s) 60 pdn 0.003
τmin(s) 1 qh 30

Measurement height (m) 3 ql 10
Total search area width (m) 100 fh(Nold) 50Nold

Total search area length (m) 200 fl(Nold) Nold/1.2

that an exposure time τ be selected. An exposure time is
calculated as follows. First, λmin is selected representing
the minimum acceptable measured count. This value can be
selected arbitrarily, or can be derived by solving Eq. (15) for
λmin [16]:

SNRmin = 10 log10(λmin/µb) (15)

where SNRmin is a design variable representing the min-
imum acceptable signal-to-noise ratio. Then, given a count
rate µ, τ is selected as τ = λmin/µ. Finally, τ is constrained
on the interval [1, 60] s.

With the attenuation kernels pre-computed and stored, the
online portion of the algorithm is executed as measurements
are obtained. Measurements in all trials shown below are
obtained through a boustrophedon search pattern [46] shown
in Fig. 5. All simulation parameters are listed in Table I.

B. Performance Metrics

Performance of the algorithm is evaluated in two ways:
run time and accuracy. Run time measures the computation
time involved in the online portion of the algorithm only.
Accuracy is measured differently depending on the source
parameter. Accuracy of the source cardinality estimate is
measured as the absolute difference between the true and
estimated number of sources.



Fig. 6. Error Associations for Scenarios in which Particle Filter Overesti-
mates (left) and Underestimates (right) Source Cardinality.

To assess the accuracy of the source location and strength
estimates, comparisons are made between the estimated
sources and the nearest true source by distance. In cases
where the estimated number of sources r̂ is higher or lower
than the true number of sources rtrue, the selection of the
“nearest” source is not necessarily straightforward. Figure
6 shows how this is handled. If the number of sources
is overestimated or if r̂ = rtrue, the estimated sources
are compared against the nearest actual sources (Fig. 6,
left). This means a true source may factor into the error
calculations more than once. If the number of sources is
underestimated, each true source is compared to the nearest
estimated source (Fig. 6, right). This means an estimated
source might contribute to error calculations more than once.

With the “nearest sources” defined, accuracy of the source
location estimate is assessed as the sum of the Euclidean
distances between the true and estimated spatial parameters
according to,

ϵpos =
∑
i∈R

∆di (16)

where R = {1, ...,max(r̂, rtrue)} and ∆di is the Euclidean
distance between the ith estimated source and its nearest
true source for the r̂ ≥ rtrue case, or the Euclidean distance
between the ith true source and its nearest estimated source
for the r̂ < rtrue case. Likewise, accuracy of the source
strength estimate is measured as,

ϵφ =
∑
i∈R

∆φi (17)

where ∆φ is the absolute value of the difference in source
strength between the nearest true and estimated sources.

V. RESULTS

A. Example Simulation

An example simulation is provided to contextualize the
Monte Carlo studies presented in the following sections. It
is performed using three sources with random locations and
source strengths. The locations are shown in Fig. 7 as green
dots, and the source strengths (from the source at the max-
imum y value to the minimum y value) are 7,000, 12,000,
and 12,000 counts/sec, respectively. Figure 7 also shows the
hypothesized sources at various stages of the particle filter

Fig. 7. Stages of the PF. (top-left) initialization. (bottom-right) post-
processing. (all others) update.

operation, from initialization (top left), successive update
steps, and the final maximum a posteriori estimate (bottom
right). Hypothesized sources are shown as colored dots where
color indicates the particle’s source cardinality estimate (blue
= 1 source, red = 2 sources, yellow = 3 sources). The size
of the particles correspond to their likelihood after a the
measurement update. Measurement locations are shown as
black asterisks. The building footprints are also shown in
green for clarity in the final plot. The initial particle count is
N = 5, 000, and time histories of N and qmax as a function of
time is shown in Fig. 8. The values for qh = 30 and ql = 10
are shown as dashed lines labeled ”Increase” and ”Decrease,”
respectively. Note that at k = 33 the DPCA algorithms grows
the particle set significantly when qmax exceeds qh due to an
aggressive fh function shown in Table I – this results in
a large set of low-likelihood particles scattered across the
domain as seen in the bottom center panel of Fig. 7.

The final maximum a posteriori results for this exam-
ple case exhibit excellent accuracy, with r̂ = 3 sources,
ϵpos = 2.3 m, and ϵφ = 1, 463 counts/sec. The measurement
updates, maximum a posteriori estimation, and DPCA algo-
rithm steps (i.e., the steps performed online) required 32 sec
to run on an AMD Ryzen 5 3600X 4.4 GHz processor. Note
that this runtime number also excludes the detector dwell
time, τ , required each time a measurement is obtained, as
this is not pertinent to the algorithm runtime itself.

B. Attenuation Kernel Study

In the following sections, a series of Monte Carlo sim-
ulations is presented to highlight the tradeoffs of various
components of the proposed algorithm. The first study
investigates the effect of problem discretization using the



Fig. 8. Convergence Metrics and Particle Count for Sample Trial Using
the DDPF.

attenuation kernels. Two algorithms are compared. The first
is the proposed “discrete” particle filter, or DPF, which uses
the discretized formulation presented in Section III-B. The
second is the so-called “continuous” particle filter (CPF),
which is based on the algorithm in [31]. This algorithm does
not employ any spatial discretization, and instead requires ray
tracing to be performed online for each hypothesis at each
update step. In order to isolate the effects of discretization
only, the DPF in this example does not include the DPCA
algorithm; the particle count is fixed at N = 500 instead.
This relatively low value of N is used to keep computation
times reasonable for the CPF case.

A Monte Carlo simulation was performed to investigate
general performance trends. In all cases, the particle filter
was configured with rmax = 3. Thirty random source config-
urations were generated. The true number of sources, rtrue
used in each scenario was randomly and uniformly selected
between 1 and 3 (since the assumed maximum number
of sources is not necessarily equal to the true number of
sources). The source locations were then randomly sampled
uniformly across the search area, and the strengths were
randomized uniformly between 5,000 and 12,000 counts/sec.
For each of the 30 random source configurations, 5 trials
were run with the CPF and DPF using different random seeds
to generate the initial particle set. This resulted in a total of
150 simulation trials for the CPF and DPF. Furthermore,
to study the effects of the obstacles, these 150 trials were
repeated with and without the obstacles.

The results of these simulations are shown in Table II. The
line shows the portion of trials in which the source cardinality
estimate r̂ is correct. The means and standard deviations of
ϵpos and ϵφ are shown as µ() and σ(), respectively. Overall,
the accuracy of the CPF and DPF are not significantly
different, as expected. However, the CPF exhibits average
runtimes that are over two orders of magnitude greater than
the DPF, even in the obstacle-free case. Furthermore, because
the CPF must compute radiation transport online, its runtime
increases with the number of obstacles (as seen by the differ-

TABLE II
MONTE CARLO RESULTS COMPARING CPF AND DPF PERFORMANCE

(N = 500).

Particle Filter CPF DPF
Obstacles No Yes No Yes

r̂ Correct (%) 84 83.33 87.33 86
µ(ϵpos) (m) 4.736 4.494 5.592 5.259
σ(ϵpos) (m) 4.357 5.121 7.094 6.469

µ(ϵφ) (counts/s) 736.4 488.8 414.2 427.3
σ(ϵφ) (counts/s) 2534 2392 2247 2653
Avg. Runtime (s) 1730 31,910 13.5 12.9

Std. Dev. Runtime (s) 51.08 5070 1.407 1.147

Fig. 9. Position Error for CPF and DPF in Cases With and Without
Obstacles.

ence in average CPF runtime between the obstacle and no-
obstacle cases). Because this computation is shifted offline
for the DPF, its online computation time is independent of
the number of obstacles.

While runtime improvements are achieved by the DPF
without significant loss of accuracy when viewed from the
perspective of mean errors, the DPF is subject to more outlier
solutions compared to the CPF. This is due to the low number
of particles used in these cases. Figure 9 shows a series of
violin plots corresponding to each of the configurations run.
Each violin contains 150 trials. The left side of the violin
is a histogram, the right side is the Inter-Quartile Range
(IQR) with the white dot as the median. The values plotted in
the violin exclude failure cases which are shown as colored
points above the violin plots (failed cases are defined as those
with performance metrics which are more than three scaled
mean absolute deviations from the median). As shown in the
figure, a handful of cases for both the CPF and DPF resulted
in very high position errors, usually caused by undershooting
or overshooting the source cardinality. The DPF resulted in
a higher number of these “failure” cases, which is the cause
of the slightly higher mean position errors in Table II. Note,
however, that the median of the DPF position error is still
lower than the CPF—this means that outside of these failure
cases, the accuracy of the DPF was actually marginally
better.



TABLE III
MONTE CARLO RESULTS WITH DPF USING VARYING N .

Particle Filter DPF
Particle Count 100 500 2 500 5,000 25,000 50,000
r̂ Correct (%) 78.67 86 92 92.67 94.67 96

µ(ϵpos) (m) 9.457 5.259 3.703 3.579 3.415 3.194
σ(ϵpos) (m) 13.92 6.469 3.43 3.87 3.076 2.821

µ(ϵφ) (counts/s) 466.4 427.3 521.2 474.4 186.5 342
σ(ϵφ) (counts/s) 3030 2653 2578 2139 1788 1826
Avg. Runtime (s) 7.524 12.95 34.66 76.57 1131 4137

Std. Dev. Runtime (s) 0.5937 1.147 1.918 5.964 168.9 666.6

C. Particle Count Study

The occasional poor solutions in the previous Monte Carlo
study are caused by the use of a relatively low number of
particles. A study was performed to examine how particle
count affects errors in the solution. In these cases, the same
150 simulations (30 source configurations with 5 random
seeds) were run with obstacles using the DPF only. These
simulations were run with varying values of N , with results
shown in Table III and Fig. 10. In Fig. 10, the solid
line indicates the mean. As expected, higher N leads to
improved accuracy. The rate at which r̂ is correct increases
monotonically with N . This in turn reduces the number of
“failed” solutions (cases exhibiting unusually high position
errors) as N grows, as seen in Fig. 10. However, increasing
N shows diminishing returns in terms of improving accuracy,
especially when measured against the runtime penalty when
using a larger particle set as shown in Table III. These di-
minishing accuracy returns are due to measurement sparsity.
With sparse measurements, there can be many parameter
vectors with high likelihoods between which the PF cannot
distinguish. Therefore, increasing the number of particles
without increasing the density of measurements (particularly
in certain areas) will not necessarily produce improved
estimates. An illustrative example of this phenomenon can
be seen in Fig. 4. In the top right of the three subplots, two
sources lie close together inside of an obstacle. The radiation
field contours are nearly circular outside of that obstacle.
Without a measurement inside the obstacle between these
sources, the addition of more particles in and of itself may
not enable the PF to determine that there are two sources
inside the obstacle.

D. Dynamic Particle Count Adjustment Algorithm Study

The prior section illustrates the well-known tradeoff be-
tween the desire to use a high number of particles for
improved accuracy, and the desire to use a low number of
particles to reduce runtime. For a practical system that is
expected to operate in a range of scenarios with different
spatial limits, obstacle densities, etc., it is nearly impossible
to choose a suitable value of N that will work well in all sce-
narios. The DPCA algorithm described in Section III offers
a solution to adapt the particle count in real-time, thereby
balancing the accuracy-runtime tradeoff automatically for a
specific scenario.

To investigate the performance of the DPCA, the Discrete
Particle Filter (DPF, which uses a fixed N ) is augmented with

Fig. 10. Position Error for DPFs with Different Particle Counts.

the DPCA as depicted in Fig. 1. This algorithm is denoted as
the Dynamic Discrete Particle Filter, or DDPF. Monte Carlo
simulations were performed with the DPF and DDPF using
the same methodology discussed in Section V-B. However,
to study the effect of the number of sources, each Monte
Carlo simulation was repeated for different values of rmax
ranging from 2 to 8. Increasing rmax tends to challenge the
algorithm as the particle filter must search a solution space
that grows exponentially with the number of sources. Note
that the initial particle count used by the DDPF, N0, was set
to 5,000 in each simulation.

The results of these Monte Carlo studies are shown in
Figs. 11-13 and Table IV. In each figure, the solid lines
indicates the mean values. The bolded numbers in Table
IV show the superior value for a particular case, compared
between the DPF and DDPF. In Table IV, it is evident
that the DDPF only achieves a small improvement in mean
position accuracy compared to the DPF, which is already
quite accurate. Furthermore, the DDPF reduces the average
runtime compared to the DPF for rmax < 7, but only by a
small amount, and it even shows higher mean runtimes for
rmax = 7 and rmax = 8. However, the main advantage of
the DDPF is its ability to reduce the number of “failure”
cases with very high position errors. Figure 11 shows that
the DDPF is able to nearly eliminate these failure cases at
values of rmax > 5 by increasing the size of the particle
set adaptively as measurements are gathered. This allows
the filter to operate at maximum efficiency, using large
particle sets when necessary to address ambiguity, and small
particle sets as uncertainty is reduced. The improvement in
the number of failed cases is seen in the 95% upper bounds
on position error shown in Table IV (denoted P95()), which
are better for the DDPF in all cases of rmax > 2.

The reason for the DDPF’s reduction of failure cases
is encapsulated in Fig. 12. This figure shows the mean
of the set of negative log likelihoods Q over all update
steps. The negative log likelihood of the particle set is
the metric used to increase or decrease N as described in
Algorithm 2. A low average log likelihood (or high negative



TABLE IV
DPF AND DDPF COMPARED FOR VARYING rMAX .

Particle Filter DPF (N = 5, 000)
rmax 2 3 4 5 6 7 8

r̂ Correct (%) 98.67 92.67 85.33 76 60.67 54.67 47.33
µ(ϵpos) (m) 2.509 3.579 4.492 5.514 6.45 6.593 8.373
σ(ϵpos) (m) 3.445 3.87 3.465 4.069 4.943 5.049 5.774

P95(ϵpos) (m) 5.44 11.08 11.41 13.9 15.88 13.22 20.3
µ(ϵφ) (counts/s) 387.1 474.4 510.8 527.6 616.4 491.4 1064
σ(ϵφ) (counts/s) 1688 2139 2462 2628 2770 3142 3875

Mean Runtime (s) 75.46 76.57 77.87 79.01 79.95 82.82 83.05
Median Runtime (s) 77.25 78 79.1 79.9 81.15 83.99 83.81

Particle Filter DDPF (N0 = 5, 000)
rmax 2 3 4 5 6 7 8

r̂ Correct (%) 98.67 92.67 84 76.67 63.33 62.67 49.33
µ(ϵpos) (m) 2.636 3.76 4.454 5.33 5.92 6.091 7.471
σ(ϵpos) (m) 2.846 3.064 3.035 3.484 3.576 3.519 4.038

P95(ϵpos) (m) 6.115 10.56 10.74 12.66 12.41 12.19 14.68
µ(ϵφ) (counts/s) 304.7 348 298.5 460.7 833.2 814.8 1170
σ(ϵφ) (counts/s) 2090 2229 2264 2632 2648 3119 3539

Mean Runtime (s) 31.68 43.41 69.26 68.47 77.63 110.3 134.1
Median Runtime (s) 27.07 26.95 27.39 27.98 29.11 36.3 42.11

Fig. 11. Monte Carlo Position Errors for DPF and DDPF.

log likelihood) over the particle set means that the particle set
poorly matches the measurements that have been obtained.
Thus, a high mean negative log likelihood indicates that the
particle filter may require more particles, or else will suffer
from high estimation errors. Figure 12 shows that the DDPF
is much less susceptible to very large mean negative log
likelihoods, meaning that the quality of the particle set is in
general better than the DPF in many cases. This improvement
is achieved by increasing the number of particles when
necessary, particularly at high rmax.

The DDPF’s ability to grow the particle set when neces-
sary has obvious implications for runtime. Figure 13 shows
runtime statistics for the DPF and DDPF. In this figure, the
dashed line indicates the median values. The DPF runtimes
are nearly flat with respect to rmax, since runtime depends
primarily on N , which is fixed. For the DDPF, most of
the runtimes cluster around 20-30 sec, but several outlier
cases are evident with much higher runtimes; the frequency
of outliers grows with rmax. In these cases, the DPCA

Fig. 12. Mean Negative Log Likelihoods Over All Update Steps for DPF
and DDPF.

Fig. 13. Monte Carlo Runtimes for DPF and DDPF.

algorithm increased N substantially at some point during
the simulation. As a result, the mean runtime of the DDPF
varies as a function of rmax and even exceeds that of the
DPF for rmax > 6. However, as verified in Table IV, the
median runtime of the DDPF is substantially lower than
the DPF for all rmax. In general, these results show the
favorable performance of the DDPF compared to the DPF. In
most cases, the DDPF exhibits similar estimation accuracy
to the DPF with lower runtimes. In challenging cases, the
DDPF achieves much better estimation accuracy than the
DPF, albeit at the expense of increased runtime. This tradeoff
can be adjusted by tailoring the DPCA tuning parameters
in Table I. However, in practice it is expected that longer
runtimes would be an acceptable price to pay in order to
avoid very large errors in parameter estimates.

E. Uncertain Absorption Parameters Study

In practical scenarios, it may be difficult or impossible
to derive accurate absorption coefficients for all obstacles
in an environment. It is therefore important to character-
ize performance of the particle filter in the presence of



absorption parameter uncertainty. To test this, a Monte
Carlo simulation was performed using the DDPF and the
methodology described in Section V-B with rmax = 3. In
each simulation, however, the absorption coefficients for each
obstacle, βobs, were randomized, while the particle filter’s
attenuation kernel was built with an assumed constant value
of βobs = 10−2 m-1 for all obstacles. This creates a mismatch
between the true obstacle absorption coefficient and the
assumed value. Random absorption coefficients for each
obstacle were generated by first sampling ν ∼ N (m,σ),
and then computing βobs = 10−ν . Several Monte Carlo
simulations were performed at different values of m and σ,
as shown on the x-axis of Fig. 14. The value of m dictates the
bias in absorption coefficient estimates, while σ affects the
randomness of the coefficients between buildings. The com-
binations of these values were selected to achieve a several
orders-of-magnitude difference between the obstacle’s true
and assumed absorption parameter. The perturbed absorption
parameter for a given obstacle stayed consistent across all
150 trials.

The results of this experiment are shown in Table V. The
position and source strength estimates are fairly accurate for
the m = 2 cases – very similar to the no-uncertainty case.
This is presumably because the absorption coefficients do
not exhibit any bias with respect to the assumed values. The
exception is for the m = 2, σ = 0.5 case, where the large
random perturbations in βobs clearly reduce accuracy. The
worst-performing cases were those for which m = 1. In
these cases, the large bias led to numerous failed solutions.
This is expected as the effects of βobs decrease geometrically
as its exponent ν increases linearly. Figure 14 shows the
source position errors in each simulation for the different
randomization parameters. The m = 1, σ = 1 case clearly
exhibits numerous failed cases, but the other configurations
generally show favorable accuracy. Note that in Table V,
mean runtime serves as a proxy for algorithm performance
since the DDPF increases N substantially in the failed cases
to try to obtain accurate estimates.

The trend in source strength estimation error as a function
of uncertainty in βobs is shown in Fig. 15. This figure shows
the mean source strength estimation error for each case,
with the failed cases removed for each (m,σ) combination.
In general, the source strength estimate undershoots when
the true obstacle absorption is larger than assumed and
overshoots when the attenuation is higher than assumed. This
is expected—when the true obstacles attenuate more than
the particle filter assumes, the particle filter posits that the
sources must simply be weaker, and vice versa.

VI. CONCLUSIONS

A novel particle filter algorithm has been proposed for
radiological source term estimation. In light of the complex-
ity of the likelihood calculations, the continuous parameter
estimation problem is reduced in the spatial dimensions to a
discrete estimation problem. This discretization allows mea-
surements for each candidate source-measurement location
pair to be simulated offline for a reference source strength

TABLE V
DDPF PERFORMANCE WITH OBSTACLE ATTENUATION PARAMETER

UNCERTAINTY.

Particle Filter DDPF (N0 = 5, 000)
Obstacle m none 2 1 1 2 2 3 3
Obstacle σ N/A 0 1 .5 1 .5 1 .5

r̂ Correct (%) 92.67 92.67 88.67 98 96 94 91.33 90.67
µ(ϵpos) (m) 3.51 3.76 16.03 5.736 4 3.576 3.801 3.968
σ(ϵpos) (m) 2.726 3.064 26.81 8.758 2.52 2.637 2.779 2.969

µ(ϵφ) (counts/s) 730.8 348 1673 2364 1513 288 567.9 497.1
σ(ϵφ) (counts/s) 1925 2229 9068 1584 1874 2079 2245 2738

Mean Runtime (s) 49.7 43.41 2297 327 234.8 50.12 48.26 53.32

Fig. 14. Position Estimation Error for Varying Levels of Obstacle
Attenuation Parameter Uncertainty.

using a radiation transport model of any desired complexity.
The algorithm also includes a dynamic component that ad-
justs the number of particles in real-time to achieve a suitable
balance between estimation accuracy and filter runtime.

Simulation results illustrate that the particle filter is ca-
pable of producing accurate source term estimates – even
in obstacle-rich settings with relatively large numbers of
sources (up to eight). This improves upon algorithms in prior
work that have been tested only in scenarios with a handful
of sources. Furthermore, Monte Carlo simulation results
show that the proposed particle filter is reasonably robust
to uncertainty in absorption coefficients, although further
investigation is warranted using more detailed obstacle and
environmental models. The proposed methodology may be
applied to other estimation problems outside of radiological
applications and may be advantageous whenever likelihood
calculations involve complex models that are better suited
for offline rather than online simulation.
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