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Abstract—With increasing proliferation of smart phones, there
is an opportunity to employ mobile ad hoc networks to connect to
distributed energy assets located in remote areas. With embedded
intelligence and edge computing capabilities, autonomous ‘edge
control nodes’ can enable a decentralized energy nexus, without
the need for on-demand communications. Authors have developed
an opportunistic networking framework using Bluetooth Low
Energy and a specialized mobile phone application that enables
delay tolerant networking for the above framework. This paper
presents the analysis of time varying graph connectivity for
such an opportunistic mobile ad hoc network. Dependence of
connectivity on different network parameters such as radio char-
acteristics, the mobility of data mules and parameters governing
how connections are established are explored. Simulation results
showing the variation of above trends have been presented.
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I. INTRODUCTION

As the electric grid evolves, distributed resources (like
DERs, rooftop solar/PV, EV charging stations etc.) are pro-
liferating in it. There is a need for developing decentralized
control architectures that can address scalability, cybersecurity
and interoperability issues, while keeping the overall costs of
implementation to a minimum. Numerous internet-of-things
(IoT) solutions have been proposed by researchers [1], [2], but
have struggled to justify returns on investment, and as such
have not seen widespread deployment by electric utilities.

Some of the challenges that cellular and other long range
radio systems face are deployment costs in remote areas, de-
pendence on back-haul technology migration, country-specific
certification i ssues, a high d egree o f c ustomization a nd cyber-
vulnerability. Besides, Wi-Fi-access points or cellular network
coverage may not be available in areas of deployment, which
is often the case for electric utility assets.

In contrast to ‘on-demand’ connectivity models, a decentral-
ized framework has been proposed in [3], called the GAMMA
platform. Here, intelligence has been embedded in the edge
devices called GAMMA Kernels (referred to as nodes), which
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report only actionable information to the cloud. These nodes
are equipped with long range Bluetooth Low Energy (BLE)
radios [4] and have local computation power, data storage,
power management and can exert control action if needed.
The device to cloud connectivity is enabled by “data mules”
allowing for delay-tolerant networking [5]. These are devices
from trusted partners (like smart-phones, utility trucks etc.)
that relay data from the end nodes to the cloud in an oppor-
tunistic fashion. The data exchanged between the end node and
the server are encrypted end-to-end with a unique AES-128
key, and as such, the data mule only acts as a store and forward
system from the end node to the cloud. It does not have access
to; and cannot interpret the data being exchanged between the
server and the end node. The overview, operating principles
and various components involved in the system design for
GAMMA platform have been presented in [3].

A. Opportunistic Network with Edge Intelligence

The GAMMA Platform framework allows utilities to op-
erate assets autonomously, without the need for constant,
bandwidth-intensive, real-time data reporting to the cloud.
The edge devices can exert control actions based on some
‘rules’ set by the system operators. These are often times
slow changing ‘set-points’ and need to be reported to the
end nodes infrequently (once a week or few times a month).
Doing so opportunistically; by leveraging the mobility of
the data mules can result in an ecosystem of decentralized,
distributed, autonomous devices at very low capital and op-
erating costs. GAMMA platform has been operational at
Center for Distributed Energy, Georgia Tech since April 2018
and has demonstrated numerous applications as noted in [3],
[6]. The platform also enables asset monitoring applications,
where data packets are small (few kB in size) and generated
intermittently. Intelligence built into the end nodes extracts
only the actionable information and reports to the cloud, so
that the cloud is not overloaded with data.

As data mules move around, they discover and connect to
the end nodes located near them with specific inputs from the
cloud. End nodes advertise their presence using long range



BLE, over the Bluetooth advertisement channels (channels 37,
38 and 39). Whenever a data mule passing near an end node
picks up the advertisement, it initiates a connection request
and exchanges data between the node and the cloud server.
Although it is assumed that the data mule has access to the
GAMMA cloud server at all times, it can also work in an
offline environment, as a simple ‘store-and-forward’ system
i.e. caching data locally until internet access has been restored.

B. Contributions

The contributions of this paper are to develop an under-
standing of a random time varying nature of the connectivity
graph along with models to study data transfer from the end
nodes to the cloud. Since the system can be large (hundreds to
thousands of end nodes) and geographically dispersed (assets
can be located in remote areas), it becomes important to model
and understand the expected behavior of the system prior
to deployment. It is also necessary to capture the stochastic
nature of the connection process- a process largely dependent
on various aspects of the motion of the data mules (speed
and distance from nodes), and the process of pairing over
Bluetooth. Besides, it is necessary to understand the overall
coverage that can be achieved with a completely randomized
motion of the data mules, and its relation with parameters like
radio coverage range.

In this paper, in continuation from [3], a dependency on
various parameters such as number of data mules, RF line
of sight (LOS) range, connection parameters etc is studied
and results presented. A simulation model has been developed,
which uses the motion of data mules, and probabilistic nature
of connection to study how the throughput of the system varies
with above mentioned parameters.

II. TIME VARYING CONNECTIVITY GRAPHS

This type of networking falls under the traditional oppor-
tunistic networks and mobile ad-hoc networks (MANETS),
which have been extensively studied [7], [8], [10]. Consider N
end nodes distributed in a given region, with M data mules
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Fig. 1. Spatio-temporal representation of opportunistic connectivity. The end
nodes are the autonomous edge control devices of GAMMA platform, called
GAMMA Kernels, as discussed in [3].

traveling in it. The data mules get specific inputs from the
GAMMA server in order to discover and pair with specific end
nodes- typically those which have not been synchronized in a
long time, or if the cloud wants to downlink information (like
commands or rule updates) to particular nodes. This process is
shown in Fig. 1. The resulting time varying connectivity graph
is shown in Fig. 2. The time intervals on each link indicate
the period for which the individual links are active. The graph
G = (V,E) has vertices V = set of all end nodes, and edges
E = set of all links existing temporally.

The following entities have been defined in the context of
time varying graphs [7]:

p:ExT — {0,1} the ‘presence function’, indicating if
the given link is valid or not. In this opportunistic network, p
depends on :
(1) whether a data mule is in the vicinity (RF LOS range) of
the end node.
(2) whether the end node advertises its presence to the data
mule (through BLE advertisement process).
(3) whether a data mule is ‘scanning’ for nearby end nodes.

Establishment of the link and consequently the presence
function p heavily depend on the probability of end node
being in advertisement mode (indicated by P[advertisement])
and the probability of the data mule being in scanning mode
(P[scanning]). These are explained in section III. We assume
that the data mules are always connected to the cloud (cellular
or other means). Besides, if the connection is disrupted, the
data mules can locally store and cache data till the connection
is securely established again [3].

¢ : Ex T — T the ‘latency function’ indicating
the time it takes for a packet to cross the particular link.
With BLE data rates (> 100 kbps), this term can be neglected.

III. CONNECTIVITY MODEL

We use a vertex centric evolution of the connectivity graph
as shown in Fig. 3. The parameters governing the connectivity
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Fig. 2. Time varying graphs when connectivity exists between end nodes and
data mule only during specific time windows.
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Fig. 3. “Vertex centric’ evolution of the time varying graphs with presence and
latency functions. It is assumed that the data mules always have a stable cloud
connection (through cellular or Wi-Fi access). However, if internet access is
unavailable, data can be locally cached and transmitted later.

(mainly p) are as follows:

A. Process of Pairing

The presence function p depends on the process of pairing
between the end node and the data mule. These are governed
by scanning and advertisement processes in BLE specifications
[4], [11]. The process of pairing is visualized in Fig. 4.
Pairing can occur when the end node is ‘advertising’ over the
BLE channels and the data mule passing-by, picks up these
advertisements during its scanning phase.

Consider the data mule being in scanning phase for %
duration and in the idle phase for 7, duration. Since it is a
2—state Markov chain, the probability of the data mule being
in scanning phase at the n'”* step when n — oo is tT—

Similarly, it can be shown that, for the end node,
Pladvertising] = }—‘; where t, is the duration the end node
advertises, in a total cyclic period of T,.

Several studies [12] - [14] have shown the dependence of
device discovery on BLE scanning, advertisement intervals
and duty cycles. The optimal choice of scanning and advertise-
ment intervals depend on parameters like energy consumption,

intended advertisement miss rate, discovery latency among
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Fig. 4. Pairing process timeline. End nodes are BLE peripherals or ‘slaves’
while data mule applications on smart-phones act as BLE ‘masters’

others. Relating network throughput with scanning and ad-
vertisement parameters is out of the scope for this work and
will be addressed in the future. In the simulation setup, the
overall process has a timeout implemented, with connections
being considered valid only if they last longer than 5 sec (as
an upper limit on the device discovery + connection phase),
ie. p(t) =1« (t1 —t) > 5 V ¢; = first connection instant.
The process of evolution of p is visualized in Fig. 5.
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Fig. 5. Evolution of p for a given pair of data mule and end node. Connectivity
indicates whether a data mule is in the vicinity of an end node.

B. RF and Radio Characteristics

The presence function p depends on the BLE EIRP (effec-
tive isotropic radiated power) and RF sensitivity of the end
nodes and the mobile phones. Since the system should be
compatible with numerous phones from different manufactur-
ers, the dependence is heavier on the RF parameters of end
nodes. As seen in [3], the BLE EIRP of the nodes is 420 dBm,
sensitivity is —101 dBm and the LOS distance over which a
connection between a smart phone and an end node can be
sustained, is > 250 m. These parameters effectively govern
how long a connection can be maintained, once the pairing
process is successful.

C. Data Mule Mobility Models

The presence function p also depends on the mobility of
data mules. These aspects and mobility models have been
studied for VANETs and MANETS. In general, a stochastic
motion was of interest and hence the Gauss-Markov mobility
model was chosen [8], [9]. The motion of data mules was
simulated in = — y planar space as follows: Speed (s,,) and
direction (d,,) are the two parameters of interest at the n'”
instant. They are varied as:



Sp = QSp_1 + (1 - a)smean + SrandV 1—a? (1)
dp = adp_1 + (1 - a)dmean + dranaV'1 — o2 2

The speed statistics are adopted from [15], [16] and plugged
into the mean speed parameter above. Here, s,qng and d,qnd
are normally distributed speed and direction variables, with
Srand € [1,5]m/s and drqng € [0,360]°. In the  — y grid,
the motion is governed by:

Ty = Tp—1 + Sp—18in dn—l 3)
Yn = Yn—1 + Sn—1C0Sdp_1 4

Compared to other models like random direction mobility
and random waypoint, Gauss-Markov model has some advan-
tages:

(1) It tunes the randomness of the motion through a single
parameter «, with 0 < a < 1. By setting o = 1, linear
motion can be obtained, while oo = 0 yields totally randomized
motion. For the mobility models of data mules, a value of
a = 0.8 is chosen to model real world motion.

(2) It allows for past velocities and directions to influence the
present values, an important factor affecting the trajectories of
data mules. Since data mules are objects like smart phones,
drones, utility trucks, the velocity cannot vary randomly. The
velocity at the n*" instant governs the velocity at the n + 1"
instant in time.

(3) The trajectories obtained are close to the ones one might
expect in real-world scenarios [8].

An interesting aspect to note is that the actual connectivity
and throughput of the network is insensitive to the speed of
the data mule [14], but only depends on the time the data mule
spends in the coverage of a particular end node.

IV. SIMULATION RESULTS AND DISCUSSION

In order to study the interaction with mobile data mules,
a simulation study was conducted using MATLAB. The link
layer over BLE was emulated by constructing the connectivity
graphs (as shown in Fig. 1 - 5) based on the trajectories of the
data mules to study variation of overall network parameters. A
grid of 10 km by 10 km was constructed, with all data mules
beginning their transit at random points within the grid. End
nodes (A = 100 in number) were scattered randomly across
the grid. Data mule transit for 10 hrs was simulated, with a
1s granularity.

Time step for the Gauss-Markov mobility model was 1s,
however, a new speed value chosen from speed distribution
statistics [15], [16] every 600s. This ensures that enough
granularity is obtained in the trajectories of data mules, while
updating the velocities as per (1) and (2). The trajectory of data
mules is governed by (3) and (4) noted above. A snapshot of
the data mules’ mobility with respect to the locations of the
end nodes is shown in Fig. 6.

To study the overall performance of the opportunistic net-
work, we look at total data exchanged between data mules
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Fig. 6. Sample trajectories of data mules around the z — y grid. The red
dots show locations of end nodes (N = 100) while the colored traces are the
trajectories of data mules (M = 25).

and end nodes. Several parameters affect this throughput,
namely: number of mules (M), connectivity range of end
nodes, scanning duty cycles on data mules, advertising duty
cycles on end nodes, and pairing time duration. Once the
trajectory of data mules is obtained, the connection process
is modeled as close to real life scenario as possible. Once an
end node is in the vicinity of the data mule (governed by the
RF LOS range), the connection process begins, and is modeled
as a period of 5 sec when no data transfer takes place. This
is captured by the fact that p(¢) = 0 for that period of initial
connectivity (seen in Fig. 5). This process is carried out for
all the M data mules with respect to the A/ end nodes.

Once a connection has been established, the data are ex-
changed as per over the air rates for BLE protocol. Even
though BLE supports raw data rates upto 1 Mbps, the
GAMMA protocol has some overhead in it, and this has been
accounted in the study. An effective data rate of 1 kbps has
been modeled.

A. Variation of number of data mules

It is clear that the overall throughput of such an opportunis-
tic system would increase with the number of data mules M.
In fact several studies have shown the dependence of overall
throughput on data mules [17]. However, it is interesting to see
that the overall throughput has a linear dependence on M. As
seen in Fig. 7, the overall network throughput increases lin-
early with M, in 100 different stochastic simulation scenarios.

Fig. 8 shows the number of end nodes (out of a total of
100) that were covered (i.e. a connection was established over
BLE = p = 1, and data exchanged successfully) during the
simulation as a function of M.

However, in a practical scenario, with targeted inputs from
the cloud, data mules can be directed to cover areas that have
been poorly serviced. Thus the utility fleet managers can direct
certain data mules to cover parts of the system that have not
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Fig. 7. Stochastic simulation, showing 100 instances of variation of the
throughput of the system (data in kbits) with respect to number of mules
M for a period of 10 hrs, when LOS range is 400 m, ¢ts = 30s, Ts = 180s,
tq = 10 ms, T, = 1 s, and overall data rate = 1 kbps.
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Fig. 8. Number of end nodes covered (out of a total 100) as a function of
M when ts = 30s, Ts = 180s, t, = 10 ms, T = 1 s, LOS range = 400m
and overall data rate = 1 Kkbps.

been covered in a given time period. This ensures that all
the end nodes in the network get connected to the cloud in a
specified time frame.

B. Variation of LOS range of end nodes

When the overall RF (LOS) range increases, effective
‘coverage’ in the area increases. This phenomenon has been
studied in coverage problems in ad-hoc networks [15]. With
appropriate BLE repeaters and range extension devices, the
effective communication range can be extended beyond 1 km.
This is analogous to a greater portion of the area being under
the coverage of end nodes (or data mules), hence increasing
the overall throughput of the network. This trend can be seen
in Fig. 9.

It is obvious that the overall network throughput would
increase with an increase in the range over which data mules
and end nodes can communicate [18]. Fig. 10 shows the
number of end nodes covered as a function of LOS range.
For GAMMA platform, it has been shown [3] that BLE
connections between end nodes and smart phones can be
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Fig. 9. Variation of the throughput of the system (data in kbits) with respect
to LOS range for a period of 10 hrs, when no. of data mules, M = 25, ts
= 30s, T's = 180s, to = 10 ms, T,; = 1 s, and overall data rate = 1 kbps.
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Fig. 10. Number of end nodes covered (out of a total 100) as a function of
LOS range when M = 25, t5 = 30s, Ts = 180s, to, = 10 ms, T, = 1 s,
and overall data rate = 1 kbps.

established at distances between 200 and 400m, in scenarios
where the data mules (smart phones in cars) are moving
at various speeds near stationary nodes. However, there are
techniques to increase the RF radio range between a data mule
(smart phone) and the end node- by using BLE repeaters. The
repeater is just another end node (GAMMA Kernel) that acts
as an interface between another end node in the field and
the data mule, and due to enhanced BLE-RF specifications
(EIRP +20dBm and sensitivity —101dBm) can improve the
LOS range significantly.

V. CONCLUSION AND FUTURE WORK

This paper presents a vertex centric dependent graph for a
data mule-based opportunistic networks for distributed energy
assets. Simulation results show that a small population of data
mules can cover a large area, opportunistically connect to and
synchronize the end nodes with the cloud server. With enough
number of data mules, and specific inputs from the fleet man-
agers, data mules can synchronize with large number of end
nodes, providing enough visibility to the network operators.



Overall throughputs of > 500 kbits have been achieved in
a short duration of 10 hrs. This shows the viability of the
concept in the context of decentralized, distributed smart grid
applications, especially like asset monitoring/management.

In the future, studies to find optimal choice of BLE scan-
ning and advertisement intervals and duty cycles will be
performed, considering the trade-off with energy consumption
and throughput. A test bed has been setup to emulate the
effect of data mules’ motion, in order to get the same time-
varying connectivity graphs. This enables an evaluation of
expected throughput when parameters like BLE scanning and
advertisement intervals are varied.

Future work also includes overlaying an actual sensor
deployment scenario (i.e. GPS coordinates) on a map, and in-
cluding representative traffic flow information and comparing
it with actual experimental data from the field.

Although the normal speed statistics [15] have been chosen
for this work, the effect of choosing different speed distribu-
tions, specific routes and other controllable aspects of the data
mule’s mobility have not been considered. However, these can
be evaluated in the actual deployment to verify the end to end
performance of the system.
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