

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

**FINAL REPORT FOR AWARD
DE-SC0019999**

DOE Office of Science, Office of Nuclear Physics

**TITLE: Medium Energy Nuclear Physics: Exotic Physics & Advanced Tools at J.Lab
and the EIC**

PI: Prof. Mike Williams

Massachusetts Institute of Technology

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0019999.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Summary of work done during grant period

This grant supported post-doc / research scientist Cristiano Fanelli (CF) and PhD student Yunjie Yang (YY), who obtained his PhD in spring 2021.

January 2019 – October 2019:

- Dirac Installation:
 - YY installed PMTs, dark sealed the optical box and bar boxes, verified cabling, and performed DAQ tests.
 - YY played a major role in data-quality monitoring and leading special run periods used to commission several DIRC components.
- Published a pheno/theory paper on axion-like particles (ALPs) in PRL which showed the potential of searches performed at JLab.
- Published collaboration with JPAC theorists on JLab-based pentaquark studies.

November 2019 – October 2020:

- Major progress was made on installation and calibration of the GlueX DIRC detector:
 - DIRC installed during the Fall 2019 run.
 - DIRC operational starting with the Spring 2020 run.
 - Verified that the number of Cherenkov photons per track in data is consistent with the expectations from the TDR.
 - Achieved a single-photon resolution of 8 mrad, better than the 10 mrad value in the TDR.
 - The K-pi separation, however, was found to be worse than expected due to worse performance of the GlueX tracking systems than expected.
 - After fixing issues found in the GlueX tracking, the K-pi separation was still worse than expected due to misalignment of the bars in the DIRC boxes.
- CF served as GlueX Run Coordinator.
- AI/ML work:
 - Published study on AI-optimized design for the EIC, specifically focusing on the dual-RICH detector
 - Published a study on using Deep Learning for RICH reconstruction
- YY served as GlueX shift leader.
- YY largely completed an ALP search using the full GlueX dataset, pushing this the entire way into an official internal analysis review.

November 2020 – October 2022

- YY defend his PhD.
- CF obtained a faculty position at William & Mary.
- CF developed clustering algorithm based on unsupervised hierarchical clustering implemented in JANA2 for the CLAS12 forward tagger calo and operating in streaming readout mode.
- CF played leading role in developing the ECCE proposal, which was successfully chosen as Detector 1 for EIC:
 - CF leader of AI-assisted design for ECCE
 - CF leader of tracking system development for ECCE
 - CF leader of developing the ECCE computing plan
- AI/ML work:
 - CF contributed to review article on ML in nuclear physics.
 - Published article on new AI method for anomaly detection.
 - Completed most of the work for a novel geometric-fitting approach that could be useful for jet physics at EIC.
- EIC Yellow Report contributions:
 - Development of the dual-RICH detector for PID
 - C Fanelli editor of the AI for EIC section

- Development of the EM calorimeter design
- Summarizing the streaming-readout activities at JLab

Publications from the final grant period

Journal articles (note that we omit GlueX papers where our group was not lead authors):

- D Aloni, C Fanelli, Y Soreq, M Williams, Photoproduction of axion-like particles, PRL 123 (2019).
- D Winney, C Fanelli, et al, Double polarization observables in pentaquark photoproduction, PRD 100 (2019).
- C Fanelli and J Pomponi, DeepRICH: Learning deeply Cherenkov detectors, ML Sci Tech 1 (2020).
- E Cisbani, A Del Dotto, C Fanelli, M Williams, et al, AI-optimized detector deisng for future EIC: the dual-radiator RICH case, JINST 15 P05009 (2020).
- A Boehnlein et al, Machine learning in nuclear physics, Rev Mod Phys 94 (2021) 031003.
- C Fanelli, J Giroux, Z Papandreou, Flux + mutability: A Conditional generative approach to one-class classification and anomaly detection, ML Sci Tech 3 (2022) 045012.
- GlueX collaboration (Y Yang and M Williams lead authors), Search for photoproduction of axion-like particles at GlueX, PRD 105 (2022) 052007.

Invited talks:

- C Fanelli, Physics opportunities with photon beams at JLab12, seminar at UC Riverside, May 7, 2019.
- C Fanelli, Machine learning in the online data acquisition, ML INFN PhD school, Genova, Italy, May 20, 2019.
- Y Yang, GlueX DIRC, JLab Users Group Meeting, JLab, June 25, 2019.
- C Fanelli, RICH detector development for hadron ID at EIC, iWoRiD 2019, Crete, Greece, July 7, 2019.
- C Fanelli, Machine learning for RICH counters, DIRC 2019, Geissen, Germany, September 11, 2019.
- C Fanelli, JLab pentaquark perspective, LHCb Implications Workshop, CERN, October 16, 2019.
- C Fanelli, The role of AI in exploring the nature of matter, colloquium at Virginia Tech, February 4, 2020.
- C Fanelli, AI opportunities at JLab and the EIC, colloquium at William & Mary, February 17, 2020.
- C Fanelli, AI optimized detector design, AI for Nuclear Physics Workshop, JLab, March 4, 2020.
- C Fanelli, AI-supported algorithms for streaming readout, Streaming Readout Workshop IV, JLab, May 13, 2020.

- C Fanelli, Subdetector parameter optimization, Joint GlueX-EIC-PANDA ML Workshop, GSI, Germany, September 23, 2020.
- C Fanelli, Perspectives on hidden flavor multiquark states in photo(electro)production at JLab, seminar at Argonne National Lab, December 10, 2020.
- C Fanelli, Detector design optimization, Winter School on ML and Nuclear Physics, January 2021.
- C Fanelli, AI from JLab to EIC, JLab Users Organization, June 23, 2021.
- C Fanelli, AI for the optimization of the ECCE detector, NPPS meeting, Brookhaven National Lab, July 23, 2021.
- C Fanelli, AI/ML and detector co-design, EIC User Group Meeting, August 2, 2021.
- C Fanelli, AI/ML for imaging Cherenkov detectors -AND- AI/ML for detector design, AI4EIC Workshop, CFNS, September 7, 2021. (2 talks)
- C Fanelli, AI for the design and R&D phases of the ECCE detector, seminar at Oak Ridge National Lab, October 12, 2021.
- C Fanelli, AI for detector design in nuclear physics, IAEA Meeting, October 25, 2021.
- C Fanelli, Leverage data science in complex nuclear physics experiments: from JLab to EIC, colloquium at William & Mary, February 17, 2022.
- C Fanelli, AI/ML for the EIC, seminar at the Rome section of the INFN, May 6, 2022.
- C Fanelli, AI/ML codesign at the EIC, Canadian Assoc of Physicists meeting, Hamilton, Canada, June 6, 2022.
- C Fanelli, Leveraging on intelligent workflows to assist the design of the EIC first detector, Brookhaven National Lab AI/ML seminar, July 12, 2022.

Conference papers:

- C Fanelli, Machine learning for imaging Cherenkov detectors, JINST 15 C02021 (2020).
- A Ali et al, The GlueX DIRC program, JINST 15 C04054 (2020).
- L Barion et al, RICH detector development for hadron ID at EIC, JINST 15 C02040 (2020).
- F Ameli et al, Streaming readout of the CLAS12 forward tagger using TriDAS and JANA2, EPJ Web Conf 251 (2021).