LA-UR-23-20540

Approved for public release; distribution is unlimited.
Title: CrossLink - Geometry API
Author(s): Drayna, Travis William

Lang, Laura M.

Long, Louie Joseph
Stam, Henry Russell

Intended for: Public release of recent advancements in CrossLink software.

Issued: 2023-01-20

% Los Alamos

NATIONAL LABORATORY

1% Los Alamos NYSE

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

CrossLink
Geometry API

Travis Drayna
Laura Lang
Louie Long
Henry Stam

January 19, 2023

NYSE

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Problem & Solution

Problem

The mesh generation process is very challenging and time consuming when working with
complex CAD models. The process of creating and sorting geometric entities into groups
appropriate for meshing is labor intensive and prone to error. In addition, the common
data exchange formats such as STEP and IGES do not propagate information such as
entity names that may be defined in the original model. Finally, entity counts change
frequently with parameter variation as a result of tolerance-based geometry operations.
Thus, sorting by index does not provide a robust and repeatable means for grouping.

Solution

xGeom is a geometry library that enables the creation of NURBS curves and surfaces via
a python scripting interface. xGeom is ideal for studying relatively simple models and is
fully integrated with CrossLink’s mesh generation capabilities. For more complex models,
XCAD is a python-based Creo Parametric CAD model driver that enables the model to be
generated, queried, parametrically modified, regenerated, and exported without data loss
and in a fully repeatable manner.

Los Alamos National Laboratory 1/19/23 | 2

xGeom: Overview

xXGeom - Overview

Geometry Library
— Implemented in C++
— Shared by GUI, mesh engine, geometry library
— NURBS-based implementation (curves and surfaces)
—Includes STEP file data translator (OCCT)

Python API
— Simple python interface
— Enables workflow scripting
—Works with xMesh scripting interface

Los Alamos National Laboratory 1/19/23 | 4

xGeom - Features

* Python API: scriptable and intuitive

* Natively creates 2D/3D NURBS geometry

* Geometry grouping integrated into API

+ Currently have basic functionality shown here

* GUI, mesh engine, and geometry API use the same
library

« APl under active development
* Includes comprehensive unit testing

/rxgeom.GrouP(); // create a geometry group) -
xgeom.NURBScurve () ; // create a NURBS curve explicitly
xgeom.NURBSsurface(); // create a NURBS surface explicitly
xgeom.line(); // create a line between two points
xgeom.arc(); // create a circular arc
xgeom.splitCurve(); // split a curve
xgeom.splitSurface(); // split a surface
xgeom.intersectCurves(); // find the intersection of two curves e
xgeom.spin(); // spin curves into surfaces
\¥xgeom.transform(); // transformation operators)

Los Alamos National Laboratory 1/19/23 | 5

Geometry Groups

Item Description name [e—
geom.xgm
CRV_AIR_EXIT 1
1 Members of a group must be either all curves or all surfaces. CRV_AIR_SIDE 1
CRV_AXIS 4
2 Members within a group may be of mixed type (e.g., Tabular, NURBS). CRV_CASE_END . 1
) . CRV_CASE_INNER 5
3 Group members need not be ordered or oriented relative to one another. crv_case_outer [l a
) . _))) CRV_LINER_INNER 4
4 Material boundaries and domain boundaries make suitable starting CRV_LINER_OUTER 4
geon]etry groups. DEFAULT 00 0
5 Geometry groups need not be contiguous (unless mesh side-confusion is
encountered).
6 T-intersections must not be present within a geometry group.
7 Start with a minimal set of geometry groups to create an initial mesh.
8 Add additional geometry groups as needed to improve the mesh. Show Hide Toggle Opacity
9 Use the DEFAULT geometry group as a place to store unused geometry. i ki s ol

« A geometlry group is a collection of geometric entities that define an internal or external
boundary.

* Rules given in table are general guidelines for grouping of curves and surfaces.

xGeom — Example Script

HAARBABBBARABARBRBRBBRBR VRV BARERBBERBARARARARAR BB ARARURBRRBB VR BB R RABARERARERAAR
#

Example - Noh2D geometry (xgeom)

#
HERRBARBBABBERABBERBRBBBBAARARARARB VAR U RERVBARARBBRBRARARBRERB BB RBRARERARBRBBRER

Initialization

Import Python module

from xlink import xgeom

Define geometric parameters

Define parameters

hbox = 1.00 # box height

wbox = 1.00 # box width

arad = 0.70 # arc radius

awall = 0.10 # arc wall thickness
sfaci = (1.0,1.0,0.0) # inner arc scale factors
sfaco = (1.0,1.0,0.0) # outer arc scale factors

Create curve groups

Create geometry groups

allGroups = [] #### Create geometry #### Create geometry
DEFAULT = xgeom.curveGroup ("DEFAULT", "grayl", allGroups) CRV_BOX_B.ci = xgeom.line([0.0, 0.0, 0.0],[wbox, 0.0, 0.0])
CRV_BOX_B = xgeom.curveGroup ("CRV_BOX_B", "black®;;allCroups) CRV_BOX_T.c2 = xgeom.line([0.0, hbox, 0.0],[wbox, hbox, 0.0])
CRV_BOX_T = xgeom.curveGroup ("CRV_BOX_T", “blue2", allGroups) CRV_BOX_R.c3 = xgeom.line([wbox, 0.0, 0.0],[wbox, hbox, 0.0])
CRV_BOX_R = xgeom.curveGroup ("CRV_BOX_R", "blue", allGroups) CRV_BOX_L.cd = xgeom.line([0.0 0.0 0.01,[0.0 hbox, 0.01)
CRV_BOX_L = xgeom.curveGroup ("CRV_BOX_L", greeny;,; allGzroups) CRV_ARC_OUTER.c5 = xgeom.scale(xgeom.arc(arad, 0.0, 90.0),sfaco)
CRV_ARC_INNER = xgeom.curveGroup ("CRV_ARC_INNER", "red2", allGroups) CRV_ARC_INNER.c6 = xgeom.scale(xgeom.arc(arad-awall, 0.0, 90.0),sfaci)
CRV_ARC_OUTER = xgeom.curveGroup ("CRV_ARC_OUTER", "white", allGroups)

Write XGM file

xgeom.writeXGM (allGroups, "geom") erte Xgm flle

End of Script

CAD Geometry

’Dfl i i HEl CrossLink 0.11.0' mE]x)
3D View :l:" 0 LA‘ a v/Curve I Surface
— S
» CrossLink handles geometry created with CAD software.
 These models are translated as BREP NURBS models.
» Supported data exchange format is STEP.

xXCAD: Overview

xXCAD Overview

Core Model Driver
— Implemented in C++ using Creo Object Toolkit
— Model driver operates between CAD data and scripted workflow
— Model driver connects to Creo processing server on the network
— Driver loads native Creo part/assembly files
— Driver runs in headless mode (without opening the GUI)

— Driver capable of querying model, modifying model, regenerating model,
returning geometric data, returning physical data

Python API
— Simple python interface for CAD model driver
— Integrates into scripted workflow
— Provides source for part/assembly files

Los Alamos National Laboratory 1/19/23 | 10

XCAD — A Creo Parametric Model Driver

4 Model Driver A 4 Scripted Workflow
-> Standalone CAD model driver - Python API
. - C++ using Creo Object Toolkit - CAD model driver interface
SERAE -> Operates directly on CAD model <:| -> Load model (prt or asm)
- Part |:> -> Access to native geometry (NURBS) -> Query model information
~> Assembly -> Access to some CAD functionality |:> -> Update model parameters

- Communicates with Creo server - Regenerate model
- Get back updated data

- j \ J

Creo Parametric Server
- Runs on server in headless mode
- Processes incoming requests
- Updates model data
- Regenerates model
- Returns requested data

Los Alamos National Laboratory 1/19/23 | 11

Physics & Engineering Shared CAD Model

Engineering creates and maintains CAD model
Engineering & Physics jointly define references,
datums, variables, constraints, etc.

Engineering & Physics jointly define common names
for variables

xCAD enables Physics to make model changes
Physics explores design effects; recommends new
values as needed

- ¢Twall2
7

0.15

,“ =
Baseline Model [N Modified Model §

Los Alamos National Laboratory 1/19/23 | 12

Application: Examples

xGeom — Python geometry API (1)

-

XGEOM - Simple rocket geometry

import math

blen = 4.00

bwall = 0.10
brad = 1.00
rnose = 2.50

tlen = 3.00
twall = 0.04
trad = 0.85
crad = 0.75
clen = 1.30

csrad = 0.40
cnfac = 0.40
cnlen = 0.80

nwall = 0.05
nradl = 0.30
nrad2 = 0.80
nphi2 = 4.0
nfacl = 0.30
nfac2 = 0.60

-

tnoffset = 0.

tcoffset = 0.
tcrad = 0.
tcwall = 0.
nlen = 1.50

FHH I KR OHHHFHR O HFHR®

FH ORI HFHRH W R

from xlink import xgeom

Geometric Parameters

body length
body wall thickness
body radius
nose radius

nose-tank offset
tank length

tank wall thickness
tank radius

combustor radius

combustor length

combustor shoulder radius
combustor-nozzle curvature
combustor-nozzle length

tank-combustor offset
tank-combustor tube radius
tank-combustor tube wall thickness

nozzle length

nozzle wall thickness
nozzle throat radius
nozzle exit radius
nozzle exit flare angle
nozzle curvature 1
nozzle curvature 2

-

irad = 2.00
ilen = 10.0
ibeta = 24.0
ioff = 1.20

Create curve

DEFAULT =
CRV_AXIS =
CRV_INFLOW =
CRV_OUTFLOW =
CRV_BODY_OML =
CRV_BODY_IML =
CRV_BODY_CAP =
CRV_COMB_OML =
CRV_COMB_IML =
CRV_COMB_MOUNT =
CRV_TUBE_OML =
CRV_TUBE_IML =
CRV_TUBE_CAP =
CRV_TANK_OML =
CRV_TANK_IML =
CRV_NOZZLE_IML =
CRV_NOZZLE_OML =
CRV_NOZZLE_EXIT =

inflow shock
inflow shock
inflow shock
inflow shock

HH F I H

groups ####

xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name
xgeom.Group (name

Xgeom.Group (name =

major radius
length
angle
offset

= "DEFAULT", color = "aaaaaa")

= "CRV_AXIS", color = "ee0000")

= "CRV_INFLOW", color = "0088cc")

= "CRV_OUTFLOW", color = "0088cc")

= "CRV_BODY OML", color = "808080")

= "CRV_BODY IML", color = "808080")

= "CRV_BODY CAP", color = "808080")

= "CRV_COMB_OML", color = "f£5500")

= "CRV_COMB_IML", color = "f£5500")

= "CRV_COMB_MOOUNT")

= "CRV_TUBE OML", color = "505050")

= "CRV_TUBE_IML", color = "505050")

= "CRV_TUBE CAP", color = "505050")

= "CRV_TANK OML", color = "0055ff")

= "CRV_TANK IML", color = "0055ff")

= "CRV_NOZZLE_IML", color = "aaaa00")
= "CRV_NOZZLE_OML", color = "aaaa00")

"CRV_NOZZLE_EXIT")

Los Alamos National Laboratory

1/19/23

xGeom — Python geometry API (2)

4 N N

Creat body curves #### CRV_TANK_IML.c2 = xgeom.line(pl,p2)
vecx = (-1.0, 0.0, 0.0) _ _
vecy = (0.0, 1.0, 0.0) lref = CRV_TANK_OML.c2(u=1.0)[0]
thetal = math.asin(tcrad/trad)
thetal = math.acos((rnose - brad)/rnose) theta2 = math.asin(tcrad/(trad-twall))
theta2 = math.acos((rnose - brad)/(rnose - bwall))
xref = rnose*math.sin(thetal) CRV_TANK_OML.c3 = xgeom.arc((lref,0.0,0.0), trad, math.degrees(thetal),
yref = -(rnose - brad) 90.0)

CRV_TANK_IML.c3 = xgeom.arc((lref,0.0,0.0), trad-twall,

CRV_BODY_OML.cnose_o = xgeom.arc((xref,yref,0.0 rnose, math.degrees(0.5*math.pi-
. - - g e 1yre£,0.0), ! g (P math.degrees(theta2), 90.0)

thetal), 90.0,vecx,vecy)
CRV_BODY_ IML.cnose_i = xgeom.arc((xref,yref,0.0), rnose-bwall, math.degrees(0.5*math.pi-
theta2), 90.0,vecx,vecy) #### Create combustor ####

pl = CRV_BODY_OML.cnose_o(u=1.0)
p2 = CRV_BODY_IML.cnose_i(u=1.0)
lref = pl[0]

xref = CRV_TANK OML.c2(u=1.0)[0] + trad + tcoffset

pl = [xref, tcrad, 0.0]

CRV_BODY_OML.cside o = xgeom.line(pl, [lref+blen,brad,0.0]) p2 = [xref, crad-csrad, 0.0]
CRV_BODY_ IML.cside i = xgeom.line(p2, [lref+blen,brad-bwall,0.0]) p3 = [xref+nwall, tcrad, 0.0]
p4 = [xref+nwall, crad-csrad, 0.0]

CRV_BODY_ CAP.capl = xgeom.line(CRV_BODY OML.cside_o(u=1.0), CRV_BODY_ IML.cside_i(u=1.0))

lref = CRV_BODY OML.cside o(u=1.0)[0] CRV_COMB_OML.cl = xgeom.line(pl,p2)
- - - CRV_COMB_IML.cl = xgeom.line(p3,p4)
Create oxidizer tank
CRV_COMB_OML.c2 = xgeom.arc((xref+csrad,crad-csrad,0.0), csrad, 90.0, 180.0)
lref = CRV_BODY_OML.cnose_o(u=1.0)[0] CRV_COMB_IML.c2 = xgeom.arc((xref+csrad,crad-csrad,0.0), csrad-nwall, 90.0,

180.0
CRV_TANK_OML.cl = xgeom.arc((lref+tnoffset,0.0,0.0), trad, 90.0, 180.0))

CRV_TANK_IML.cl = xgeom.arc((lref+tnoffset,0.0,0.0), trad-twall, 90.0, 180.0)
xref = CRV_COMB_OML.c2(u=0.0)[0]

pl = CRV_TANK OML.cl(u=0.0)

p2 = CRV_TANK OML.cl(u=0.0) pl = [xref, crad, 0.0]
p2[0] = p2[0] + tlen - 2.0*trad p2 = [xref+clen, crad, 0.0]

. p3 = [xref, crad-nwall, 0.0]
CRV_TANK_OML.c2 = xgeom.line(pl,p2) pd4 = [xref+clen, crad-nwall, 0.0]
pl = CRV_TANK IML.cl(u=0.0)
p2 = CRV_TANK IML.cl(u=0.0) CRV_COMB_OML.c3 = xgeom.line(pl,p2)
p2[0] = p2[0] + tlen - 2.0*trad CRV_COMB_IML.c3 = xgeom.line(p3,p4)

- J J

Los Alamos National Laboratory 1/19/23 | 15

xGeom — Python geometry API (3)

4 N N

xref = CRV_COMB_IML.c3(u=1.0)[0] CRV_TUBE_OML.cl = xgeom.line(pl,p2)
1 £ 4 0.0, 1.0 CRV_TUBE_IML.cl = xgeom.line(p3,p4)

pl = [xref, crad, .0, .0] - - _

p2 = [xref+cnfac*cnlen, crad, 0.0, 1.0] CRV_TUBE_CAP.cl = xgeom.l}ne(pl,p3)

p3 = [xref+(l.0-cnfac)*cnlen, nradl, 0.0, 1.0] CRV_TUBE_CAP.c2 = xgeom.line(p2,p4)

p4 = [xref+cnlen, nradl, 0.0, 1.0]

Create nozzle
CRV_COMB_OML.c4 = xgeom.NURBScurve(udeg=3, knots=[0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0,

1.0], xcp=[pl,p2,p3,p4]) xref = CRV_COMB_OML.c4(u=1.0)[0]

pl = [xref, crad-nwall, 0.0, 1.0]

p2 = [xref+cnfac*cnlen, crad-nwall, 0.0, 1.0] pl = [xref, nradl, 0.0, 1.0]
p3 = [xref+(l.0-cnfac)*cnlen, nradl-nwall, 0.0, 1.0] p2 = [xref + nlen*nfacl, nradl, 0.0, 1.0]
p4 = [xref+cnlen, nradl-nwall, 0.0, 1.0] p3 = [xref + (l.0-nfac2)*nlen, nrad2 -

math.tan(math.radians(nphi2))*nlen*nfac2, 0.0, 1.0]

CRV_COMB_IML.c4 = xgeom.NURBScurve(udeg=3, knots=[0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, p4 = [xref+nlen,nrad2,0.0, 1.0]

1.0], xcp=[pl,p2,p3,p4])

Create combustor mount #### CRV_NOZZLE_OML.nl = xgeom.NURBScurve(udeg=3, knots=[0.0, 0.0, 0.0, 0.0, 1.0,
1.0, 1.0, 1.01, xcp=[pl,p2,p3,p4])
pl = CRV_COMB_OML.c2(u=0.0)

p2 = [pl[0], brad-bwall, 0.0] pl = [xref, nradl-nwall, 0.0, 1.0]

: p2 = [xref + nlen*nfacl, nradl-nwall, 0.0, 1.0]
CRU_CONB_HOUNE. c1 = xgeon-1ine(pl,p2) p3 = [xref + (l.0-nfac2)*nlen, nrad2 - nwall -
xref = CRV_BODY IML.cnose_i(u=1.0)[0] + blen math.tan(math.radians(nphi2))*nlen*nfac2, 0.0, 1.0]

p4 = [xref+nlen,nrad2-nwall, 0.0, 1.0]
pl = [xref, crad , 0.0]
p2 = [xref, brad-bwall, 0.0] CRV_NOZZLE_IML.n2 = xgeom.NURBScurve(udeg=3, knots=[0.0, 0.0, 0.0, 0.0, 1.0,

1.0, 1.0, 1.0 =[pl,p2,p3,p4
CRV_COMB_MOUNT.c2 = xgeom.line(pl,p2) ! ! 1, xep=[pl,p2,p3,p4])

Create tank-to-combustor tube #### px CRV_NOZZLE OML.nl(u=1.0)
pl = [px[0], 0.0, 0.0]

x1 = CRV_TANK IML.c3(u=0.0)[0] p2 = [px[0], px[1l], 0.0]

x2 = CRV_COMB_IML.c2(u=1.0)[0]
ol = [x1, terad, 0.0] CRV_NOZZLE_EXIT.n3 xgeom.line(pl,p2)
p2 = [x2, tcrad, 0.0]

p3 = [x1l, tcrad-tcwall, 0.0]
p4 = [x2, tcrad-tcwall, 0.0]

Los Alamos National Laboratory 1/19/23 | 16

xGeom — Python geometry API (4)

4 N

Create inflow
CRV_INFLOW.cl = xgeom.arc((0.0+ioff,0.0,0.0), irad, 90.0+ibeta, 180.0)
lref = CRV_INFLOW.cl(u=0.0)[0]/math.tan(math.radians(ibeta))

xref = CRV_INFLOW.cl(u=0.0)[0] - lref
rad = ilen - xref -

CRV_OUTFLOW.cl = xgeom.arc((xref,0.0,0.0), rad, 0.0, ibeta)

pl = CRV_INFLOW.cl(u=0.0)
p2 = CRV_OUTFLOW.cl(1.0)

CRV_INFLOW.c2 = xgeom.line(pl,p2)

Create the axis

x1 = CRV_INFLOW.cl(u=1.0)[0]

x2 = CRV_BODY_OML.cnose_o(u=0.0)[0]
x3 = CRV_NOZZLE_OML.nl(u=1.0)[0]

x4 = CRV_OUTFLOW.c1(0.0)[0]

CRV_AXIS.al = xgeom.line([x1,0.0,0.0], [x2,0.0,0.0]) — e =
CRV_AXIS.a2 = xgeom.line([x2,0.0,0.0], [x3,0.0,0.0])
CRV_AXIS.a3 = xgeom.line([x3,0.0,0.0], [x4,0.0,0.0])

Write XGM file

xgeom.writeXGM(grouplist = [DEFAULT, CRV_AXIS, CRV_INFLOW, CRV_OUTFLOW,
CRV_BODY_IML,CRV_BODY_ OML,CRV_BODY_ CAP,

CRV_COMB_OML, CRV_COMB_IML,CRV_COMB_MOUNT,
CRV_TUBE_OML,CRV_TUBE_IML,CRV_TUBE_CAP,

CRV_TANK_IML,CRV_TANK_ OML, B ES ;x -
CRV_NOZZLE_IML,CRV_NOZZLE_OML,CRV_NOZZLE_ EXIT o H
], filename = "geom") L8 wme IEE

Los Alamos National Laboratory 1/19/23 | 17

Design Optimization

[

Optimization
Method

Parameter
Definition

Variable
Definition

I

Objective
Definition

I

J

DAKOTA

Design
Controller

)

]

-

Optimal? >«

Results

J

v

=
gy

Input
Files

Simulation Workflow

Results
Files

&

4

Y

Geometry Mesh Input Multi-Physics Post
Model Generator Deck Simulation Processing
xGeom xCAD xMesh

~

J

Los Alamos National Laboratory 1/19/23 | 18

