
LA-UR-23-20540
Approved for public release; distribution is unlimited.

Title: CrossLink - Geometry API

Author(s): Drayna, Travis William
Lang, Laura M.
Long, Louie Joseph
Stam, Henry Russell

Intended for: Public release of recent advancements in CrossLink software.

Issued: 2023-01-20

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

CrossLink

Travis Drayna
Laura Lang
Louie Long
Henry Stam

January 19, 2023

Geometry API

Problem & Solution

1/19/23 | 2Los Alamos National Laboratory

Problem
The mesh generation process is very challenging and time consuming when working with
complex CAD models. The process of creating and sorting geometric entities into groups
appropriate for meshing is labor intensive and prone to error. In addition, the common
data exchange formats such as STEP and IGES do not propagate information such as
entity names that may be defined in the original model. Finally, entity counts change
frequently with parameter variation as a result of tolerance-based geometry operations.
Thus, sorting by index does not provide a robust and repeatable means for grouping.

Solution
xGeom is a geometry library that enables the creation of NURBS curves and surfaces via
a python scripting interface. xGeom is ideal for studying relatively simple models and is
fully integrated with CrossLink’s mesh generation capabilities. For more complex models,
xCAD is a python-based Creo Parametric CAD model driver that enables the model to be
generated, queried, parametrically modified, regenerated, and exported without data loss
and in a fully repeatable manner.

xGeom: Overview

xGeom – Overview

1/19/23 | 4Los Alamos National Laboratory

Geometry Library
– Implemented in C++
– Shared by GUI, mesh engine, geometry library
– NURBS-based implementation (curves and surfaces)
– Includes STEP file data translator (OCCT)

Python API
– Simple python interface
– Enables workflow scripting
– Works with xMesh scripting interface

xGeom - Features

1/19/23 | 5Los Alamos National Laboratory

• Python API: scriptable and intuitive
• Natively creates 2D/3D NURBS geometry
• Geometry grouping integrated into API
• Currently have basic functionality shown here
• GUI, mesh engine, and geometry API use the same

library
• API under active development
• Includes comprehensive unit testing

xgeom.Group(); // create a geometry group

xgeom.NURBScurve(); // create a NURBS curve explicitly

xgeom.NURBSsurface(); // create a NURBS surface explicitly

xgeom.line(); // create a line between two points

xgeom.arc(); // create a circular arc

xgeom.splitCurve(); // split a curve

xgeom.splitSurface(); // split a surface

xgeom.intersectCurves(); // find the intersection of two curves

xgeom.spin(); // spin curves into surfaces

xgeom.transform(); // transformation operators

Geometry Groups

• A geometry group is a collection of geometric entities that define an internal or external
boundary.

• Rules given in table are general guidelines for grouping of curves and surfaces.

xGeom – Example Script

Import Python module

Define parameters

Create geometry groups
Create geometry

Write xgm file

CAD Geometry

• CrossLink handles geometry created with CAD software.
• These models are translated as BREP NURBS models.
• Supported data exchange format is STEP.

xCAD: Overview

xCAD Overview

1/19/23 | 10Los Alamos National Laboratory

Core Model Driver
– Implemented in C++ using Creo Object Toolkit
– Model driver operates between CAD data and scripted workflow
– Model driver connects to Creo processing server on the network
– Driver loads native Creo part/assembly files
– Driver runs in headless mode (without opening the GUI)
– Driver capable of querying model, modifying model, regenerating model,

returning geometric data, returning physical data
Python API

– Simple python interface for CAD model driver
– Integrates into scripted workflow
– Provides source for part/assembly files

xCAD – A Creo Parametric Model Driver

1/19/23 | 11Los Alamos National Laboratory

Scripted Workflow
→ Python API
→ CAD model driver interface
→ Load model (prt or asm)
→ Query model information
→ Update model parameters
→ Regenerate model
→ Get back updated data

Model Driver
→ Standalone CAD model driver
→ C++ using Creo Object Toolkit
→ Operates directly on CAD model
→ Access to native geometry (NURBS)
→ Access to some CAD functionality
→ Communicates with Creo server

Creo Parametric Server
→ Runs on server in headless mode
→ Processes incoming requests
→ Updates model data
→ Regenerates model
→ Returns requested data

Creo Files
→ Part
→ Assembly

Physics & Engineering Shared CAD Model

1/19/23 | 12Los Alamos National Laboratory

• Engineering creates and maintains CAD model
• Engineering & Physics jointly define references,

datums, variables, constraints, etc.
• Engineering & Physics jointly define common names

for variables
• xCAD enables Physics to make model changes
• Physics explores design effects; recommends new

values as needed
• Engineering maintains CAD model standard

Baseline Model Modified Model

Variables Names

Application: Examples

xGeom – Python geometry API (1)

1/19/23 | 14Los Alamos National Laboratory

###
XGEOM - Simple rocket geometry
###

from xlink import xgeom
import math

Geometric Parameters

blen = 4.00 # body length
bwall = 0.10 # body wall thickness
brad = 1.00 # body radius
rnose = 2.50 # nose radius

tnoffset = 0.0 # nose-tank offset
tlen = 3.00 # tank length
twall = 0.04 # tank wall thickness
trad = 0.85 # tank radius

crad = 0.75 # combustor radius
clen = 1.30 # combustor length
csrad = 0.40 # combustor shoulder radius
cnfac = 0.40 # combustor-nozzle curvature
cnlen = 0.80 # combustor-nozzle length

tcoffset = 0.3 # tank-combustor offset
tcrad = 0.2 # tank-combustor tube radius
tcwall = 0.05 # tank-combustor tube wall thickness

nlen = 1.50 # nozzle length
nwall = 0.05 # nozzle wall thickness
nrad1 = 0.30 # nozzle throat radius
nrad2 = 0.80 # nozzle exit radius
nphi2 = 4.0 # nozzle exit flare angle
nfac1 = 0.30 # nozzle curvature 1
nfac2 = 0.60 # nozzle curvature 2

irad = 2.00 # inflow shock major radius
ilen = 10.0 # inflow shock length
ibeta = 24.0 # inflow shock angle
ioff = 1.20 # inflow shock offset

Create curve groups

DEFAULT = xgeom.Group(name = "DEFAULT", color = "aaaaaa")
CRV_AXIS = xgeom.Group(name = "CRV_AXIS", color = "ee0000")
CRV_INFLOW = xgeom.Group(name = "CRV_INFLOW", color = "0088cc")
CRV_OUTFLOW = xgeom.Group(name = "CRV_OUTFLOW", color = "0088cc")
CRV_BODY_OML = xgeom.Group(name = "CRV_BODY_OML", color = "808080")
CRV_BODY_IML = xgeom.Group(name = "CRV_BODY_IML", color = "808080")
CRV_BODY_CAP = xgeom.Group(name = "CRV_BODY_CAP", color = "808080")
CRV_COMB_OML = xgeom.Group(name = "CRV_COMB_OML", color = "ff5500")
CRV_COMB_IML = xgeom.Group(name = "CRV_COMB_IML", color = "ff5500")
CRV_COMB_MOUNT = xgeom.Group(name = "CRV_COMB_MOOUNT")
CRV_TUBE_OML = xgeom.Group(name = "CRV_TUBE_OML", color = "505050")
CRV_TUBE_IML = xgeom.Group(name = "CRV_TUBE_IML", color = "505050")
CRV_TUBE_CAP = xgeom.Group(name = "CRV_TUBE_CAP", color = "505050")
CRV_TANK_OML = xgeom.Group(name = "CRV_TANK_OML", color = "0055ff")
CRV_TANK_IML = xgeom.Group(name = "CRV_TANK_IML", color = "0055ff")
CRV_NOZZLE_IML = xgeom.Group(name = "CRV_NOZZLE_IML", color = "aaaa00")
CRV_NOZZLE_OML = xgeom.Group(name = "CRV_NOZZLE_OML", color = "aaaa00")
CRV_NOZZLE_EXIT = xgeom.Group(name = "CRV_NOZZLE_EXIT")

xGeom – Python geometry API (2)

1/19/23 | 15Los Alamos National Laboratory

Creat body curves

vecx = (-1.0, 0.0, 0.0)
vecy = (0.0, 1.0, 0.0)

theta1 = math.acos((rnose - brad)/rnose)
theta2 = math.acos((rnose - brad)/(rnose - bwall))
xref = rnose*math.sin(theta1)
yref = -(rnose - brad)

CRV_BODY_OML.cnose_o = xgeom.arc((xref,yref,0.0), rnose, math.degrees(0.5*math.pi-
theta1), 90.0,vecx,vecy)
CRV_BODY_IML.cnose_i = xgeom.arc((xref,yref,0.0), rnose-bwall, math.degrees(0.5*math.pi-
theta2), 90.0,vecx,vecy)

p1 = CRV_BODY_OML.cnose_o(u=1.0)
p2 = CRV_BODY_IML.cnose_i(u=1.0)
lref = p1[0]

CRV_BODY_OML.cside_o = xgeom.line(p1, [lref+blen,brad,0.0])
CRV_BODY_IML.cside_i = xgeom.line(p2, [lref+blen,brad-bwall,0.0])

CRV_BODY_CAP.cap1 = xgeom.line(CRV_BODY_OML.cside_o(u=1.0), CRV_BODY_IML.cside_i(u=1.0))

lref = CRV_BODY_OML.cside_o(u=1.0)[0]

Create oxidizer tank

lref = CRV_BODY_OML.cnose_o(u=1.0)[0]

CRV_TANK_OML.c1 = xgeom.arc((lref+tnoffset,0.0,0.0), trad, 90.0, 180.0)
CRV_TANK_IML.c1 = xgeom.arc((lref+tnoffset,0.0,0.0), trad-twall, 90.0, 180.0)

p1 = CRV_TANK_OML.c1(u=0.0)
p2 = CRV_TANK_OML.c1(u=0.0)
p2[0] = p2[0] + tlen - 2.0*trad

CRV_TANK_OML.c2 = xgeom.line(p1,p2)

p1 = CRV_TANK_IML.c1(u=0.0)
p2 = CRV_TANK_IML.c1(u=0.0)
p2[0] = p2[0] + tlen - 2.0*trad

CRV_TANK_IML.c2 = xgeom.line(p1,p2)

lref = CRV_TANK_OML.c2(u=1.0)[0]
theta1 = math.asin(tcrad/trad)
theta2 = math.asin(tcrad/(trad-twall))

CRV_TANK_OML.c3 = xgeom.arc((lref,0.0,0.0), trad, math.degrees(theta1),
90.0)
CRV_TANK_IML.c3 = xgeom.arc((lref,0.0,0.0), trad-twall,
math.degrees(theta2), 90.0)

Create combustor

xref = CRV_TANK_OML.c2(u=1.0)[0] + trad + tcoffset

p1 = [xref, tcrad, 0.0]
p2 = [xref, crad-csrad, 0.0]
p3 = [xref+nwall, tcrad, 0.0]
p4 = [xref+nwall, crad-csrad, 0.0]

CRV_COMB_OML.c1 = xgeom.line(p1,p2)
CRV_COMB_IML.c1 = xgeom.line(p3,p4)

CRV_COMB_OML.c2 = xgeom.arc((xref+csrad,crad-csrad,0.0), csrad, 90.0, 180.0)
CRV_COMB_IML.c2 = xgeom.arc((xref+csrad,crad-csrad,0.0), csrad-nwall, 90.0,
180.0)

xref = CRV_COMB_OML.c2(u=0.0)[0]

p1 = [xref, crad, 0.0]
p2 = [xref+clen, crad, 0.0]
p3 = [xref, crad-nwall, 0.0]
p4 = [xref+clen, crad-nwall, 0.0]

CRV_COMB_OML.c3 = xgeom.line(p1,p2)
CRV_COMB_IML.c3 = xgeom.line(p3,p4)

xGeom – Python geometry API (3)

1/19/23 | 16Los Alamos National Laboratory

xref = CRV_COMB_IML.c3(u=1.0)[0]

p1 = [xref, crad, 0.0, 1.0]
p2 = [xref+cnfac*cnlen, crad, 0.0, 1.0]
p3 = [xref+(1.0-cnfac)*cnlen, nrad1, 0.0, 1.0]
p4 = [xref+cnlen, nrad1, 0.0, 1.0]

CRV_COMB_OML.c4 = xgeom.NURBScurve(udeg=3, knots=[0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0,
1.0], xcp=[p1,p2,p3,p4])

p1 = [xref, crad-nwall, 0.0, 1.0]
p2 = [xref+cnfac*cnlen, crad-nwall, 0.0, 1.0]
p3 = [xref+(1.0-cnfac)*cnlen, nrad1-nwall, 0.0, 1.0]
p4 = [xref+cnlen, nrad1-nwall, 0.0, 1.0]

CRV_COMB_IML.c4 = xgeom.NURBScurve(udeg=3, knots=[0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0,
1.0], xcp=[p1,p2,p3,p4])

Create combustor mount

p1 = CRV_COMB_OML.c2(u=0.0)
p2 = [p1[0], brad-bwall, 0.0]

CRV_COMB_MOUNT.c1 = xgeom.line(p1,p2)

xref = CRV_BODY_IML.cnose_i(u=1.0)[0] + blen

p1 = [xref, crad , 0.0]
p2 = [xref, brad-bwall, 0.0]

CRV_COMB_MOUNT.c2 = xgeom.line(p1,p2)

Create tank-to-combustor tube

x1 = CRV_TANK_IML.c3(u=0.0)[0]
x2 = CRV_COMB_IML.c2(u=1.0)[0]

p1 = [x1, tcrad, 0.0]
p2 = [x2, tcrad, 0.0]
p3 = [x1, tcrad-tcwall, 0.0]
p4 = [x2, tcrad-tcwall, 0.0]

CRV_TUBE_OML.c1 = xgeom.line(p1,p2)
CRV_TUBE_IML.c1 = xgeom.line(p3,p4)
CRV_TUBE_CAP.c1 = xgeom.line(p1,p3)
CRV_TUBE_CAP.c2 = xgeom.line(p2,p4)

Create nozzle

xref = CRV_COMB_OML.c4(u=1.0)[0]

p1 = [xref, nrad1, 0.0, 1.0]
p2 = [xref + nlen*nfac1, nrad1, 0.0, 1.0]
p3 = [xref + (1.0-nfac2)*nlen, nrad2 -
math.tan(math.radians(nphi2))*nlen*nfac2, 0.0, 1.0]
p4 = [xref+nlen,nrad2,0.0, 1.0]

CRV_NOZZLE_OML.n1 = xgeom.NURBScurve(udeg=3, knots=[0.0, 0.0, 0.0, 0.0, 1.0,
1.0, 1.0, 1.0], xcp=[p1,p2,p3,p4])

p1 = [xref, nrad1-nwall, 0.0, 1.0]
p2 = [xref + nlen*nfac1, nrad1-nwall, 0.0, 1.0]
p3 = [xref + (1.0-nfac2)*nlen, nrad2 - nwall -
math.tan(math.radians(nphi2))*nlen*nfac2, 0.0, 1.0]
p4 = [xref+nlen,nrad2-nwall,0.0, 1.0]

CRV_NOZZLE_IML.n2 = xgeom.NURBScurve(udeg=3, knots=[0.0, 0.0, 0.0, 0.0, 1.0,
1.0, 1.0, 1.0], xcp=[p1,p2,p3,p4])

px = CRV_NOZZLE_OML.n1(u=1.0)
p1 = [px[0], 0.0, 0.0]
p2 = [px[0], px[1], 0.0]

CRV_NOZZLE_EXIT.n3 = xgeom.line(p1,p2)

xGeom – Python geometry API (4)

1/19/23 | 17Los Alamos National Laboratory

Create inflow

CRV_INFLOW.c1 = xgeom.arc((0.0+ioff,0.0,0.0), irad, 90.0+ibeta, 180.0)

lref = CRV_INFLOW.c1(u=0.0)[0]/math.tan(math.radians(ibeta))
xref = CRV_INFLOW.c1(u=0.0)[0] - lref
rad = ilen - xref

CRV_OUTFLOW.c1 = xgeom.arc((xref,0.0,0.0), rad, 0.0, ibeta)

p1 = CRV_INFLOW.c1(u=0.0)
p2 = CRV_OUTFLOW.c1(1.0)

CRV_INFLOW.c2 = xgeom.line(p1,p2)

Create the axis

x1 = CRV_INFLOW.c1(u=1.0)[0]
x2 = CRV_BODY_OML.cnose_o(u=0.0)[0]
x3 = CRV_NOZZLE_OML.n1(u=1.0)[0]
x4 = CRV_OUTFLOW.c1(0.0)[0]

CRV_AXIS.a1 = xgeom.line([x1,0.0,0.0], [x2,0.0,0.0])
CRV_AXIS.a2 = xgeom.line([x2,0.0,0.0], [x3,0.0,0.0])
CRV_AXIS.a3 = xgeom.line([x3,0.0,0.0], [x4,0.0,0.0])

Write XGM file

xgeom.writeXGM(grouplist = [DEFAULT, CRV_AXIS, CRV_INFLOW, CRV_OUTFLOW,
CRV_BODY_IML,CRV_BODY_OML,CRV_BODY_CAP,

CRV_COMB_OML,CRV_COMB_IML,CRV_COMB_MOUNT,
CRV_TUBE_OML,CRV_TUBE_IML,CRV_TUBE_CAP,

CRV_TANK_IML,CRV_TANK_OML,
CRV_NOZZLE_IML,CRV_NOZZLE_OML,CRV_NOZZLE_EXIT

], filename = "geom")

DAKOTA

Simulation Workflow

Design Optimization

1/19/23 | 18Los Alamos National Laboratory

Optimization
Method

Parameter
Definition

Variable
Definition

Objective
Definition

Input Results

Final
Design

Optimal?Design
Controller

Input
Files

Results
Files

Geometry
Model

Mesh
Generator

Multi-Physics
Simulation

Post
Processing

Input
Deck

xGeom xCAD xMesh

