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FOREWORD

Artificial intelligence refers to a collection of technologies that produce systems capable of
tracking complex problems in ways similar to human logic and reasoning. Machine learning
technologies learn how to complete a particular task based on large amounts of data.

Artificial intelligence technologies are advancing exponentially and can already sort and
interpret massive amounts of data from various sources to carry out a wide range of tasks and
help tackle many of the world’s most urgent challenges. Artificial intelligence has the enormous
potential to accelerate technological development in many nuclear fields from nuclear medicine
to water resources management to nuclear science and industry.

In 2021, the IAEA hosted a pioneering Technical Meeting on Artificial Intelligence for Nuclear
Technology and Applications aimed at providing an international, cross-cutting forum to
discuss and foster cooperation in nuclear applications, science, power, radiation protection and
nuclear security, and safeguards verification, to reflect on ethical concerns, and to identify
priorities for future activities in these fields and how the IAEA can support their
accomplishment.

This publication provides an overview of the current state of the art, outlines challenges, and
identifies opportunities for accelerating nuclear applications, science, and technology with
artificial intelligence.

The IAEA gratefully acknowledges the contributions of numerous experts to the preparation of
this publication. The IAEA officer responsible for this publication was M. Barbarino of the
Division of Physical and Chemical Sciences.
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EXECUTIVE SUMMARY

Artificial intelligence (Al) and machine learning (ML) methods have had significant impacts in
science and technology in recent years. These methods for generating models from datasets or
logic-based algorithms that emulate aspects of human performance can similarly accelerate the
fields of nuclear applications, science, and technology toward the IAEA goals of contributing
to peace, health, and prosperity. In order to accomplish advances with Al in general and ML in
particular across these fields, IJAEA can play a significant role, as illustrated in Fig. 1, by
establishing, hosting and curating centralised resources, including databases, adhering to FAIR
(findable, accessible, interoperable and reusable) principles and Open Science best practices,
providing stewardship of data sharing, supporting training efforts and development of relevant
workforces, as well as enabling connections among the scientific, technology, mathematics, Al
and ethics communities.

Many areas can benefit from the use of Al in the realm of nuclear applications. In human health,
these areas include clinical research, epidemiology, nutrition, medical imaging, radiotherapy
and education of health professionals. Al-based tools are also being used to facilitate different
clinical tasks in imaging, computer-assisted diagnosis in mammography and lung cancer
screening programmes, and dose prediction in nuclear medicine procedures. ML methods in
particular may also increase the efficiency and accuracy of the analysis of computerised
tomography and dual-energy absorptiometry scans for body composition and bone analysis.
The application of Al methods to nuclear and related technologies in food and agriculture can
lead to significant advances and improved efficiency in the optimisation of agricultural
production, food product development, management of supply chains, food safety and food
authenticity control. In the water and environmental sector, Al can help inform policies to
mitigate the world’s water problems. The application of Al techniques to hydrology and
environmental sciences is expected to improve patterns identification and enable model
predictions under a changing climate.

In nuclear science, Al-driven research focuses on the automation of the nuclear data pipeline.
These efforts include, for example, the compilation of datasets from publications by using
natural language processing applications, and work is ongoing towards using ML methods for
robust inference with meaningful uncertainty predictions. Furthermore, Al can assist with
validation tasks and the design of experiments for validation. Within the nuclear physics
community, Al and ML methods are applied to data analysis and theoretical modelling to
improve scientific understanding and to increase the efficiency of data processing and
management. Further efforts pertain to the design of future experiments and the optimization
of existing setups, and to the operation of facilities dedicated to nuclear physics, such as particle
accelerators. Recent successes in applying Al and ML methods to outstanding problems in
magnetic and inertial confinement fusion research suggest that such methods have the potential
for significant acceleration of fusion R&D. Worldwide efforts in fusion R&D can benefit by
enabling broader participation in fusion problem solutions through Al and ML.

In nuclear power, the industry can benefit from Al in areas such as automation, design
optimization, data analytics, prediction and prognostics, and insights extraction. Ongoing
efforts focus on the transfer of Al technologies from pilot studies to wider applications. In
radiation protection, Al applications and their integration into control and monitoring processes
(such as individual dosimetry for external exposure) are expected to yield faster, more flexible
and more efficient processes with the potential for a deep technological transformation in the
field. In particular, Al enables the emulation of human cognition in the analysis, interpretation,
and comprehension of complicated work processes including radiation exposure.



In the field of nuclear security, possible applications of Al include analysis of spectroscopic
and geospatial data to improve detection of nuclear material outside of regulatory control,
enhancements to nuclear material accounting and control systems, and the potential to identify
possible insider and external threats at nuclear facilities. On the other hand, the use of Al in
nuclear security systems may introduce potential vulnerabilities not immediately recognizable
to a human operator or the Al system itself. Significant investigation into the threat of cyber-
attacks on Al-enabled technologies is crucial in this area.

Safeguards field activities rely on an ever-growing amount of data obtained with different
techniques to detect nuclear materials, including satellite imaging and gamma ray spectroscopy.
Combined with the rise of the number of materials under safeguards, the need for more efficient
nuclear safeguards processes is evident. Implementation of Al and ML methods would
significantly benefit safeguards by increasing the efficiency of these field activities.

Finally, the convergence of Al and nuclear technologies could exacerbate existing ethical
concerns in the disciplines as well as give rise to new concerns at their interface. Because both
disciplines concern risk and uncertainty and hold huge potential for both benefit and possible
serious societal and environmental harm, there is a need for a new discipline on the interface,
namely the Ethics of Nuclear and Al Technologies (ENAI). ENAI aims at establishing a non-
binary ethics, which could be frontloaded in the design, development, deployment, and use of
Al applications in the nuclear field. This would contribute to creating awareness among
practitioners about the ethical impact of the convergence of Al and nuclear technologies, while
creating mechanisms for robust dialogue with stakeholders. ENAI could further ensure
societally accepted and ethically informed decision-making, which ultimately enables
responsible governance of the application of Al in the nuclear field.
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FIG. 1: IAEA s role in accelerating progress in nuclear applications, science, and technology
using Al and ML methods.



Chapter 1.
INTRODUCTION
1.1. BACKGROUND

Al falls into logic- or knowledge-based Al and data-driven Al Al refers to a collection of
technologies that produce systems capable of tracking complex problems in ways similar to
human logic and reasoning. ML technologies learn how to complete a particular task based on
large amounts of data.

Al technology is advancing exponentially and can already sort and interpret massive amounts
of data from various sources to carry out a wide range of tasks and help tackle many of the
world’s most urgent challenges. Al has enormous potential to accelerate technological
development in many nuclear fields from nuclear medicine to water resources management to
nuclear science and industry. For example, AI’s ability to recognize data patterns and analyze
high resolution images from satellites, drones, or medical scans can improve responses to
humanitarian emergencies, detect global hydro-climatic changes signalling drought or floods,
monitor and optimise agricultural productivity, track animal and marine migrations, and help
medical professionals identify and treat cancers and other diseases.

Combining isotope science with Al provides an interpretable framework to extract new
information from small isotopic variations, offering great potential in a multitude of fields,
including isotope hydrology, ecology, forensics and food security. Experts already apply Al-
based approaches to water-related isotopic data stored in global networks, such as the Global
Network of Isotopes in Precipitation maintained by the IAEA and high-frequency isotope data
series. Effective and efficient analysis of these data facilitated with Al helps scientists
understand impacts of climate change and population growth on water availability worldwide.

In fusion and nuclear science research, ML can enable optimization of experimental planning
and real time control solutions necessary for sustained, safe, and efficient facility operation, by
maximising the amount and applicability of information extracted from experimental and
simulation data.

Al-based approaches are applied to support nutrition as well as diagnosis and treatment of
disease through improved image processing, detection of pathologies, and segmentation. ML
plays an increasingly important role in the prediction of an individual’s disease course and
treatment response. Al will also play an important role in the IAEA’s Zoonotic Disease
Integrated Action (ZODIAC) initiative to help experts predict, identify, assess, and contain
future zoonotic disease outbreaks.

With the advent of powerful computing capabilities and data analysis tools, the nuclear industry
is embracing Al and ML techniques for a wide range of visionary activities that could transform
the way nuclear systems are being designed, licensed and operated. Al has the potential to
enhance the integration of computations and experimental data collected from small-scale
experiments or from sensors during operation. This integration, when optimised, allows
computational scientists to develop physics models of unprecedented accuracy and helps
experimental scientists to minimise the cost and number of validation experiments for first-of-
a-kind systems. It also makes it possible for system operators to monitor system states that
cannot be directly instrumented. Al methodologies and tools can be applied for physics-based
predictive analysis that can be used to perform design, manufacturing, construction, and
operation effectiveness optimization; improved new reactor design iterations; model-based



fault detection; and for control systems. Al can also bring further benefits to the nuclear industry
in terms of reliability, safety, and overall efficiency.

1.2. OBIJECTIVE
The objectives of this publication are:

e To provide an overview of the current state of the art, outline challenges, and identify
opportunities for accelerating nuclear applications, science, and technology with Al

e To identify priorities for future Al activities in the nuclear field and determine how the
IAEA can support their accomplishment.

e To identify commonalities and synergies between Al research in different applications with
a view to facilitating collaborations and cooperation.

e Toestablish ethically responsible governance of the application of Al technology to the
nuclear field and to ensure societally accepted and ethically informed decision-making
mechanisms regarding its application.

1.3. SCOPE

This publication encompasses the development and applications of Al in human health, food
and agriculture, water and environment, fundamental nuclear data, nuclear physics, fusion,
nuclear power, radiation protection, nuclear security, and safeguards verification. It also
addresses the ethical impact of the convergence of Al and nuclear technologies.

1.4. STRUCTURE

This publication provides a review of the current state of the art, and outlines challenges and
identifies opportunities for accelerating nuclear applications, science, and technology with Al
After the introduction and background information on Al and its use in the nuclear field,
Chapter 2 provides a summary of the ethics of Al and nuclear technologies and of the use of Al
in nuclear applications, science, power, radiation protection, nuclear security, and safeguards
verification.

State of the art, priorities for future Al activities in the nuclear field and the IAEA’s role to
support their accomplishment! are presented in the following Chapters. Chapter 3 addresses the
ethical impact of the convergence of Al and nuclear technologies. Chapters 4—12 focus on the
applications of Al in nuclear fields corresponding to IAEA’s areas of work, including human
health, food and agriculture, water and environment, nuclear data, nuclear physics, fusion,
nuclear power, nuclear security, and safeguards verification.

! Based on input from Agency scientific and technical meetings on the subject matter and through the
interaction between the secretariat and expert participants with respect to the theme of this publication
and specific parts of the Agency’s Programme.
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Chapter 2.

SUMMARY OF ARTIFICIAL INTELLIGENCE
IN NUCLEAR APPLICATIONS, SCIENCE, AND TECHNOLOGY

2.1. ETHICS

The disciplines of the ethics of Al and the ethics of nuclear technology are well established as
separate domains. However, the application of Al technology to nuclear science, technology
and applications points to the need for the establishment of a new discipline on the interface of
these domains, namely the ethics of nuclear and Al technologies. The raison d’etre for this new
domain lies in the facts that both disciplines concern risk and uncertainty and both hold huge
potential for benefit as well as for possible serious societal and environmental harm. The ethics
of nuclear and Al technologies points to the convergence of already existing concerns in the
two subdomains as well as to new concerns arising on their interface. It aims at establishing a
non-binary ethics, which could be frontloaded in the design, development, deployment and use
of Al applications in the nuclear field. This would contribute to: (i) creating awareness among
practitioners about the ethical impact of the application of Al technologies to nuclear science,
technology and applications; (ii) putting in place mechanisms for robust dialogue with all
identified stakeholders; (iii) ensuring societally accepted and ethically informed decision-
making regarding nuclear applications, science, and technology; and (iv) establishing
responsible governance of the application of Al technology to nuclear applications, science and
technology.

2.2. NUCLEAR APPLICATIONS

There are broad efforts in the human health sector to apply Al in clinical research, nutritional
epidemiology, and personalised nutrition. Significant work is ongoing in medical imaging and
the potential for Al applications in nuclear nutrition assessments, radiotherapy and education
of health professionals is being explored. Al-based tools are being used to facilitate different
clinical tasks in imaging such as intra- and inter-modality image registration and fusion,
computer-assisted diagnosis in mammography and lung cancer screening programmes, and
dose prediction in nuclear medicine procedures. In radiotherapy, Al-based tools have potential
to automate repetitive, complex work processes, e.g., segmentation, and automatic generation
of beam placement followed by optimization as applied to knowledge-based treatment
planning. ML methods may also increase the efficiency and accuracy of the analysis of
computerised tomography and dual-energy absorptiometry scans for body composition
assessment and bone analysis. Prior to deployment of all Al-based tools into clinical practice,
verification of their generalizability, interoperability and robustness, needs to be performed by
the health professionals responsible for their implementation.

In the food and agriculture sector, recent implementation of open data policies, innovative data
acquisition methods, and enhanced data availability have enabled the use of Al. Furthermore,
Al can help improve analytical prediction based on traditional chemometrics, supporting
calibration of analytical equipment, and calibrating measurements carried out across the same
type of equipment but from different providers, which is essential to create the large datasets
needed for Al applications. Collaborative frameworks can provide a mechanism to support the
development of Al approaches in food and agriculture science, stimulating progress by
interdisciplinary exchange of expertise and experiences across scientific fields and disciplines,
to exchange experience and discuss case studies within and outside of the community. Al
methods developed within such collaborations can be disseminated widely, leading to further



developments, through testing and scaling the developed applications. This can provide
significant advantages and efficiencies in optimising agricultural production, food product
development, management of supply chains, food safety and food authenticity control,
accelerating reaching the sustainable development goals.

In hydrology and environmental studies, the full potential of AI and ML has not yet been
thoroughly exploited. Extensive data is available from satellites, unstaffed airborne vehicles,
and sensor networks, providing a significant opportunity for Al and ML methods to be applied
in conjunction with existing global isotope databases. Application of Al and ML methods to
water and environmental studies can be enhanced through extension and quality control of
existing isotope databases, spatially and temporally refining relevant datasets, and filling gaps
in existing time series data. These databases can further facilitate efficient access to earth-
system modellers using Al applications. This way, the combination of isotope techniques, high-
frequency data, remote sensing, open-source resources and Al can inform policies for
mitigating the world’s water problems, as well as issues related to ecology and climate change.
Focused connections among data collectors, modellers and water managers can also serve to
accelerate progress.

2.3. NUCLEAR SCIENCE

Al efforts in nuclear data aim to automate parts of the nuclear data pipeline. The components
of the pipeline that would benefit the most from Al are (i) compilation; (i1) evaluation; and (iii)
validation. Currently, a primary barrier to Al advancements in nuclear data is a manual interface
with datasets. Developing application programming interfaces is crucial for advancing Al in
nuclear data. For the compilation of datasets from publications, natural language processing
applications are being explored. Establishing data standards for these compiled datasets will
enable faster development of Al for nuclear data. For the evaluation of these datasets, there is
work towards using ML methods for robust inference with meaningful uncertainty predictions.
Furthermore, Al can assist with validation tasks using integral experiments, and help design
future integral experiments for validation.

To accelerate scientific discovery in nuclear physics, there are widespread efforts towards Al
applications. These efforts span facility operation, experimental optimisation and design, data
processing, management and analysis, and theoretical modelling. Whereas the nuclear physics
community has investigated the efficacy of Al methods for more than fifty years, the last five
years have seen an exponential increase in the development and use of Al technologies.
Looking forward, deeper understanding and utilisation of Al methods that incorporate robust
uncertainty quantification will be paramount. Directing efforts towards the integration of Al
methods into real-time systems, such as accelerator operations and detector systems, will assist
in increasing scientific output from experiments. In order to advance the use of Al in nuclear
physics, continued, regular education efforts and curated centralised resources need to be
established. In addition, funding opportunities for interdisciplinary positions at the intersection
of Al and nuclear physics are required.

In fusion science research, AI and ML have proven highly effective in addressing outstanding
problems in tokamak disruption prediction, surrogate models for acceleration of computational
tools, and hybrid models that combine physics-based and data-driven models. The success of
these efforts in the fields of magnetic fusion energy and inertial fusion energy research suggests
that large scale application of such methods has the potential for advancing the realisation of
fusion as a commercial energy source. Presently, worldwide efforts in fusion R&D can benefit
by enabling broader participation in fusion problem solutions through Al and ML. This broader
participation can be facilitated by providing wider access to curated fusion data along with



identification of key problems amenable to data-driven methods, providing relevant data
standards, expanding the workforce with Al and ML domain expertise to address fusion
challenges through education and engagement, and supporting application of technical
expertise to fusion by broader domain experts.

2.4. NUCLEAR POWER

The nuclear power industry benefits from Al in areas such as automation, design optimization,
data analytics, prediction and prognostics, and insights extraction. Automation via Al leads to
an increased reliability and safety risk reduction in high-pressure or demanding situations, thus
minimising downtime of common operations due to human error. Examples include automating
data analysis of defects of control rods and anomaly detection in nuclear power plants (NPPs)
processes. Al-driven optimization can increase NPPs efficiency and could enable the design of
complex operations, such as assisting in core-control methods for predictive purposes. Further,
advanced statistical modelling via Al-infused physical concepts can provide fitness-for-service
assessments, while preserving generalisation to new data. Predictive modelling in NPPs can be
leveraged to better inform maintenance activities. However, this is an underutilised tool in the
nuclear power industry because standard solutions are currently more broadly adopted. Finally,
the large amount of data available on operating NPPs enables discovery of new best practices
for improved operating and maintenance efficiencies.

The deployment of Al solutions, however, is often hindered by the difficulty of demonstrating
compliance with regulatory standards. The nuclear power community is starting to address
these challenges with the creation of dedicated ISO/IEC subcommittees working on promoting
a rapid transfer of Al technologies from pilot studies to wide applications. A crucial point
remains to protect the trustworthiness and integrity of both models and data used for training
and decision-making from potential cybersecurity attacks.

Before the nuclear power industry can effectively adopt Al-based tools, R&D efforts are
required in speech and gesture recognition for control room operations, or Al-aided field-testing
techniques, such as condition monitoring and automation of predictive maintenance procedures.
Most importantly, concrete efforts will be needed to develop a roadmap guiding regulatory
investigation, research and positioning on the application of Al systems for nuclear power
plants.

2.5. RADIATION PROTECTION AND NUCLEAR SECURITY

The focus of radiation protection is the integration of safety requirements and standards in
workplaces subject to radiation exposure. Scoping existing Al applications and their integration
in the safety standards is currently ongoing. ML algorithms and virtual reality tools can be
exploited to address specific challenges in radiation protection, such as applications for
simulation and job planning regarding workers’ dose calculations, or dose optimisation during
design of facilities and activities including nuclear facilities to comply with regulatory
requirements. Al-driven research could enhance radiation protection by producing algorithms
and software that emulate human cognition in the analysis, interpretation and comprehension
of work processes including radiation exposure. Additionally, by gathering and analysing
radiological data across many different machines, faster, more flexible, and more efficient
processes for the establishment of radiation protection programmes will be enabled, leading to
a deep technological transformation in the field.

There are potential benefits and risks to the use of Al in nuclear security applications. Examples
include the potential to improve detection of and response to material outside of regulatory



control, the potential to improve nuclear material accounting and control systems, and the
potential to identify possible insider and external threats at nuclear facilities. However, the use
of Al in nuclear security systems may introduce potential vulnerabilities not immediately
recognizable to a human operator or the Al system itself. As a result, there is a need for
increased understanding of the limitations of Al applications in nuclear security systems.
Significant investigation into the threat of cyber-attacks on Al-enabled technologies is also
crucial in this space. In the field of nuclear security, primary efforts need to centre on the
analysis of the benefits of Al versus the risks introduced by Al Experts encourage careful
consideration when developing and implementing Al and the establishment of clear objectives
and metrics to preserve rather than compromise security. Al also raises a number of ethical and
privacy concerns for nuclear security, in addition to questions surrounding data accessibility,
intellectual property constraints, and even data sovereignty.

2.6. SAFEGUARDS VERIFICATION

The application of Al is expected to increase the efficiency of safeguards processes, in
particular for those that involve classifying data, finding patterns, and identifying outliers in the
data. ML methods have been used in the analysis of gamma ray spectra to detect and identify
anomalous sources of nuclear materials or to quantify the amount of fissile mass. Furthermore,
the verification of spent fuel from gamma ray, neutron and Cerenkov imaging data is an
important task within safeguards that can benefit from the application of Al. By combining Al
techniques with robotic technology for tasks, such as data collection or calibration, a further
increase in efficiency is envisioned. Video surveillance safeguards processes would also benefit
from the implementation of Al as their review is both challenging and time-consuming and as
conventional algorithms are prone to false alarms. By reducing the number of repetitive tasks
that are currently performed by inspectors and experts, the application of AL and ML would
increase productivity in safeguards.

At present, however, the accuracy of ML-based predictions is often insufficient to allow for
autonomous decisions, and thus requires continued human input. Inspectors and experts will
need to work closely with specialists from the AI community to improve the accuracy of Al-
based algorithms and to inform their development. This is of particular importance as false
alarms affect the trust the users have in the algorithms as well as the trust between the inspectors
and the Member States. In addition, false negatives would miss important events with
significant consequences for safeguards. As a fraction of the data within safeguards is not open-
source, another challenge in the implementation of Al within safeguards pertains to data
sharing. Once the discussed challenges are overcome, Al-based algorithms can be established
as reliable tools for safeguards processes.
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3.1. STATE OF THE ART
3.1.1.  Artificial intelligence ethics

While Al technologies have tremendous potential to contribute to the good of humanity, there
are some serious concerns about the possibility of these technologies, and their applications,
contributing to the transgression of human rights, and human values, such as dignity. Therefore,
it is necessary to ensure that these technologies are governed in responsible ways throughout
their life cycle including the research, design, development, deployment, use and end of use
stages.

Data-driven Al refers to Al research that centres on data classification and deep learning
methods. Until around 2000, Al research was mainly focused on knowledge or logic-based
research that focused on the nature of knowledge representation and reasoning by formalising
natural language and reasoning practises in logic-based systems. There are some notable
technical limitations with this kind of approach, especially if one wants to move away from
traditional algorithms that prescribe the way in which problems are solved, or logic-based
systems behave. Given the advent of the big data era, the focus moved from algorithmic
reasoning to finding patterns in data. Many different methods were tested — neural networks,
Bayesian networks, support vector machines, evolutionary algorithms, etc. — and one of the
major breakthroughs happened in 2012 in the domain of computer vision (image recognition)
with Geoffrey Hinton’s application of deep learning and other ML techniques [3.1].

ML systems differ from traditional algorithms as there is no given set of rules for solving
problems, but rather ML systems learn to solve problems. Thus, the logic of ML systems
changes as the way in which algorithms solve problems is not predetermined [3.2]. This
property of ML systems raises a host of concerns centring on transparency, explainability,
fairness, privacy, and accountability. Al technologies also carry other potential additional
threats such as contributing to social and political instability through mis- and disinformation,
imperilling the most vulnerable groups in society, changing the quality of human interaction
and agency, amplifying inequality, and contributing to threats to the environment and
ecosystems. In addition, there are various kinds of harm that can be caused by Al systems that
relate to representation of social groupings and allocation of resources based on identity
prejudice driven by structural bias in society. Since clearly Al systems are socio-technical
systems (e.g., [3.3-3.6]), what is needed to respond to these concerns is inter-, multi-and



transdisciplinary input from all stakeholders through-out the life cycle of Al systems (e.g., [3.7,
3.8]), as well as research on responsible Al governance.

Al ethics has exploded into a complex inter-and trans-disciplinary field over the past decade.
While there is a distinctive role for computer science on the technical side in this domain, the
nature of the ethical concerns raised by data-driven Al applications and technologies is such
that there is also an essential role for disciplines in the social sciences and humanities, such as
philosophy and anthropology, and for legal disciplines. Ref. [3.8], refers to the “dual advantage
of ethical machine learning”, which ensures that opportunities for trustworthy and beneficial
Al are realized, while, on the other hand, potential harm is minimised. Thus, part of the ethics
of Al is asking “difficult questions about design, development, deployment, practises, uses and
users, as well as the data that fuel the whole life-cycle of algorithms™ (ibid.) as well as asking
questions around privacy concerns related to such data.

However, there are also concerns around the scope and actionability of abstract Al policies and
regulation (e.g., [3.9-3.11]). There has been a host of policies recently, from the UNESCO
global Recommendation on the Ethics of Al, the GDPR, the EU proposal on the identification
of high-risk systems, various national policies, and professional regulation, such as the IEEE
documents. Ref. [3.9] cautions however in the context of concretising these kinds of policies
that

“[i]ln order to analyze [AI ethics] in sufficient depth, ethics has to partially transform to
‘microethics’. This means that at certain points, a substantial change in the level of abstraction
has to happen ....... On the way from ethics to ‘microethics’, a transformation from ethics to
technology ethics, to machine ethics, to computer ethics, to information ethics, to data ethics
has to take place” (ibid.).

There is also in the literature a lot of interest in the potential positive impact that bottom-up
approaches (e.g., virtue ethics, data-activism) may have on the actionability of policies (see,
e.g.,[3.7,3.9,3.12-3.14)).

In terms of state of the art of Al ethics, some of the main current focus areas include concerns
around autonomy and artificial agency (e.g., in military or health situations); robot rights and
legal personhood of artificial agents; concerns around fairness (bias), accountability and
transparency (including explainability and interpretability) of Al systems; data integrity,
ownership and privacy concerns; the need for information and communication literacy; and the
need for actionable Al ethics policies. Necessarily, Al ethics is thus a complex field where
ethical and epistemic questions are intertwined and it is a field that transforms, adapts, expands,
and adjusts as Al technology progresses. This domain needs to be approached in inter-, multi-,
and transdisciplinary manners, with broad (bottom-up) stakeholder participation.

3.1.2. Ethics of nuclear technology

Early discussions on the ethics of nuclear technology in the 1960s and 1970s are almost
exclusively about nuclear proliferation and nuclear security and about questions such as the
moral legitimacy of nuclear warfare [3.15]. The development, possession, and use of nuclear
arms were further discussed extensively (e.g., [3.16-3.19]). What is particularly striking about
this literature is that it extends beyond philosophy and ethics venues and into international
relations, for instance about nuclear deterrence, perhaps one of the most dominating features in
international relations literature after World War II (e.g., [3.20, 3.21]).
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Since the 1980s, the literature has evolved from a strong emphasis on proliferation and military
aspects to the ethics of nuclear energy, focussing on questions of nuclear safety and risk, justice
and democracy as well as proliferation aspects associated with dual use technologies. A part of
this literature focuses on assessing the moral desirability of nuclear energy by focussing on the
longevity and the toxicity of nuclear waste and from the perspective of our duties to future
generations [3.22, 3.23], as well as on the radiation risks for both the public and radiation
workers [3.24, 3.25]. Kristin Shrader-Frechette did pioneer work in the 1990s discussing the
ethical acceptability of nuclear energy because of its inequitable distribution of risk among the
current generations (also referred to as environmental justice) but also between the present and
future generations [3.26-3.28].

More recent work (the 2000s onward) extends the discussions on ethics beyond the yes/no
dichotomy [3.29, 3.30] and elaborates on the specificities of nuclear energy production and
waste management, for instance by using criteria of intergenerational justice to reflect on
different technological choices for nuclear waste disposal [3.31], or for choosing a fuel cycle
[3.32, 3.33]. In the wake of the Fukushima Daiichi accidents, there was a renewed interest in
the societal and ethical aspects of nuclear energy. Understandably, there was an interest in better
anticipating and dealing with nuclear risks [3.34, 3.35], safety cultures in nuclear power plants
[3.36], moral emotions and responsible risk communications [3.37, 3.38], better understanding
justice issues (both procedural and distributive) in decision-making regarding waste
management and licence renewal decisions [3.39, 3.40], considering nuclear energy as a social
experiment whose acceptability needs to be continuously examined [3.41, 3.42], global safety
and security implication as a result of new global nuclear energy landscape [3.43, 3.44] and
potential role that nuclear energy could play in the future of nuclear energy provision, both for
the industrialised and industrialising nations [3.45-3.47].

Issues pertaining to radiological protection have further received ample attention in the
literature, but not only with respect to nuclear energy but also the broader nuclear applications
(including nuclear medicine) [3.48-3.52]. Considering ethics (and ethical values) in
radiological protection has a long standing in the literature [3.53, 3.54] and it has recently been
included in the core of thinking about radiological protection. The International Commission
on Radiological Protection (ICRP) has recently spelled out the ‘Ethical Foundations of the
System of Radiological Protection’, particularly focussing on the core values including
beneficence and non-maleficence, prudence, justice, and dignity [3.55]. ICRP further lists the
three procedural values of accountability, transparency and inclusiveness that are ethically
relevant in decision-making about radiological protection.

3.2. NEXT STEPS

As explained in the previous section, the applications of nuclear technologies have given rise
to certain ethical issues over past decades. Al applications, but also issues pertaining to big data
and ML, have also given rise to emerging and constantly progressing ethical issues. The
convergence of Al and nuclear science, technology and applications could exacerbate existing
ethical issues in the domains of the ethics of Al and the ethics of nuclear science, technology,
and applications. In this process, a new domain, namely the Ethics of Nuclear and Al
Technologies (ENAI) emerges for the following two reasons: (i) both technologies carry
concerns relating to risk and uncertainty, which may be amplified by their interaction; and (ii)
both technologies relate to potential for meeting sustainable development goals (strong
potential for overall benefit) as compared to both carrying potential negative social and
environmental impact.
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As a preliminary definition for this new domain, ENAI can be described as research focused on
the reflection on, analysis of, and suggestions to mitigate ethical concerns relating to the design,
development, deployment and use of Al applications and technology in the nuclear field. Some
examples of areas of application where convergent ethical focus is present include the use of
Al technologies in the following domains: in assessing risks and decision-making in risk
governance; in nuclear reactor control (complementing operator control and automatization)
pertaining to better safety assurances; in intergenerational ethics to reason the way future
generations would reason; in triage and diagnosis support in medical applications; and in
monitoring, dosimetry and health surveillance after a nuclear accident (including links to
mobile applications). The methodology of ENAI will include multi-, inter- and transdisciplinary
mixed methods as approaches in bioethics, as well as value-sensitive design and design for
values as approaches in ethics of technology.

Contexts for reflecting on ethical concerns in Al ethics and ethics for nuclear technology that
may also be applicable to ENAI include: transdisciplinary, interdisciplinary, and
multidisciplinary research; responsible research and innovation; bottom-up engagement with
all stakeholders; and considering the ethical issues of risk acceptability. Reflection on mutual
concerns would imply at least safeguarding meaningful human control and human oversight
and the complementarity of human and machine decision making; developing methodologies
that support the performance monitoring of Al-powered nuclear systems and actively working
to mitigate social and environmental justice concerns; raising ethical awareness and literacy
concerning these technologies and stimulating public engagement; and considering the problem
of accountability and responsibility for the outcomes of these technologies.

New themes to be explored in the context of ENAI will arise as the new discipline evolves, but
here are some themes that immediately arise. Al applications can make for better (nuclear) risk
assessment and better preparation, better pre-mortem analyzes, better safety and safeguarding.
Considering the development of a new, mature and participatory risk-based approach, built on
a theoretical model capable of taking into account many factors (e.g., specific use, effects in
space and time, populations involved, local cultures, potential injuries, ethical issues involved,
and more) and even non-linear correlations would become possible. Concerns around
environmental, social and epistemic justice will be a main issue with respect to ethical
considerations to be further investigated. The potential contribution of Al technologies to
studying the viability of nuclear applications, science and technology to solve climate issues
could become an important new theme. Al technology in medical applications can contribute
to improving medical care provided appropriate attention is paid to data ethics, medical ethics
and research ethics concerns (diagnostics, risk predictions, personalising treatment, triage). The
issue of responsibility for possible harm, which is now an even more complex problem if these
two powerful technologies are merged, will have to be rethought. Here the debate on epistemic
justice and the individualist vs. collective ethics debate will intensify as the harm at issue is
often both to individual persons and societies as a whole [3.56]. New dilemmas coming out of
the convergence of the two technologies — e.g., dilemma between benefit and harm, ethical vs.
technical risk — will arise for ethical consideration. Attention would need to be given to ensuring
uptake of ethical considerations: how do we enable all stakeholders to participate actively in
such a broad domain? Further epistemic questions that impact ethical considerations, e.g.,
opacity of Al in nuclear applications, will need to be considered.

There are also some background concerns about the scope and nature of ENAI to take into
account. These include the following concerns: Can Al technologies add more risks to nuclear
applications? There is an overlap in terms of the presence of risk and the need for risk analyzes.
However, on the one hand, there may be divergence in terms of the ethical and technical
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dimensions of risk in each case, and on the other hand, there may be potential side effects of Al
and nuclear technologies and applications and thus the possible transfer or amplification of risks
to the combined domain of these technologies needs to be considered as well. Secondly, can
the ENAI exacerbate some issues in acceptability of this industry, and usages? Thirdly, is there
a risk of negative back propagation effect on the potential of the application of Al technology
in nuclear science, technology and applications of the ethical behaviours of professionals.
Finally, when are soft laws needed, when do they or should they be allowed to solidify into
hard law within the context of the overarching demand to comply with International Law?

3.3. ACCELERATING PROGRESS—IAEA’S ROLE
It is suggested that IAEA could support the following initial endeavours:

1. Establish a new transdisciplinary domain of ENALI:
i.  Facilitate research and collaborations (IAEA supported and acknowledged);
il.  Assist with organising a trans-disciplinary conference (trans-disciplinary includes inter-
disciplinary work and collaborations between academia and industry);
iii.  Assist with establishing an IAEA network on Al for Atoms;
iv.  Promote the domain and awareness about the domain through international challenges
focused on humanitarian problems; and
v.  Develop publications on the subject.

2. Provide ENAI training for practitioners:
i.  Develop specific IAEA validated and approved curriculum, module, publications;
il.  Assist with cultivating respect for trans- and multi-disciplinary research.

3. Facilitate science policy advice:
1. Assist with ensuring good quality of information and advice in terms of reflexivity and
an inclusive and deliberative character;
ii.  Being sensitive and promoting sensitivity to rights-based vs. duty-based approaches and
vocabulary in policy-making.

4. Promote responsible research and innovation:
i.  Pertaining to applications of Al techniques in nuclear technology innovations.

5. Formulate ENAI Guidelines:
1. Assist with creating a repository of best practice;
il.  Assist with developing impact assessment methodologies, risk analyzes, pre-mortem
analyzes, and sharing of best practice;
iii.  Establish a joint observatory with the Human Rights Council.

In order to accomplish the above, attention needs to be paid to at least the following issues:
Who is or needs to be part of the dialogue, who are the stakeholders? How do we address
concerns about awareness and literacy, problems of public engagement in Al in nuclear
technology and applications? How can up-streaming be ensured? What if lay-people do not
understand the technologies?

Moreover, context matters in terms of both identifying and addressing ethical concerns. Some
known obstacles to effectiveness of Al ethics (and nuclear ethics) regulation may also apply in
the ENAI case such as the divide between what members of the technical and scientific
community on the ground are concerned with and abstract ethical principles, and subsequent
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lack of feelings of moral responsibility on the side of those designing and developing these
technologies and applications, on the other.

How does one navigate tension between ethical and economic and political concerns in this
domain of Al in nuclear technology and applications? How to mitigate exacerbated ethics
dumping in both the Al and nuclear field cases in low- and middle-class countries and small
island states and exclusion of these countries from regulatory discussions? What suggestions
would there be from ENAI to mitigate social and environmental injustice? How can we take
sufficient note of the fact that thinking about values change as technologies change and
converge? On a related note, how can we take sufficient note of cultural differences in
approaching Al in nuclear technology and applications?

Moreover, the applications and technologies are complex systems in both cases — how does one
plan for ethical concerns or mitigation of concerns in such a context? Who will determine the
readiness of JAEA’s Member States for these technologies and for ENAI principles and action?
Who is responsible for harm from Al in nuclear technology and applications? Finally, how are
human rights impacted on by the convergence of these applications and technologies?

3.3.1. Overarching concerns and way forward

The ethical issues mentioned above have the potential to increase and intensify as Al and
nuclear technologies and applications develop and further converge. ENAI has a huge and
diverse scope given the proliferation of domains in which Al technologies are applied to nuclear
applications e.g., medical contexts will be different from power plant contexts. While here it is
argued that ethics needs to be mostly considered in a non-binary mode, the question is legitimate
whether (from an ethical point of view) there are situations in which the convergence of nuclear
applications and Al should not be applied at all.

Given these concerns, it would be advisable to respect the need for joint development of the
research agenda on this topic. This would support and help grow co-creation of ethics
approaches, which would inform an understanding of the making of ethics concurrent with the
making of Al and nuclear technologies and applications in an integrated way. It would also
facilitate scoping of remits and supporting and growing societal input to the remit and scope of
ENAI considerations.

3.4. EXPECTED OUTCOMES
Support for the endeavours discussed in the previous section will result at least in:

e Providing societally accepted and ethically informed decision-making regarding nuclear
science, technology and applications.

e Establishing responsible governance of the application of Al technology to nuclear
science, technologies and applications.

e C(reating and improving awareness among practitioners (from early age) about ethical
implications of Al, nuclear technologies and the convergence of both fields.

e Enhancing dialogue with important societal stakeholders.
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4.1. STATE OF THE ART

Use cases of Al in the human health sector can be divided into four separate areas: (i)
radiotherapy and medical physics; (ii) medical imaging and nuclear medicine; (iii) nuclear-
related nutrition assessment; and (iv) health education. Medical physics aspects are relevant to
(1) and (i1).

4.1.1. Radiotherapy

Scientific exchange and publications on Al have grown exponentially in the past few years, but
Al-based tools are not widely used in radiotherapy, including medical physics aspects. Growth
in the area of personalised medicine is converging with the developments of Al methods,
opening up new possibilities, while pushing the ethical and quality assurance boundaries of
conventional practices. The scientific community is aware that — although Al has
transformative potential — there are risks of unintended consequences. Challenges exist in the
clinical implementation of Al-based tools and in technical, ethical and legal domains (including
patient data privacy). Several relevant international and national organisations have recently
provided guidance in these domains [4.1-4.5].

4.1.2. Medical imaging and nuclear medicine

Al applications are used in medical imaging to facilitate different clinical tasks such as image
processing, computer-assisted diagnosis (CAD) for detection of pathologies, image co-
registration, patient-specific dosimetry, or prediction of clinical outcomes. Al algorithms have
already shown great promise in breast and lung cancer screening programmes. For lung cancer
screening, Al applications have been implemented as a research tool, in particular screening
with computed tomography (CT) including restaging [4.6]. Al has been successfully used as a
second reader for the detection of lung nodules. Multimodality Al imaging models have been
developed commercially to rule out various pathologies not limited to cancer, especially on
chest CT. Imaging Al applications for the detection and evaluation of COVID-19 complications
have been developed, mainly but not uniquely to recognize pneumonia patterns, sometimes
pathognomonic. Furthermore, Al is also used to improve radiology workflow [4.7] and for
optimization studies, e.g., in the form of virtual imaging trials for optimization of design and
use of imaging equipment.

At the global health level, the first medical imaging applications making use of Al are devoted
to tuberculosis (TB) and chest X rays [4.8, 4.9]. This also forms the basis of the interagency
Special Programme for Research and Training in Tropical Diseases (TDR), which is already
implementing a research toolkit for the calibration of CAD score thresholds and other
parameters of TB on chest X rays [4.10, 4.11].
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Another potentially impactful development, in particular for LMICs, is at the intersection of Al
with teleradiology [4.12—4.16]. In the near future, this could include cancer imaging, and in
particular lung cancer (both screening and (re)staging), and TB. In fact, previously unseen
constellations of patient imaging findings were observed at the outset of the COVID-19
pandemic, i.e., notable recognizable factors such as new pneumonia patterns and associated
complications, including cardiovascular ones.

Al also has tremendous prognostic capacity when combined with, for example, radiomics [4.17,
4.18]. However, relevant clinical decision-making support is based on multiple reliable imaging
biomarkers. To achieve the desired outcome, standardized protocols for image acquisition,
feature extraction, and analysis have to be considered when utilizing these Al-based tools.

Multidisciplinary collaboration will be required in continued development of Al-based medical
imaging applications. Target areas of quality assurance and safety include standardized image
reconstruction protocols, patient-specific optimisation of radiation doses, and validation of Al
tools. To ensure quality and safety in medical imaging, the current quality assurance
programmes need to be extended to the relevant aspects of Al tools used in clinical practice.
The quality assurance should address the performance and safety of Al tools and the
involvement of imaging medical physicists is of paramount importance.

4.1.3. Nuclear nutrition assessments

The use of Al in the field of nutrition is increasing, particularly in the areas of clinical research,
nutrition epidemiology and personalised nutrition. The main use cases of Al with respect to
nuclear techniques are imaging techniques, such as dual energy X ray absorptiometry (DXA)
and CT, which provide body composition and bone health data. Manual analysis of scans can
be time consuming, thus limiting the application in a clinical setting. The use of ML could
automate the process, facilitating more accurate and feasible data collection in clinical settings.
The challenge of Al in nuclear nutrition assessment techniques is that performance is only as
good as the quality of the data that informs the process.

4.1.4. Health education

Al applications have long been associated with education, which is referred to as Al in
education (AIED). Its continuing development saw the adoption of intelligent tutoring systems
as well as dialogue-based tutoring systems, a version of ITS developed in the 1980s for medical
education [4.19]. Modern developments in AIED include the use of exploratory learning
environments, learning applications, chatbots, collaborative learning, student forum
monitoring, and continuous assessment [4.19]. More recently, Al has also been used as a
backend technology for interfaces such as virtual reality, augmented reality, and serious games.

Innovation in education is needed to prepare people for an Al-driven world [4.20]. Although
doubts linger regarding the educational value of Al several Al systems demonstrated to have
positive impacts on student learning in the last decade [4.20]. However, whereas Al may have
various applications and substantial potential for health education, its adoption in this field has
been limited and relevant research is still scant [4.19, 4.21].
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4.2. NEXT STEPS
4.2.1. Radiotherapy

The routine use of deployed Al-based technologies in radiotherapy, including medical physics
aspects, is expected to grow over the next 5—10 years. Al tools will mainly be implemented for
task replacement (in which repetitive work processes such as image segmentation is automated,
with subsequent validation by the responsible clinical professional), and decision support
systems (which facilitates and supports complex work processes by the responsible professional
taking clinical actions or decisions, including treatment planning and computer-assisted
diagnosis). Decision support systems in particular require clear interpretability of Al-based
tool outputs, avoiding black-box modelling approaches.

Clinical deployment of Al-based technologies needs to consider that the need for educated and
trained radiotherapy professionals, e.g., radiation oncologists, medical physicists, and radiation
therapy technologists, is likely to increase, and that Al methods cannot be used to substitute
adequately trained radiotherapy professionals.

The roles and responsibilities of radiotherapy professionals need to be clearly defined and
retained as Al tools are deployed. A core team is needed for implementation of Al, with
radiation oncology and medical physics professionals leading the process. Broader expertise
and participation from IT personnel, data scientists, knowledge engineers, data protection and
ethics officers will likely be needed in varying degrees to support the implementation process,
depending on the application.

New training for radiotherapy professionals, driven by the expansion of domain knowledge
requirements, must enable them to organise services and departments with integrated Al based
tools, effectively select and implement Al applications in the clinic, appropriately define the
input for Al, and competently evaluate the output of Al based tools.

4.2.2. Medical imaging and nuclear medicine

Substantial opportunities exist for applications of Al to advance and support medical imaging
and nuclear medicine in the clinical setting. There are active proposed areas of research and
development, including inter-regional coordinated research projects on CT imaging and
COVID-19 as part of efforts towards pandemic preparedness and the use of Al to detect TB
from chest X rays. In parallel, efforts towards standardization and quality assurance of various
Al-based tools are necessary to improve their performance and reproducibility.

4.2.3. Nuclear nutrition assessments

The next steps for Al in relation to nuclear nutrition assessment techniques include the more
efficient and accurate analysis of CT scans and DXA scans for body composition or bone
analysis, which will make these techniques more accessible and standardized in the clinical
setting. It is expected that advances in the next decade for Al and nutrition in the research and
development phase will involve the use of body composition data to predict clinical outcomes
of diet-related non-communicable diseases (NCDs) and all-cause mortality.

4.2.4. Health education
As Al technologies develop and continue to be used to improve the learning experience, their

application in health education is also expected to become more prevalent in the future [4.19,
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4.20]. Well-designed AIED has the potential to improve learning effectiveness and reduce
implementation costs as well as teaching-related workloads of health education practitioners
[4.19]. The learning sciences have the role of informing the design, development and adoption
of educational Al [4.20], ensuring that Al technologies are used to tackle learning problems.
Therefore, a stronger tripartite collaboration among researchers, education practitioners and
technology developers will be needed to implement Al in health education.

While AIED initially focused on attempts to create systems as perceptive as human education
practitioners, modern educational applications have been exploring the use of Al in non-
autonomous systems used by education practitioners to support their practice [4.22]. Whereas
machine learning research may aim to create fully autonomous systems that could
fundamentally replicate human cognition, AIED concerns itself more with augmenting the
cognition of education practitioners and learners, enabling them to make more informed
decisions [4.22]. Such is the case with the use of Al-based multimodal learning analytics in
educational contexts to provide explicit and comprehensible means of information presentation
to teachers and learners [4.23]. In the future, a change of focus may be expected on AIED
research and development towards Human-Al hybrid systems for intelligence augmentation
and enhancement of learning experiences with high human agency. This needs also to be
reflected in the use of Al in health education.

4.3. ACCELERATING PROGRESS—IAEA’S ROLE
4.3.1. Radiotherapy

Practices using Al-based technologies that involved radiation medicine need to adhere to the
International Basic Safety Standards [4.24]. The IAEA may support its Member States in
providing guidance on:

e Education and training of health professionals for utilisation of Al-based technologies in
radiation medicine;

Selection, specification and evaluation of Al-based tools;

Clinical implementation, commissioning and quality assurance of Al-based technologies;
Aspects of data curation for the definition of the inputs to the Al-based technologies;
Evaluation and validation of the Al-based tool output (e.g., accuracy, reproducibility, bias
avoidance); possible ‘tuning’ of the Al-based tool, previously trained and validated on a
standardised data set or with data from another context;

e Harmonisation in the use of Al-based tools.

Technical support in the field needs to be based on the principle that the use of any Al-based
tool in the clinical practice is safe, effective, and efficient, with the output of the Al-based tool
being interpretable, vendor neutral, and ethically and legally compliant.

4.3.2. Medical imaging and nuclear medicine

As there is currently no long-term prospective validation of Al solutions for medical imaging,
the IAEA is uniquely poised to conduct inter-regional coordinated research projects. To date,
the primary area of interest of Al in medical imaging is thoracic imaging for several clinical
indications: particularly tuberculosis, lung cancer, identification of emerging infections, and a
spectrum of cardiovascular conditions. Improvements in workflow, quality and safety are other
target Al medical imaging categories already being appraised longitudinally and within
frameworks of ethics and good governance.
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4.3.3. Nuclear nutrition assessments

The opportunities for IAEA to support the progress of Al in relation to nuclear nutrition
assessment techniques include the research and development of Al in using body composition
to predict clinical outcomes of diet-related NCDs and to improve analysis of body composition
from CT and DXA scans. To advance the area, it is important to have quality data; therefore,
the IJAEA can have a role in supporting Member States to collect and curate quality data
obtained using nuclear techniques. To accelerate progress, Al could be incorporated into
regional capacity building efforts, related to the benefits and appropriate use of Al in nuclear
nutrition assessment techniques.

4.3.4. Health education

As educational and training activities continue to be fundamental to advance IAEA’s Human
Health programme, so too does it become important to maintain them aligned to the
introduction of emerging technologies such as Al as an enabling infrastructure with the
potential to improve learning and, consequently, the impact of these activities. As R&D in
AIED and especially in Al for health education builds in the next decades, the IAEA may play
a role in keeping abreast of such development, assessing the possibility of its design,
development and use in its own education and training activities.

Firstly, the added value of Al in health education activities needs to be periodically assessed in
terms of its impact, costs, and human resources needed. The use of Al in the learning design of
educational technology activities in health education, while promising, may not be considered
as a first option in the upcoming years. Nevertheless, in preparation for a potential adoption of
the technology, special attention needs to be given to the ethical and legal framework as
required for data collection in educational settings, since this may play a role in the future for
the adoption of Al solutions in educational technology activities within the IAEA.

4.4. EXPECTED OUTCOMES
Expected outcomes of the activities discussed in the previous section include:

e Safe, effective and efficient deployment of Al-based technologies based on guidelines and
training material developed in critical areas through IAEA expert meetings and in ongoing
technology assessment activities.

e Ensuring inclusive and representative sets of curated data for Al applications from
IAEA’s global data collection, stewardship activities and inter-regional research projects.

e Increased capacity in Member States in using DXA and CT scans for body composition
assessment.
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5.1. STATE OF THE ART

Some of the global challenges currently facing the food and agriculture sector are so
multifaceted that they cannot readily be solved by human expert knowledge alone. As Al and
ML techniques mature, the opportunities to implement these new methods in numerous
scenarios within the domain of nuclear techniques in food and agriculture will arise.
Applications may include food fraud detection, predicting food safety incidents, remote sensing
data for agricultural soil management, optimising remediation of radioactively contaminated
land, and development of new food and beverage products.

Extensive information at all scales is needed in decision-making processes for agriculture and
food production. Enhanced data availability through the implementation of open data policies
and innovative data acquisition methods, have enabled the use of Al in the food and agriculture
sector. Variation in sampling, sample preparation and analysis are often bottlenecks for data
sharing, but Al could assist in dataset standardisation. Furthermore, Al can help by improving
analytical prediction based on traditional chemometrics (e.g., infrared spectroscopy, nuclear
magnetic resonance), or by supporting calibration of analytical equipment. Regarding the latter,
Al can further assist in calibrating measurements carried out across the same type of equipment
but from different providers, essentially leading to the creation of large datasets needed for Al
applications. In addition, Al can play an essential role in bringing data together from different
sources, resolutions or scales, and lastly, the Internet of Things combined with Al and decision-
support is a fast-growing domain. However, legal constraints and ethical concerns around
security, trust and issues of transparency and explainability are limiting the applications of Al
methodologies in food and agriculture, as in other fields.

It is important to remember that even with the full potential of Al unleashed within the food
and agriculture domain, data-driven decision-making is only as good as the data used. Properly
coupling available data requires state-of-the-art and validated solutions that focus on
harmonising data access, analytics and predictive modelling.

5.2. NEXT STEPS

Food and agricultural sciences are typically characterised by limited data availability compared
to other scientific disciplines, due to expensive and labour-intensive data collation and
annotation, and analysis which often needs specialised field-based or remote sensing devices
and expertise. Furthermore, agronomic experiments often take years to assess outcomes
accurately and so data collection takes place on long time scales. Several approaches can be
used to meet these challenges. High-throughput analytical systems could rapidly increase data
availability, while other useful example applications could include automatic data collation,
data generation from satellite imagery, data mining from online datasets, or inclusion of more
classical data streams (e.g., papers, newspapers, reports, social media, etc).
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Major principles to further improve data availability are known as FAIR. This set of principles
ensures that the data are shared in an effective way that enables and enhances reuse by humans
and machines. Furthermore, metadata may be used to connect datasets through Al. But even
with FAIR data, one major challenge is the human factor. It is still a decision made by scientists
or policymakers, not machines, to make data accessible. To solve this challenge, people need
to be made aware about the significant advantages of data sharing. However, the legal
framework for data sharing, including ownership and intellectual property, can be extremely
difficult to navigate and needs to be carefully considered as well. A solution to encourage data
sharing is federated learning, which may be a basis for sharing knowledge instead of sharing
and moving data. Federated learning brings the model to the datasets (training the model from
one database to another database without necessarily revealing its contents).

An additional step where Al can support food and agricultural sciences is in the field of
laboratory analysis. While high-throughput analytical systems are a way forward for increasing
data availability, in particular low-cost systems (e.g., spectral analysis on dry matrices that do
not need extensive sample preparation), another promising way forward is the development of
calibration transfer methods for analytical instruments. Such calibration transfer is essential to
develop large uniform datasets across different laboratories using different equipment for a
similar type of analysis (e.g., spectral analysis). One such major initiative is the currently
initiated ring-trial by Soil Spectroscopy for Global Good [5.1], which allows the development
of'an advanced yet intuitive, open-source, web-hosted platform to predict various soil properties
from mid-infrared spectra collected on any spectrometer anywhere in the world.

Furthermore, when data is collected from a wide range of sources, such as online available
datasets or geographical data of different scale and resolution, data fusion and integration are
topics that will need major attention, from both the theoretical and practical side, before the
data can be widely applied. Other fields in the food and agriculture sciences use data mining
already, including applications to crop yield data, prediction of zoonotic diseases, impact of
climate change on diseases, etc. Many of these applications need careful follow-up to avoid
bias in the data collection, leading to questions on the ethics of using Al in this field.

Interpretable ML is a field of increased interest and importance, but applications in food and
agricultural sciences have been limited to date. Such applications can benefit from increased
interpretability in models to support enforcement or policymakers and improve end-user
understanding in different contexts. Although applications of Al are progressing slowly in the
field of food and agricultural sciences, Al is starting to be included in curricula of universities
and faculties for agricultural sciences, at PhD, but also at master’s degree level. However, also
high schools (secondary schools) need to play a role in education in the field of Al to ensure
capacity and interest from students later in their academic careers.

More interdisciplinarity and cross-domain interaction is required to allow theoretical and
practical Al to be more connected to applied sciences, and in food and agriculture in particular.
For instance, in the soil spectroscopy field, Al applications are carried out by soil scientists as
domain experts, and not mathematicians or computer scientists, so many opportunities for
improvement may be missed.

5.3. ACCELERATING PROGRESS—IAEA’S ROLE

IAEA CRPs can provide mechanisms to support the development of new Al approaches in food
and agriculture science. Progress needs to be stimulated by interdisciplinary exchange of
expertise and experience across scientific fields and disciplines, case study sharing within the
community, and enhancement of connections with other fields. Case studies can be used as a
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basis for exchanging experiences while connecting theory and application. Significant progress
is often made on the theoretical, mathematical, and information technology side, which often
does not get rapidly translated into practical applications.

Al approaches developed within an JAEA CRP can be disseminated to all Member States
through technical cooperation projects and IAEA capacity building programmes. Such
dissemination will also lead to further developments, through testing and scaling the developed
applications.

5.4. EXPECTED OUTCOMES
The expected outcomes of the activities outlined in the previous section include:

e Fusing and integrating data and datasets from local to global scale;

e Innovative model development for enhanced decision-making and enforcement in a
scientific and ethical way, based on Open Science and FAIR principles;

e Improved use of nuclear and isotope data.

Al will provide significant advantages and efficiencies in optimising agricultural production,
food product development, management of supply chains, food safety and food authenticity
control, accelerating reaching the sustainable development goals.

5.5. REFERENCES

[5.1] SOIL SPECTROSCOPY FOR GLOBAL GOOD, Soil Spectroscopy for Global Good,
https://soilspectroscopy.org/

29


https://soilspectroscopy.org/










Chapter 6.
WATER AND ENVIRONMENT

A. Harjung, D. Soto, Y. Vystavna, J. Miller
Division of Physical and Chemical Sciences,
International Atomic Energy Agency,
Vienna

6.1. STATE OF THE ART

Al has been transformative across all scientific disciplines [6.1], but the potential of modern
data science techniques has not yet been fully exploited in hydrology. Al tools can in fact
accelerate the use of isotope techniques for better management of water and environmental
resources. With the increasing availability of data from satellites, unstaffed airborne vehicles,
and sensor networks, there is a large quantity of data available to couple and explore in
conjunction with the IAEA’s global isotope databases. Initiated in 1960 by the IAEA in
cooperation with the World Meteorological Organization, the Global Network of Isotopes in
Precipitation (GNIP) has become the world’s most comprehensive collection of isotope data in
atmospheric waters. The network has collected around 140 000 isotope records from ca. 1100
stations (350 active) in collaboration with many contributors from around the world. New
efforts to systematically collect isotope records, e.g., rivers (GNIR) and lakes (GNIL), along
with continuous growth of the existing GNIP databases, increasingly drive the field into the era
of big data.

The IAEA’s continually expanding global isotope databases provide significant opportunities
to benefit from the innovations in treating large amounts of complex data with ML algorithms.
In some cases, ML outperformed traditional statistical tools and process-based hydrologic
models with regard to the predictivity of hydrological variables or created new insights into the
relationships of certain variables [6.1-6.3]. The latter is possible because ML, and in particular
deep learning, are able to account for highly non-linear and non-homogeneous models, and to
operate in non-stationary environments. In comparison with process-based models, there are
advantages and disadvantages for both approaches. Caution needs to be used when using ML
for extrapolation: there is a high potential for over-fitting of highly uncertain data or data with
unknown uncertainty and it is difficult to assess the predictive capability beyond the range of
the training and validation data set. This is a strength of physical models. Advantages and
disadvantages, as well as opportunities stemming from integrations of these approaches in
predictive modelling contexts, are extensively discussed in [6.4].

In the direction of exploiting innovative ML features, the IAEA has applied random forest
methods to disentangle the relationships between lake evaporation and catchment
characteristics of the IAEA’s collection of isotopes in lakes [6.5]. Such explanatory ML
methods enable us to explore imperfect physical observations and discern signals that were
overlooked in the past [6.6] and, hence, have their own role in delivering scientific insights and
discoveries in natural sciences [6.7]. Moreover, unsupervised ML (comprising, among others,
principal component and clustering analysis) can uncover relationships between variables that
are not detected by multivariate statistics [6.8].

One of the largest challenges in using Al technologies for water and environment applications
is to provide long-term systematic observations with adequate process representation. Al can
help to spatially (and temporally) refine datasets [6.9—6.13], to fill gaps [6.14] and to extend

31



existing time series [6.2]. These are common problems in isotope hydrology, since isotope data
generation still relies on a high input of manual labour.

6.2. NEXT STEPS

Water isotopes are applied in hydrological studies to provide information on when and where
water was recharged, where it is stored, and how it is partitioned. These isotopes also act as
environmental tracers and baseline spatial surfaces that can be applied to track migratory
animals, food origin and past growth conditions of plants. Hence, knowing the isotopic
composition of water sources with high temporal and spatial resolution is critical for several
fields of environmental sciences and beyond. ML approaches applied to environmental isotope
data include random forests, XGBoost, support vector machines, genetic programming, self-
organising maps, and long short-term memory (LSTM) recursive neural networks. LSTMs
improved time series simulations of isotopes in a stream against previous process-based models
and helped to confirm some processes not integrated into the models previously [6.3]. This
suggests that we can expect to extract hidden information in isotope time series, as more
researchers become able to use ML tools for their data analysis. The ML algorithm XGBoost
provides a time series of isotopes in precipitation for any place in Europe [6.2]. However,
Europe is a data rich region, not only regarding isotopes, but also the environmental variables
needed to train the algorithm. Getting this information on a global scale is difficult. In the future,
we hope to identify regions and variables that are needed to provide this kind of information
with a high degree of accuracy globally. Application of these Al tools at a regional or local
level for different sites can be the first step to using them accurately before they are applied
globally.

Currently, Al applications are more widely used in other fields of hydrology. For example, the
compelling performance of super learning (a type of ensemble learning combining several ML
algorithms) was shown for streamflow forecasting [6.4]. Moreover, super learning using several
base models might overcome some common problems in applying ML approaches to isotope
hydrology problems [6.15]; spatial data is often geographically biased, and some geographic
areas or temporal events are not sampled at all. Some limitations of ML models are their
weakness in extrapolation and statistical inference [6.16]. Steps to improve Al tools and
integrating other mechanisms that improve these limitations are of interest to the field of
(isotope) hydrology. The community is just starting to explore these possibilities and,
consequently these efforts need to be supported.

Environmental isotope data is part of many process-based hydrological models [6.17, 6.18].
Although predictions by ML methods are often more accurate than physically based models,
they are usually restricted to single components of the hydrological cycle. Embedding ML
methods into process-based hydrological models to represent individual processes showed
promising results and the synergy between these modelling approaches is superior to either
approach individually [6.19]. Future work entails combining the understanding of
environmental processes with the ability of ML for extracting patterns and information directly
from data [6.3, 6.20]. This is especially so regarding the integration of process-based and ML
models for providing probabilistic predictions and forecasts in a straightforward way [6.4].

With improvements in satellite data availability, sensor technology and rapid transfer of data,
along with improved computational power, Al will play an increasing role in environmental
sciences. An example is the use of Al in the flood forecasting initiative from Google [6.21].
There is a need to couple isotope data with the output of findings from Al enabled extraction
of patterns from satellite images for the classification of distinct hydrological modes, which
would enable us to do more meaningful intercomparisons. An example could be the prediction
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in un-sampled catchments via similarity detection and information transfer using e.g., neural
networks.

6.3. ACCELERATING PROGRESS—IAEA’S ROLE
6.3.1. Data hub

Data-driven approaches require robust datasets — availability, quality, and quantity of data are
of utmost importance. ML tools require large amounts of data for training and testing to achieve
an accurate output. However, obtaining isotope data is still a laborious task that requires
substantial human and laboratory resources. The IAEA hosts GNIP and GNIR and has
established isotope hydrology as part of the toolbox of researchers and water managers in more
than 100 IAEA’s Member States through technical cooperation projects. This establishment has
been accompanied by training and expert advice, providing standards and inter-laboratory
proficiency tests and comparisons [6.22—6.24]. Therefore, the IAEA can accelerate and drive
R&D progress in the use of Al for isotope hydrology and ecology by picking up on what has
been already established and is part of the mandate: facilitating and ensuring high-quality data.
Hence, any effort in improving, maintaining, extending and — maybe most importantly —
grating easy access to these global networks accelerates the application of Al in water,
environment, ecological, and climate sciences. The opportunities that Al offers to tackle
important environmental questions in the face of climate change requires the support of
expanded measurement and observation data collection and to ensure the continuity of long-
term monitoring.

The IAEA can strengthen their role in organising the database structure, source attribution, data
contribution, coordination, and sustainability of databases and networks by implementing a
permanent competence team. This competence team needs to be accompanied by a consortium
of people allocated from IAEA and its Member States to participate on a longer time frame
ensuring continuity of monitoring stations and guiding expansion of the network. Data quality
can be improved through advertising the IAEA’s existing tools, such as sampling guidelines
and the inter-laboratory comparison exercises for stable isotopes (WICO) and tritium in water
(TRIC).

Vice versa, these networks can benefit from progress in R&D by applying Al technologies to
ensure the quality and consistency in the data sets themselves. Hence, there is an opportunity
for the IAEA’s databases to benefit from these data analysis tools. For example, ML algorithms
can be used to identify potentially faulty data or processes (sampling, lab, data treatment), and
in this way, to automate certain parts of quality control, to link data with publications, and to
interpolate data temporarily and spatially (e.g., [6.2, 6.25]). Furthermore, Al can be used to
identify key regions of interest, as well as to optimise sampling and monitoring efforts (e.g.,
where additional GNIP stations are needed). Here, the IAEA can act as a global facilitator of
the adoption of Al through integration of ML tools to improve the quality of the data and data
products that it provides to Member States.

6.3.2. Connecting stakeholders
Three important groups of stakeholders were identified:

1. Potential data providers, mostly researchers who collect the data for a specific study or want
to understand and forecast a specific system.

2. Modellers and data analysts who have the capacity to use different AI models to gain a
deeper understanding of the system or achieve accurate predictions.
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3. Water managers who need to make decisions based on the models provided by the first two
groups.

Obviously, the first two groups are not always segregated. Significant overlap between the first
two groups is desirable and can be encouraged by offering training and engagement through
the IAEA. To many isotope hydrologists, the perceived lack of interpretability of AI model
outputs and difficulties in accessing data discourages them from exploring this opportunity.
However, it has been shown that decision of which Al model to choose and what training data
to use is a trade-off between interpretability and predictivity [6.3, 6.4]. Hence, the IAEA can
help to overcome these misconceptions and to identify which of the many options to approach
a research question is most applicable to the problem being tackled. Furthermore, the
integration of Al based models into water management plans will be carried out by the third
group and can be encouraged by the IAEA through technical cooperation projects. Integrated
training 1s needed that combines process-based understanding with strong numerical and
theoretical skills. In this sense, isotope hydrology is becoming an increasingly interdisciplinary
field that requires training from experts from different fields to translate this developments and
benefits from advances in other fields of science.

The TAEA has specifically supported this interaction among stakeholders through several
mechanisms including via CRPs and workshops. The COVID-19 pandemic speeded up
engagement in the virtual space and this supported further opportunities to discuss advances in
data analysis and develop courses on this. For example, a data analysis training course was
offered online in 2021 with 88 participants from 50 Member States. Data analysis using Al
needs to be integrated as a module in this type of course in the future. With regard to community
building, a mechanism is suggested that goes beyond a typical CRP in terms of duration and
needs to be able to respond to the technical developments in both isotope data availability and
advances in Al. This mechanism can be in the frame of a technical group with regular online
and hybrid meetings, with specific projects targeting the challenges of Al applications. These
specific projects can include the production of guidelines, papers, consultancy reports, for
example, the design of the GNIP network, the expansion of monitoring networks to other water
isotopes, hackathons-like events that address a specific question or bundle of data etc.
Eventually, projects also need to target a fourth group, which might be defined as the largest
group of stakeholders, because it refers to the water consumers. These can be engaged through
citizen science, public outreach, school projects and public discussions that will be necessary
to use Al tools within ethical frameworks.

6.3.3. Providing training and guidelines

Training and the production of guidelines have been mentioned multiple times and this reflects
the fact that training is one of the core mandates of the IAEA. In the field of isotope hydrology,
this includes correct sampling, storage, analysis, the treatment of raw data, the correct use of
statistical methods and models for data interpretation. The application of Al complementing
isotope data interpretation and modelling will need guidelines and best practice as well. For
example, Ref. [6.26] proposed a checklist for reporting ML models for chemistry that guides
how to report data sources, cleaning, representation, as well as model choice, training and
validation and finally, code availability. While the IAEA currently does not provide guidelines
for this, these could be provided by a consortium of experts under the coordination of the IAEA,
either in conjunction with other groups or specifically for isotope hydrology.
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6.3.4. Making isotopes parts of earth science and climate models

Isotopes help to improve model parametrization and can validate local, regional and global
models in earth sciences; these can be hydrogeological, ecological (soil-water-plant-
atmosphere), climate models, etc. In climate change studies isotopes can verify and improve
atmospheric circulation models. However, a caveat here is that — as for the previously
mentioned reasons — isotope data is often not available at the resolution needed for this type
of model. The solution can be to interpolate data or assume in the case of precipitation that
these samples integrate for longer time periods and larger spaces. Noticeably, doing so requires
extra work and a thorough understanding of isotope hydrology (incl. data treatment) from the
modeller. By the same token, filling gaps in the isotope series requires isotope hydrology
knowledge and thorough testing of the approach. The IAEA can cooperate with experts to
provide this type of data to modellers, thereby promoting the inclusion of isotopes in the models
and evaluating which data gaps need to be filled. For this purpose, ML algorithms can be used,
as they have shown good predictivity in modelling time series or in the construction of
1soscapes. This paves the way to combine high-frequency and high spatial resolution data with
isotopes and will allow the inclusion of isotopes in large scale models, for example, global
climate models.

6.4. EXPECTED OUTCOMES
6.4.1. Data hub

The TAEA’s efforts on providing and ensuring reliable data need continuous and sustainable
structures. As the host of the GNIP and GNIR networks, the IAEA plays a central role with
regard to the consolidation and expansion of these networks. This means that the IAEA is
expected to supply the necessary data repository to be used in ML models, as well as to be
integrated into global hydrological models and other environmental research activities.
However, the IAEA not only play the role of a host, but also as a safeguard of data quality,
which starts in the laboratory. Here, the IAEA is expected to continue and expand the efforts of
quality control of isotope analysis in Member States laboratories. Expected outcomes in this
regard are:

e Continued long-term systematic observations.

e Guidance and coordinated efforts to build databases and monitoring networks (including
quality control), i.e., manuals, guidance, best practices.

e Advertised data quality activities to laboratories producing isotope data and groups
providing isotope databases;

e Facilitated data sharing among experts and stakeholders;

e Established a standing competence group for the coordination of databases and networks
with the goal of a common isotope data base.

6.4.2. Connecting stakeholders

Specific projects in the area of Al and big data need to be developed to support stakeholders on
database coverage, quality, and sharing with central coordination, considering the integration
of national and international network activities into the IAEA’s network. Further coordinated
activities on ML techniques for water issues as well as contributions for publication on using
Al tools to understand hydrological processes are foreseen. Progress on integrating Al into
isotope data analysis and exploring the opportunities can be done in the framework of a CRP
or in the scope of technical meetings. A CRP can explore the frontiers of applying ML to refine
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data sets, fill gaps and acquire new insights into processes that have been hidden from
hypothesis driven science.

6.4.3. Providing training and guidelines

Training courses that specifically incorporate Al and ML under the IAEA’s Water Resources
programme will be developed. Integrated training ranging from data quality assurance, over
process understanding to analytical skills in applying ML will be provided, as well as guidelines
for reporting ML models in isotope hydrology.

6.4.4. Making isotopes parts of earth science and climate models

The IAEA can continue playing its role as a guardian for good scientific use, and increase its
engagement with the earth-system modelling community and other United Nations entities
working on this topic.
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7.1. STATE OF THE ART

The production of high-quality atomic and nuclear data involves compilation, evaluation and
validation. Nuclear and atomic reaction and transport models are an essential part in the
evaluation and validation process. The section discusses how ML is already being used to
support these activities.

In the compilation process, publications with relevant measurements need to be identified, the
data extracted from text and tables, and added to nuclear databases. For instance, the EXFOR
library [7.1] is a prominent nuclear database that contains cross section data and other nuclear
reaction quantities, along with their metadata and uncertainties. This database is maintained and
developed under the auspices of the IAEA by the International Network of Nuclear Reaction
Data Centers (NRDCs). At present, these activities are performed manually. However, the use
of natural language processing to find relevant literature and facilitate data extraction is under
development. An example in the general nuclear domain is given in Ref. [7.2]. Obstacles to
automation are the specific vocabulary used in nuclear physics, such as the notation to identify
reaction systems, e.g., 181Ta(n,2n) and reports written in various languages. Furthermore, some
historical reports need to be made text-searchable first by using Optical Character Recognition
software and errors are usually introduced in the conversion process.

In nuclear and atomic data evaluation the aim is to provide comprehensive collections of
estimates with associated uncertainties of nuclear and atomic quantities, such as cross sections,
half-lives, and energy level schemes of nuclides. To this end, relevant experimental data are
retrieved from databases or manually extracted from publications, and combined by using
statistical methods, as well as nuclear and atomic models. It is essential to provide application
programming interfaces (APIs) to automatically retrieve data feeding into ML algorithms and
other advanced nuclear data processing. Therefore, several attempts have been made to address
this issue for the EXFOR library, such as the creation of a Python package called x4i, a
prototype of a document-oriented database [7.3] and a JSON output option in the EXFOR
database retrieval system hosted at the IAEA [7.4]. More recently, a working group (SG50)
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under the umbrella of the Working Party on International Nuclear Data Evaluation Cooperation
(NEA/WPEC) was established. The goal of SG50 is to create a prototype of an automatically
retrievable, comprehensive and curated experimental database based on EXFOR. This database
is user-driven and aims to speed up the evaluation process by automating steps done by
evaluators (e.g., re-normalizing, identifying missing uncertainties, etc.), while it also provides
interpretable input for ML algorithms by casting metadata available in existing databases into
a unique format.

Unknown errors present in nuclear databases (caused by errors in the experiment itself or
introduced during compilation) [7.5] can lead to biases in the results of a statistical analysis and
underestimated uncertainties. The Generalized Least Squares (GLS) method, which is the
commonly used method in the nuclear data field, is sensitive to wrongly specified uncertainties
and outliers. As demonstrated in [7.6], ML methods can assist humans in identifying
problematic data and features of an experiment. Such ML assisted evaluation workflows can
accelerate evaluation work and act as a helpful tool for quality assurance, as well as point
experimentalists to features that need to be explored in future experiments to understand biases.

Once the experimental data are retrieved, assessed and, if possible, corrected, a statistical
method is used to either fit a physics model or apply a generic mathematical fitting function,
such as a Padé approximation, to the data. For model-based evaluations, Monte Carlo
procedures, such as BMC [7.7], BFMC [7.8], UMC-B/G [7.9], realisations of importance
sampling, have gained traction over the last decade thanks to the steady increase of computing
power. Some techniques developed in the field of statistics and engineering have been recently
brought to the attention of the nuclear data community, such as [7.10], which may help to make
Monte Carlo evaluation procedures more efficient. Over the last few years, Gaussian process
regression, a non-parametric Bayesian method, has been used in evaluations that do not rely on
nuclear physics models [7.11], and in model-based evaluations to account for imperfections of
the physics models [7.12, 7.13]. Bayesian networks have been recently suggested as a flexible
framework for nuclear data evaluations [7.14], as they link different sources of information
within a probabilistic framework. GLS and gaussian process regression (GPR) rely on the
assumption of a multivariate normal distribution and that reliable uncertainties are available.
Bayesian hierarchical models [7.15] and different notions of uncertainty Ref. [7.16] may be
incorporated in the future to relax these assumptions.

In the resolved resonance region, the R-matrix formalism is employed to obtain fit data. This
formalism depends on parameters such as spin assignments and poles, which cannot be
observed directly. Due to the non-linear nature of this formalism, finding manually the correct
assignments is often an intractable problem and thus ML methods have been explored to
automate and facilitate this task [7.17, 7.18].

Finally, if enough data are available and the predictive power of a physics model is insufficient,
ML may be used to learn a model from the available data. Different ML methods, such as neural
networks for the prediction of fission fragment mass yields [7.19] and nuclear masses [7.20,
7.21] have been applied. ML methods, such as random forests, neural networks and GPR may
be employed to quantify model bias and extrapolate model parameters to reaction systems
without data [7.22].

Once an evaluation has been completed, it needs to be validated by assessing its performance
in simulations of integral experimental responses, e.g., an iron sphere with a californium source
in its centre. It has been shown how random forests can be leveraged to assist humans in
identifying problematic features of experiments [7.23]. Besides using the existing integral
experiments for validation, new ones can be constructed with a larger sensitivity to specific
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features of an evaluation. As the design of integral benchmarks relies on computationally
expensive transport codes, Bayesian global optimization can help to find good strategies [7.24].

The sequence of activities required to go from the experimental campaigns to data libraries
ready for use in applications is sometimes referred to as nuclear data pipeline. Compilation,
evaluation, and validation are steps in this pipeline. It should be noted, however, that this
process is not as linear as the term pipeline may imply. For instance, based on validation results,
an evaluation may need to be adjusted. Moving and transforming data from one stage of the
pipeline to another involves human effort. APIs to databases and model codes can help to
automate parts of the pipeline, e.g., to make an evaluation reproducible [7.25], and to streamline
experimentation with ML methods applied to nuclear data [7.26].

7.2. NEXT STEPS

Al in general, and ML in particular, will play an increasingly important role in the creation,
evaluation and exploitation of nuclear, atomic and molecular data over the next decade. As
described in the previous section, ML methods are already applied at various stages of the
atomic and nuclear data pipeline.

An important issue that needs to be addressed is data accessibility and data quality. The
development of APIs to retrieve experimental data will be essential to applying machine
learning techniques. Databases with experimental data, such as EXFOR, contain the data as
reported by the experimenters or as extracted by compilers (humans) from papers. In addition
to databases which aim to record uncorrected and possibly flawed experimental data, curated
databases are required for ML applications. Because of this, the creation of curated databases
may also benefit from the application of ML methods, for instance, for outlier detection and to
identify data with wrongly assigned metadata. The creation of curated databases can be
achieved gradually by creating prototypes for a subset of the data types stored in original
experimental databases and then subsequently broadening the coverage. Such databases must
have clearly defined and well-documented APIs to be easily usable by the atomic and nuclear
data community. Proper documentation must therefore not be an afterthought but part of the
process of creating these databases and APIs.

Physics models can be regarded as human knowledge which has been condensed to a
mathematical and quantitative form and may serve as valuable input for ML methods. Fast and
programmatic access to model predictions that are easily comparable with experimental data is
therefore important. The creation of unified APIs to obtain model predictions without the need
to expose the details of compute infrastructure to users will also be beneficial.

Containerization solutions, such as Singularity/Apptainer [7.27, 7.28], can facilitate these
developments on a technical level, as the orchestration of databases and model and simulation
codes with different dependencies across different computer and cluster architectures is
complex without them.

Regarding methodology to curate experimental databases, e.g., by using outlier detection
algorithms, and to evaluate atomic and nuclear data, different approaches going beyond
standard practice are being explored until firm recommendations can be provided.
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7.3. ACCELERATING PROGRESS—IAEA’S ROLE

In support of its programmatic activities concerning fundamental data for nuclear applications,
the TAEA aims to facilitate the development and deployment of Al approaches where these can
improve data quality, availability and use.

The IAEA hosts several prominent databases (e.g., EXFOR, RIPL, etc.) with global recognition
and widespread use. Its Networks, CRPs and technical meetings can bring together an
international community of researchers, database maintainers and ML developers to improve
the accessibility of these resources with respect to future Al activities.

Specific areas in which the IAEA can support Al include:

e Continuing to identify important open questions and issues that could benefit from the
application of ML, see section 7.1.

e Enriching experimental databases (e.g., EXFOR, ALADDIN) with well-documented APIs
and rich metadata: this is considered essential for the development and testing of ML
algorithms exploiting the data.

e Draft a document laying out a standard approach for data handling (based on so-called FAIR
principles) and collaborative open-source practices with a focus on EXFOR and potentially
others. This document needs to consider input from nuclear data users, ML developers and
database maintainers

e Hosting repositories with reference datasets for domain-specific ML studies.

e Defining diverse test sets with domain-specific data to validate ML models for comparison
studies. The curation of test is important for the impartial assessment of ML algorithms and
to define the relevant physical quantities to which they are applied to.

e Supporting educational and outreach activities, including workshops, to teach ML methods
and the relevant nuclear physics knowledge, as well as organising meetings for comparison
exercises and training.

e Initiating and administering crowd-sourcing campaigns and open science challenges to
improve the quality and quantity of data in relevant databases and to develop new ML
models and algorithms. This can include hackathons, competitions using Kaggle or a similar
platform, or direct engagement with universities.

7.4. EXPECTED OUTCOMES

As documented above, the IAEA can play an active supporting role in the adoption of Al
approaches in nuclear, atomic and molecular data compilation, evaluation and validation.

One of the major outcomes of the IAEA's involvement alongside Member States will be the
creation of curated reference test sets to validate ML models. The correct evaluation of ML
models is strongly dependent on the test sets chosen. The IAEA can host a repository of curated
test sets and associated APIs to retrieve the data, offering the nuclear, atomic and molecular
data community a dependable and robust platform for benchmarking.

A related outcome to the above would be a focus on methodologies and tools for detection of
application-specific issues in data and models, which impede scientific progress in the area.
Such issues could include, but are not limited to, systematic measurement errors or other
sources of bias in the data, but also in the models themselves.

Furthermore, by supporting educational and outreach activities, as well as organising meetings
and workshops on the use of ML for nuclear, atomic and molecular data, and crowd-sourcing
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campaigns, it is expected that the quality and quantity of data will increase, and that the
compilation, evaluation and validation workflows will be significantly optimised via the
application of ML techniques.

Another major outcome of the IAEA's involvement will be clear licensing of data in databases
and repositories. This will facilitate the general use of data for training and testing ML models.
The current landscape of data repositories makes it sometimes unclear how certain data can be
used, which causes researchers to create test sets from scratch, making the comparison of ML
models difficult. Clear licensing and improved accessibility would solve this problem and will
promote the re-use of data sets across different international projects.

By identifying open questions and issues that could benefit from the application of ML, the
IAEA is in a unique position to create a roadmap for future theory and measurement needs. It
is anticipated that this roadmap will be very useful for aligning international nuclear, atomic
and molecular data efforts and channelling the available resources towards impactful projects.

ML methods may be used in the regular evaluation work at IAEA, in neutron data standards
and within the International Nuclear Data Evaluation Network (INDEN), to obtain a better
understanding of the data, as well as to improve quality assurance and increase efficiency.
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8.1. STATE OF THE ART

Nuclear physics is a broad, distributed field that investigates nuclear structure and reactions
across a wide range of energy and size scales. This involves advanced theoretical work
involving advanced modelling, as well as experimental efforts at various types of facilities
across the globe. Al is currently in use or under investigation for use across these experimental
and theoretical areas of nuclear physics research. For the purpose of this Chapter, these efforts
are grouped into four areas to best disseminate the current work being done in Al and ML in
nuclear physics:

Data analysis and modelling;

Data processing and management;
Experimental design and optimization; and
Facility operation.

The work represented in this Chapter is not exhaustive. A comprehensive summary of the
current state of Al in nuclear physics is given in Ref. [8.1].

8.1.1. Data analysis and modelling

ML methods are currently employed in theoretical nuclear physics and data analysis to facilitate
scientific discoveries. By speeding up computational bottlenecks in theoretical computation and
simulation as well as data analysis, the workflow of scientific research is expedited. For
example, ML is used to rapidly extract useful information for the determination of a-clustering
in nuclei [8.2]. ML is also being used to investigate theoretical models and build highly non-
linear and correlated models, which are difficult to tackle with conventional methods. For
example, Ref. [8.3] uses Bayesian model averaging to predict the existence of nuclei at the
neutron dripline. This method incorporates uncertainty quantification for extrapolated
predictions, which is essential to inform experimental efforts. Additionally, Ref. [8.4] uses
Bayesian neural networks to predict B-decay half-lives with uncertainties.

8.1.2. Data processing and management

Experimentally, data processing and management requires software decision-making to extract
useful information for data analysis. ML is currently employed to both speed up data processing
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and to improve the quality of recorded data. Hierarchical clustering is used to find tracks of
products from a nuclear reaction in a time projection chamber [8.5], and neural network
architectures are used to identify reaction types [8.6]. [on-beam analysis uses nuclear signatures
to identify elements in samples for a broad range of applications. For example, Particle-induced
X ray emission is a common technique for non-destructive analysis of materials. ML-based
clustering methods can be used to improve the statistics, and thus the accuracy of quantification
of trace elements [8.7]. Neutron scattering experiments are used for crystallography imaging.
Neural networks are shown to improve characterization of Bragg peaks, which in turn improves
calculations for crystallography structure [8.8, 8.9].

8.1.3. Experimental design and optimization

Al-based single-objective optimization has been utilised for the design of the dual-radiator Ring
Imaging Cherenkov detector [8.10] at the future Electron Ion Collider (EIC). This detector is a
proposed component for particle identification of the collision products. Similar efforts are
being made at the EIC Comprehensive Chromodynamics Experiment, where an Al-based
multi-objective optimization has been employed to design the tracking system [8.11, 8.12],
which consists of multiple sub-detectors to measure and reconstruct the trajectories of charged
particles.

8.1.4. Facility operation

Significant efforts are underway for Al-based control and operation of particle accelerators. Al-
based operations have the potential to increase beam time and improve the quality of beams, as
well as rapidly detect faults during the operation of accelerators [8.13]. For example, model-
informed Bayesian optimization is shown to tune beams faster with fewer samples [8.14].
Reinforcement learning can rapidly tune beams with model-independent decision-making
policies [8.15]. Al-informed accelerator operations have been tested on systems of varying
beam and facility types across the world. Additionally, multi-objective optimization can be used
for accelerator design [8.16].

8.2. NEXT STEPS

Advancing the use of Al in nuclear physics within the next decade will require focusing efforts
on nuclear physics drivers, concerted education efforts and acquiring interdisciplinary funding.

8.2.1. Nuclear physics drivers

Key drivers for Al applications in nuclear physics are uncertainty quantification and real-time
systems. Although efforts in these areas have already commenced, they are in an early stage of
development. For example, predictions in nuclear effective field theories rely on a finite number
of terms of an infinite sequence. To this end, Ref. [8.17] quantified the uncertainty associated
with this truncation using Gaussian processes. In addition to quantifying the uncertainty,
evaluating the quality of this estimate will be crucial for developing trustworthy Al

Another decisive factor for the uptake of Al in nuclear physics is its application in real-time
systems from accelerator operation to data collection in detectors. One example for the former
is the optimization algorithm reported in Ref. [8.18] that performs real-time feedback on the
beam-driven plasma wakefield accelerator AWAKE, minimising the transverse size of the
electron beam while maintaining a design orbit.
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8.2.2. Education efforts

A pillar of the accelerated use of Al in nuclear physics rests on concerted education efforts for
researchers at all levels. In this regard, several summer schools and workshops with a focus on
Al techniques have been held, but these need to become established, long-term training
opportunities, ideally providing the ability to interact with scientists who specialise in Al or Al
applications in related fields. Past events include, for example, an online course on Machine
Learning and Data Analysis for Nuclear Physics as part of ECT*’s TALENT programme [8.19]
or a summer school on Machine Learning Applied to Nuclear Physics organised by the Facility
for Rare Isotope Beam Theory Alliance [8.20]. ML in nuclear physics was also part of the 2021
IAEA Workshop on Computational Nuclear Science and Engineering [8.21]. The virtual or
hybrid events increased the accessibility and reach of the education efforts, and providing
established, wide-reaching events will enable advances in nuclear physics by creating broad Al
literacy.

8.2.3. Imterdisciplinary funding

To foster collaboration with adjacent areas of research, and in particular with computer or data
scientists with a research background in Al the need for interdisciplinary funding opportunities
is evident. Joint positions (cross-departmental and cross-institutional) need to be created to
establish synergies between different areas of nuclear physics, as well as with related fields and
to initiate and maintain collaborations. Facilitated and structured communication between the
experimental and theoretical nuclear physics communities, as well as between the wider nuclear
physics community and adjacent ones, such as high-energy physics, would benefit R&D as well
as production and deployment efforts of Al applications.

8.3. ACCELERATING PROGRESS—IAEA’S ROLE

In order to accelerate progress in the field of nuclear physics through the advanced use of Al,
the following areas could be supported by the IAEA:

Hosting and curating central resources;

Sponsorship of community efforts;

Workforce development and providing of funding opportunities; and
Interdisciplinary coordination.

8.3.1. Hosting and curating central resources

The engagement of nuclear physicists with Al could be increased through a website hosted and
curated by the IAEA with input from the community. Inspired by efforts in high-energy physics
[8.22, 8.23], this resource could provide a comprehensive and continuously updated list of
relevant publications in the field. This list could be complemented by an overview of the
different available algorithms and by highlighting examples, where the advantages of Al over
more conventional approaches are particularly apparent. For researchers, who are beginning to
familiarise themselves with the concepts of Al, simple benchmarks that include manageable
datasets could be provided. In addition, the website could also give details on events related to
the use of Al in nuclear physics — from the aforementioned workshops and summer schools to
conferences and webinars. Should this central resource be well received by the community, it
could be upgraded to include either a forum or a communication channel.
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8.3.2. Sponsorships and community efforts

Direct means to support the uptake of Al in the nuclear physics community are data challenges
and hackathons. In 2019, the IAEA organised a data visualisation challenge [8.24] for the [AEA
International Conference on Climate Change and the Role of Nuclear Power. Similar challenges
focussing on Al in nuclear physics could be set up to promote Al and in particular ML.

The TAEA could organise or sponsor competitions, such as Kaggle competitions [8.25] or
hackathons, which can be built around open questions in nuclear physics that could benefit from
the application of Al-based methods. Events like hackathons and Kaggle-like challenges have
been discussed at the first workshop on Al for the EIC [8.26] with events planned for 2022.
Hackathons were held at the Al for Nuclear Physics Workshop that took place at the Thomas
Jefferson National Accelerator Facility [8.27]. The IAEA could also introduce prizes for these
events and poster prizes for Al-related nuclear physics workshops, schools or conferences.
Community guidelines on ownership of work and publication rights for such projects need to
be discussed and agreed upon.

8.3.3. Workforce development and providing funding opportunities

The IAEA offered its first online workshop that contained ML lectures and lessons dedicated
to nuclear science and engineering in 2021 [8.21]. A similar annual, dedicated Al workshop
would enable an Al-literate workforce in nuclear physics that can advance the IAEA’s scientific
goals by leveraging state-of-the-art computational technologies. Virtual opportunities would
extend the reach of the workshops while in-person experiences can provide strong training
through one-on-one interactions and assistance. Hybrid events allow participants from all
IAEA’s Member States to engage in a way that is most accessible for them.

In addition to providing education opportunities to nuclear scientists, collaboration with Al
scientists is essential to work at the cutting-edge of Al technologies. The IAEA can facilitate
collaboration with Al scientists through positions that support hybrid Al and nuclear physics
activities. These could be IAEA internships or fellowships with defined support for Al
activities.

A position for an Al expert, who is interested in the intersection of Al with nuclear physics,
would create a point of contact for scientists beginning to work with AI methods and provide a
connection with the ML and Al fields. If such a position is created, clear authorship guidelines
need to be defined for the role and publications in Al conferences — the premier publication
outlet for the computer science community — needs to be encouraged and valued.

8.3.4. Interdisciplinary coordination

Available resource structures within the IAEA to foster regional or international collaboration
on specific topics are CRPs [8.28] and Networks [8.29].

CRPs typically involve 10 to 15 institutes that work together over a period of 3 to 5 years. The
participating institutes at which the research is conducted agree upon a set of objectives and
activities with predetermined outcomes and foreseen outputs. The IAEA acts as the
coordinating body, assigning a member of its technical staff as project officer of the CRP, and
sponsors the CRP. For example, one of the ongoing CRPs within nuclear physics on Facilitating
Experiments with Ion Beam Accelerators [8.30] aims to increase the impact of accelerator-
based techniques in developing IAEA’s Member States.
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One of the key limitations hindering effective international collaboration are national legal
regulations on foreign trade and export control. To overcome this challenge, the IAEA could
sponsor a CRP for the standardisation of non-export-controlled research relevant for Al in
nuclear science. Such standards would facilitate international scientific collaboration. In
addition, the nuclear physics community would benefit from common data and reporting
standards for Al results, such as model architecture and hyperparameters; an example checklist
is provided by NeurIPS [8.31].

Networks, on the other hand, aim to strengthen international cooperation and dialogue and
facilitate cooperation between participants. A common denominator of many existing networks
is education, for example in the Latin American Network for Education in Nuclear Technology
or LANENT network [8.32], whose goal is to preserve, promote and share knowledge as well
as to foster knowledge transfer on nuclear technology within the region.

8.4. EXPECTED OUTCOMES

All of the IAEA activities proposed in this Chapter look towards the acceleration of scientific
discovery in nuclear physics. This acceleration is envisioned via three tangible outcomes:

e Establishment of training avenues for nuclear scientists;
e Development of community standards; and
e Development of scientific output.

The establishment of annual training opportunities for nuclear scientists in Al methods will
build an Al-literate workforce in nuclear physics, which equips personnel with the expertise
necessary for expedited discovery and scientific output.

The proposed activities would produce defined community standards with respect to
publications, datasets, and non-export controlled research. This creates reproducible research
that enables the community to utilise Al research for applications in one’s own subfield of
nuclear physics.

The above outcomes would lead to increased research output in Al for nuclear physics with
impacts expected in the quality of data for analysis, the quantity of data collected at
experiments, and improved analyzes in both processing time and accuracy.
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9.1. STATE OF THE ART

Nuclear fusion holds the promise of delivering clean, virtually endless energy for humankind
to meet the world’s energy demand. To this aim, fusion scientists, and increasingly engineers,
are tirelessly working to overcome the scientific and technological challenges emerging from
the difficulty of recreating fusion conditions at temperatures hotter than the Sun’s core in a
fusion device at an industrial scale, while regulating pressure and magnetic forces for a stable
confinement of the plasma (a hot, charged gas made of positive ions and free-moving electrons
with unique properties distinct from solids, liquids or gases) and to sustain fusion reactions long
enough to produce a net energy output. Several plasma confinement strategies aimed at energy
production from fusion are currently being researched and developed. This Chapter focuses on
magnetic fusion energy (MFE), which uses magnetic fields to confine the fusing plasma (like
in a tokamak or a stellarator device), and inertial fusion energy (IFE), which employs high
energetic laser or particle beams to heat and compress a fuel pellet (target). R&D activities on
both MFE and IFE produce extensive amounts of experimental and simulation data, providing
an opportunity for the application of ML and Al approaches. In the last decade, Al and ML
have increasingly been adopted as advanced statistical tools to accelerate fusion science
discovery and optimise simulation workflows.

This Chapter aims at briefly discussing the state of the art in AI and ML applications to fusion
science and provides some examples from both MFE and IFE communities.
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9.1.1. Examples from magnetic and inertial fusion energy research

Some of the main outstanding challenges in MFE are the development of scenarios to design
and predict experimental conditions and to actively control the magnetically confined plasma.
Integrated whole device modelling requires complex multi-scale physics simulations, which are
extremely time consuming for achieving active, timely predictions. ML models are employed
to aid experimental MFE operations [9.1], by combining simulations and experimental data to
inform control room decisions, i.e., regarding the operational space that needs to be probed in
subsequent experiments. As plasma exhibits strongly non-linear behaviour even when using
these models to predict operations, active control algorithms are necessary to avoid the sudden
and uncontrolled loss of the plasma’s thermal energy and magnetic confinement on timescales
of milliseconds. These uncontrolled plasma terminations are called disruptions and their
avoidance is crucial to the development of MFE next step devices based on the tokamak
concept. Over the last decade, substantial effort has gone into investigating the role of ML
algorithms in developing disruption prediction models (for a partial review see Refs [3—-28] in
Ref. [9.2] of this Chapter). Overall, the MFE community routinely leverages Al to address
limitations in experimental measurements, physical models, or computational solutions.

Similarly, in IFE R&D, Al is employed at different stages of the science discovery workflow,
from simulation loops to experimental optimization [9.3]. Both inertial and magnetic
confinement fusion involve complex multi-scale, multi-physics systems whose accurate
modelling in high-dimensional integrated simulations is extremely expensive [9.4]. ML-based
surrogate models are therefore more frequently used as proxies for simulation tools or as models
for codes, providing fast results for exploration of designs or in combination with other tools
for uncertainty quantification. As an example, Al can enhance analysis of instrumentation data,
especially imaging, and potentially extract inferred quantities using accelerated models or
surrogates [9.5]. Additionally, while pushing the methodological development of ML
algorithms, a productive integration with state-of-the-art computing solutions is needed, e.g.,
hardware accelerators, high-performance computing resources, etc. Al representations of
physics packages can lead to much faster computation when deployed on next-generation
computational hardware.

9.2. NEXT STEPS

This section focuses on providing examples from MFE and IFE communities of ongoing
development and envisioned advances in the next decade for Al-driven fusion.

9.2.1. Real-time magnetic confinement energy system behaviour prediction,
identification and optimization

Al will become an intrinsic component of MFE workflows for plasma performance
optimization, event and anomaly detection, plant operation monitoring [9.6]. For example, next
generation fusion devices will need to take advantage of Al-driven predictive modelling for
real-time monitoring of the proximity to different boundaries of plasma stability [9.7-9.10]. To
develop such data-driven solutions, model interpretability needs to be preserved. In fact, black-
box models, providing no explicit possibility of being validated against physics-based ones,
cannot extrapolate to new regimes for which no existing data is available for training. A well-
behaved output with a defined validity region and extrapolability boundary is required, while
uncertainty quantification is essential to verify the reliability of ML algorithms.

Al can assist and accelerate progress in fusion materials science for example by providing an
alternative approach to develop accurate and robust interatomic potentials [9.10]. Given a
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database of electronic structure calculations, a ML-based regressor is trained to learn the most
general model form for the interatomic potential, thus providing a multiscale link between
quantum and classical atomistic simulations.

Related to the optimization of next generation fusion facilities, recent efforts have led to
outstanding examples of collaboration with Al experts to either discover operational regimes
for plasma performance optimisation [9.11], or to design advanced feedback controllers [9.12].

Fusion scientists are strongly motivated to employ or develop state-of-the-art Al solutions,
given the stringent requirements to any integration with plasma operation and control systems,
although progress is limited by several challenges that are discussed in the next section.

9.2.2. Inertial fusion energy physics understanding through simulation, theory and
experiment

Similarly to the MFE case, more computing power combined with Al-driven solutions,
continues to allow IFE scientists to elevate their predictive frameworks to improve modelling
for both traditional simulations and ML-accelerated models. For example, an experimental
prediction pipeline [9.13] can correct simulation models using the last decade of fusion-related
experiments carried out at the National Ignition Facility (NIF) at Lawrence Livermore
Laboratories, USA [9.3]. The development of this pipeline entails the design of transfer learning
solutions that can remove simulation bias and better match experimental data, thus improving
prediction accuracy.

ML algorithms, such as genetic programming, random forest, Bayesian inference frameworks
and neural networks, can also be used to accelerate the design of drive pulse and target structure
for inertial fusion experiments. Additionally, the IFE community widely adopts open-source
hydrodynamic codes such as FLASH [9.14], MULTI-2D and MULTI-IFE [9.15], which are
commonly used in both laser and Z-pinch fusion experiments and validation [9.16]. New
directions for these methods and tools have also been adapted for the exploration of new, more
efficient fusion designs. For example, Ref. [9.5] demonstrates that an Al surrogate could enable
the search of complex design spaces to deliver designs that are quite robust, but that humans
had not considered. To aid Al-guided design exploration, fusion simulation codes will need to
be further accelerated. Researchers have shown that Al surrogates embedded within these
simulation codes can greatly accelerate expensive microphysics packages, leading to ten times
faster simulation time [9.17]. Al tools are also transforming the ways that scientists combine
and synthesise data. Representation learning (autoencoders or contrastive learning methods)
can be used to combine image, spectral, and scalar data to create a distilled representation of
physical models, reducing the amount of data needed while maintaining essential physics
correlations [9.18]. IFE scientists have also shown that multi-physics Al methods can be
coupled to high-performance computing to build deep learning models at the scale of the largest
supercomputers on the planet [9.19]. And finally, with a scientific mission that has grown to
span from microphysics to multi-physics, and from simulation to experiment, investigators have
developed complex steering tools to drive Al workflows. These tools are essential for building
the large and complicated data sets necessary to train the most informative Al models for
applied science [9.20]. The data sets and models that are produced by these evolving and
complicated projects are invaluable, but their cost is beyond reach for many in the field —
especially academics and researchers in less developed countries. One example on how to help
democratise these assets is the Open Data Initiative [9.21].

The future of IFE R&D will include an integrated combination of the technologies, methods
and sharing practices described above. This future will include accelerated simulation with
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hybridised Al and numerical physics systems, next-generation computation hardware optimised
for hybrid workloads, high data rates from repetition-rated experimental facilities, distributed
computing spanning from the edge to the data centre, simulation-driven experiments and
experiment-driven simulation, Al steering for optimization of both experiment performance
and model predictive capability, and levels of integration not yet explored.

The community is developing new ways of working to accelerate discovery and innovation,
including strong public-private partnerships like those modelled by AI3 [9.22]. Such
partnerships need to be expanded to fully realize the Al-driven fusion research ecosystem of
the future, while also democratising resources. The community, especially in less developed
countries, needs to be able to access shared data, predictive models (or codes), and analysis
tools to fully accelerate progress. Lastly, there exists a fundamental need for shared computer
resources to execute fusion science investigation. New partnerships and consortia, brokered by
independent parties, but funded by public-private consortia, could provide access to that.

9.3. ACCELERATING PROGRESS—IAEA’S ROLE

Al is playing an increasing key role in fusion science discovery: by exploiting large
experimental and simulation datasets, Al can bridge gaps in our path to fusion energy. However,
current development of ML applications for fusion often encounters obstacles common to both
MFE and IFE communities. Examples include the fact that data ecosystems differ across
different laboratories, therefore extrapolating pure data-driven models clashes with
computationally challenging validation of multi-scale physics systems, and the lack of sharing
analysis information often leads to duplicating efforts. This section discusses the major
challenges in MFE and IFE, preventing the adoption of Al-driven fusion science discovery at
its fullest potential, and where the IAEA can play a key role in addressing them. These major
challenges are:

1. Data and data access:
1. Data return rates for IFE;
il.  Infrastructure to share data (MFE, potentially IFE); and
iii.  Analysis routines to create, curate and share data (IFE and MFE).

2. Community engagement and workforce development:
i.  Coupling of relevant expertise and resources;
il.  Minimising duplication of effort in MFE and IFE communities.
iii.  Education background for ML and Al of existing and incoming scientists is limited; and
iv.  Competitive salary and job compared to industry.

How can we address these bottlenecks and accelerate progress in fusion? In this Chapter, a
number of data-centric enabling activities are suggested, such as the development of open data
repositories, the creation of cross-disciplinary initiatives, the development of workshops and
schools that combine computational and data science elements for fusion research, and new
ways to actively engage the community — for example with Kaggle-like competitions or
hackathons.

Hidden in plain sight is the real need of a data steward to act as a broker or ambassador between
the data and the user community — a role that the IAEA already plays in other areas and that
would be the ultimate enabler to accelerate fusion R&D with the help of AL
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9.3.1. Data accessibility and the need for open science

Large open access databases are required for ML models training and validation. However,
there is hesitancy to share experimental or simulation data due to institutional policies, security
or intellectual property issues, or the fear of being scooped. While some efforts within the fusion
community over the years have started to build such databases, they are still limited in scope
(e.g., tokamaks [9.23] and stellarators [9.24] in MFE), complexity (global 0-D quantities) and
accessibility [9.25] and may use a variety of formats and data standards [9.26]. The IAEA can
help enhance large-scale accessibility by hosting common data sites, i.e., playing a data
stewardship role, improving connectivity among fusion data source institutions and nations,
and providing standards for both general access and specific domain data types. Each of these
forms of support will enable broader participation in fusion problem solving via Al applications.

Most importantly, open access repositories of fusion data need to be made available beyond
national and institutional barriers to fully boost Al-based research. The status quo sees fusion
databases hosted at different facilities in different formats, behind firewalls or with limited
access provided through data agreements. Al for applied science requires teamwork, as
problems are growing more complex and interdisciplinary, and progress will require diverse
skills in order to design solutions impossible to accomplish as individuals or even small teams.
Moving to centralised repositories of experimental, simulation, or plant operation data with
standardised metadata, will attract Al experts to pivotal fusion projects, and open participation
to fusion communities worldwide. This effort needs to be accompanied by the education of the
fusion community to adhere to Open Science (OS) best practices [9.27] and principles known
as FAIR [9.28] — serving to guide data producers on sharing not just the data but also the
algorithms, tools, and workflows to allow all components of the research process to be made
available, fostering transparency, reproducibility, and reusability.

Hence, the IAEA playing such a data stewardship role can be of key importance. This role
would be facilitated by the extensive in-house experience in maintaining databases in several
areas, from fundamental atomic, molecular and nuclear data to isotopic data and measurements
[9.29-9.32], and thus enable AI applications in fusion science and accelerate progress.
Specifically, the IAEA is well-positioned to establish and host new databases of experimental
fusion data to study phenomena such as disruptions in tokamak plasmas, where first-principle
models cannot provide comprehensive predictive solutions. These databases could be
developed within an IAEA framework for cooperation, such as CRPs [9.33] or Networks [9.34],
aimed also at supporting data standards definition and implementation of FAIR and OS
principles to help enhance large-scale accessibility across different communities.

9.3.2. Community engagement and workforce development

Common frameworks are needed to create one community of practice focused on Al for fusion
science, inclusive of IFE, MFE, and basic plasma science. IAEA can lead cross-domain
initiatives, like workshops or technical meetings that could bring together fusion scientists to
increase collaboration on ML applications to common research challenges, for example, image
data classification, advanced surrogate models, and improved optimization techniques.

By adhering to OS principles, the fusion community can better leverage the growing worldwide
interest in fusion research participation by non-fusion scientists, diversifying the knowledge
and skill base. Open data access is a fundamental standard in the ML community and will be a
fundamental requirement for fusion to fully leverage those capabilities. Additionally, open
databases can be used for training purposes of current and future fusion scientists to engage in
ML and AT activities through outreach activities, training workshops and schools — including
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relevant training activities IAEA carries out in partnership with, for example, the International
Centre for Theoretical Physics (ICTP) — development of e-learning resources or launching
Kaggle-like competitions, hackathons and similar crowdsourcing challenges and initiatives.
IAEA could lead these activities that would allow the fusion community to expand engagement
and to energise and integrate many diverse communities, e.g., the private sector, ML and Al
experts, students, science researchers, other relevant cross-field researchers, and private
entities.

Furthermore, expanding fusion databases to embrace OS principles would offer opportunities
for internships or fellowships dedicated to related tasks (like database development and
curation) at IAEA, partner institutes, organisations, private companies, thus contributing to
capacity building and workforce development. Finally, by incentivizing the integration of the
MFE and IFE communities, IAEA can further connect Al initiatives scattered across many
different working groups worldwide, thereby engaging a broader community. This will result
in reduced duplication of efforts in certain research areas, increased cross-pollination, and
would allow fusion subject matter experts to exploit cross-domain synergies in order to
accelerate progress in fusion research.

Last but not least, hybrid curricula are needed to fully leverage Al in fusion science. Fusion
subject matter experts usually have no or little background in Al methods and need access to
educational opportunities to develop the necessary skills. Training tools and outreach initiatives
aimed at educating fusion subject matter experts can provide a connection with the Al
community that could attract and enable participation. The fusion community also needs to
recognize the need to actively connect with ML scientists and the necessary technical support
to create and maintain large datasets. In general, a diversification of the workforce and their
skill sets is necessary. IAEA coordination on capacity building development, as well as on
facilitating and enhancing collaboration among domain experts and students through technical
meetings and workshops, can aid substantially in growing the worldwide workforce in these
areas.

9.4. EXPECTED OUTCOMES
The activities described in the previous section would produce the following outcomes:

e Improved data accessibility (adhering to FAIR/OS principles), acting as fusion data
steward, establishing data standards and common formats;

e Improved cross-domain community coordination on projects with cross-domain entities
(e.g., atomic data workshops, EOS community, transport coefficients workshop, ML and
fusion scientists’ meetings);

e Enhanced community engagement through data contests and competitions;

e Developed and increased a diversified workforce through outreach and education
initiatives, such as summer schools, internships and fellowships, but also production of
cross-domain training materials, and publication of educational material.

e Accelerated technical advancement through public-private partnerships. These can:

o Bring rapid technology advancements to public fusion science while bringing essential
needs of public science to those advancing tech solutions; and

o Help establish shared resources (e.g., computational resources) managed by an
independent oversight body.
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10.1. STATE OF THE ART

In broad terms, the main opportunities for Al to achieve a positive impact on the nuclear power
industry can be grouped in the areas listed below. In all of these, Al offers the capability of
leveraging massive amounts of complex data in ways that were previously impossible to do by
humans or with more traditional techniques. In addition, Al enables the capture, codification
and retention of human expertise to support robust, repeatable and explicable machine-led
decisions. For each group, a brief description of the topical area with generic application
examples is given, followed by more specific examples. These are most definitely not
exhaustive, as there are many other applications under each topic; rather, they are provided to
help solidify the main idea behind each topic and provide concrete examples of the types of
work and benefits they can entail.

10.1.1. Automation, to increase reliability and reduce time of common operations

Various common activities in nuclear plants place staff in high-pressure or demanding
situations, increasing the chance of human factor errors and personal safety risk. Many of these
issues can be reduced by leveraging data science technologies for automation. In some
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situations, activity time can be diminished, possibly reducing radiation exposure and critical
downtime. Other tasks may be repetitive but time consuming. Examples here include analysis
of non-destructive evaluation data and work management processes.

The wide range of established ML techniques allows automation of very different processes
ranging from automated analysis of complex process data to facilitating decision making and
improving work processes. Many of these applications are already well developed.

Applications that focus on automating analysis of complex data can be illustrated by a range of
defect or anomaly detection solutions. Examples include in-service inspection and control rod
drive mechanism (CRDM).

In-service inspection is a critical part of safe operation of nuclear power plants. However,
analysing inspection data is laborious, time consuming and prone to human errors. Using ML,
this analysis can be automated to a significant degree [10.1, 10.2]. Automating data analysis
will improve inspection reliability and efficiency. It will also allow extracting more information
from the inspection data and improve predictability. The current models have shown good
performance and recommended practice for qualification is in place [10.3].

CRDMs are used in pressurised water reactors (PWRs) to insert or withdraw control and
shutdown rods into the reactor. CRDM coil currents have been shown to indicate certain types
of anomalies including late latches and rod slips due to the build-up of metallic deposits,
commonly referred to as CRUD. In CRDMs, CRUD can prevent the grippers from fully closing
and cause the CRDM to inadvertently drop rods, which can result in significant plant downtime
[10.4]. However, identifying these types of anomalies automatically is difficult and often
involves evaluation of thousands of coil current measurements by multiple human experts that
can take hundreds of man-hours to perform. ML is shown to detect CRDM coil current
anomalies with approximately 96% accuracy in near real-time. Before deployment, more
CRDM measurement examples need to be used to cover the breadth of available CRDM data
and improve the overall accuracy.

Other significant applications deal with automating and facilitating some areas of anomaly
detection, decision making and report analysis. A process or equipment anomaly growing in a
plant often results in states of which the operator is not aware until the anomaly results in a
significant change, enough to be detected by the operator. ML methods can learn data trends.
They have the potential to augment the operator state awareness and detect anomalous
conditions. Recently, methods of semi-supervised ML [10.5] and the use of physics-based
models to complement or assist the typical data-driven approach of anomaly detection [10.6]
were found to potentially improve the performance of anomaly detection methods and are
therefore of continuous research interest.

A significant part of NPP operation relates to staff walking around the plant to inspect the plant
condition and environment and collect needed information. Hence, in the area of work process
improvement, computer vision and ML enables drones to recognize features of their
surrounding environment, eliminating or reducing the need for human rounds [10.7]. Some of
these examples are currently in field testing. The main challenge highlighted is the lack of
access to training data.

Human-computer interaction in the nuclear power plant’s main control room (MCR) is the basis
for efficient operator perception and control of the operating status of the plant. Speech
recognition and gesture with high correctness and fast response time can simplify the operation
process and help improve the efficiency of the operator. Such multimodal interaction can be
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used to reduce the operator’s workload and achieve the effect of reducing human errors. Initial
research on such systems have been completed and further work on method optimization and
training data is needed.

For every event occurrence at an NPP, a typical work process encompasses several steps and
cycles of reviews and analysis. Several human-based decisions are made regarding how to
address each individual report before it goes to planning and scheduling, if needed, for it to be
executed. This human-based decision is not only time consuming but also prone to human error.
Natural language processing (NLP) methods coupled with ML can be developed to replicate
the human decision-making processes of analysing the event reports and generating resulting
documents and outcomes. This area of research is rapidly advancing into task-specific tools that
the nuclear power industry is gradually leveraging. Those tools continue to expand in their
functionality as new opportunities emerge for NLP and ML.

10.1.2. Optimization, to increase efficiency and design of complex operations

Nuclear power can leverage data science techniques to optimise complex processes, plans and
strategies such as inventory management, outage scheduling and fuel cycle parameters. This
will improve operations, plans, strategies and decision drivers. Some examples of such
applications are shown below.

Outage scheduling optimization can be improved using current ML techniques, and wider plant
history databases can be used by ML to optimise radiation mitigation strategies.

During the design phase of a nuclear power plant, Al systems can be used, e.g., to help optimise
configuration management, requirement management, building information modelling,
verification and validation. Many of these tasks can be addressed using current established Al
technologies. Successful implementation of Al in the design engineering process can
significantly improve the safety of nuclear power plants, as well as reduce the time and the cost
of design. It also could provide cost-effective design solutions for other stages of the life cycle
(construction, operation, decommission, etc.). Some elements of automatization and Al have
already been implemented in several Building Information Modelling (BIM) software. The
main challenge of Al adoption is the lagging regulation for AI application in the design
engineering process of NPPs and available machine-readable requirements and data. In
addition, research is needed to make existing methodologies and design algorithms more
accessible for Al

A nuclear reactor is a complex system, and its comprehensive control is not trivial. Besides
well-known control of thermal power and coolant temperature, reactor controllers take care of
plenty of other aspects such as operational safety permitting operation only within given limits,
homogenization of burnup, burnup compensation, compensation of the poisoning, shaping of
the power density distribution, support of flexible electricity production, operation economy,
etc. Machine learning based techniques can be used to improve the traditional core-control
methods and to allow improved predictive control of NPPs. Al allows consideration of an
arbitrary large number of goals even if quite different in nature. In the case of reactor
governance, safety, ergonomics, operation economy and grid services can be processed
simultaneously in accordance with each other.

For optimal in-core fuel management, designers attempt to solve a ‘combinatorial optimization’
problem by utilising expert judgement, nuclear design principles, and physics-based tools.
However, the search space size of combinatorial problems grows dramatically with the size of
input space and therefore this process is quite demanding in terms of human time and
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computational resources. Al can quickly search for a candidate optimal loading plan before
final evaluation with licensed codes.

10.1.3. Analytics, to increase the quality of current models and understanding of the
used systems

Al techniques can also support further research for longer-term benefits. AI methods can, for
instance, be leveraged to expedite the characterization and validation of materials for newer
generation designs, reducing the time and cost of the necessary materials research, as well as
help develop new quality assurance practices for additively manufactured components for small
and microreactors and optimise the design of experiments to reduce uncertainties or experiment
costs, and developing advanced dispatch and control methods for nuclear reactors for both
energy and heat process applications and optimise strategies for hybrid nuclear energy systems.

In some cases, existing analytical models are overly simplistic in order to be mathematically
tractable and fail to describe the process of interest in sufficient detail or accuracy to inform
decision making. In such cases, Al approaches can be leveraged to develop such complex
models and provide more accurate predictions. One example is the use of Al models to describe
the critical flow that can occur in light water reactors in automatic depressurization systems and
safety relief valves or in a loss of coolant accident (LOCA) or main steam line break, as
presented during the consultancy meeting.

Al models can be leveraged for complex and time-consuming statistical modelling that are
likely suboptimal, as for fitness-for-service (FFS) assessments. The advantage of such
traditional models is their higher generalisation to new data given the explicitly defined
relations between features and target. This explicit, direct relationship is typically lacking in Al
models, impacting their performance on new data. This shortcoming can be overcome by
incorporating physical concepts into the AI model, showing that expert knowledge can be used
in conjunction with Al techniques to improve current modelling capabilities.

Al techniques can be leveraged for model validation, especially for advanced computer
simulations that have proliferated over the last years and generate large amounts of data. Such
approaches can support, for instance, digital twin applications.

10.1.4. Prediction and prognostics, to better inform maintenance activities

Data science approaches can be leveraged to predict events, including failures, and assess
current asset conditions, such as remaining useful life. Asset owners can use these tools to plan
their maintenance and outage strategies, potentially reducing unexpected downtimes and
minimising periodic inspections. Examples of potential applications include leveraging the
monitoring operation data streams for abnormal conditions and informing adequate timing of
maintenance or inspection activities.

Despite the proliferation of advanced simulation tools developed over the past two decades,
their true value is not yet fully realized by end-users. Many questions remain unanswered such
as why should the industrial practitioners believe that the new advanced tools will provide more
accurate predictions as compared to those obtained with legacy tools which have been heavily
calibrated based on decades of operational experience? How can the industry leverage these
advanced tools to better communicate with the regulator on upgrading their validation standards
when applied to first-of-a-kind reactor designs or new fuel concepts? How to confidently
integrate new operational data with the models to continually improve their predictions? All
these questions remain difficult to answer, often requiring experts to determine whether and
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how the advanced tools could provide a quantitative edge over legacy tools. Al provides a
natural approach to addressing these goals by providing mathematically rigorous and
explainable algorithms to measure information content available in the simulation and the
experimental data using information theory principles. The existing methods again are heavily
influenced by classical statistical methods such as Bayesian inference theory and the
Generalized Least Squares methodology [10.6]. In their standard implementation, these
methods are designed to assimilate available measurements with simulation predictions to
improve future predictions for similar or closely relevant systems. Because of the numerous
assumptions made, such as linearity and Gaussianity, the effectiveness of these methods
remains limited and has not seen wide adoption in the nuclear industry. Motivated by Al
principles, nuclear researchers are pursuing the development of inference methods that do not
suffer from the limitation of classical methods, however no application-ready implementations
currently exist. These methods provide clear value of Al to improving the predictions of
complex systems, because they provide clear quantitative metrics on characterising the
information footprint across multiple sub-systems, time, and space, allowing for reliable
generalisation of the predictive results.

10.1.5. Insights, to extract lessons from experiments and operating experience

The nuclear industry has accumulated thousands of reactor years of operating experience and
amassed huge libraries of validation experiments used in support of model validation. Data
science technologies can leverage this rich experience in unprecedented ways to unlock new
best practices and better inform future decisions on the various stages starting from conceptual
design to licensing and operation. These new trends and observations can lead to improved
operating and maintenance efficiencies for near-term implementation.

Some specific practical applications for which Al can be leveraged in the industry include
holistic assessment of maintenance records and practices, and of corrective action programs, to
assess trends and extract lessons to inform future operations. As another example, Al
technologies could identify the best types of sensor and arrangement for a given class of nuclear
reactors that can be correlated with various sources of process anomalies, currently undetected
with existing equipment-specific sensors. In general, methods are in early stages of
development or adaptation to the nuclear industry; they are currently exploring how to glean
insight from nuclear power plant data. A key challenge to this is the level of language
specificity: not only are these methods language specific, but they can also be jargon-specific,
and methods need to be informed by an industry ‘dictionary’.

10.1.6. Deployment challenges

At present, it is sometimes challenging to provide interpretability, confidence, and robustness
measures of performance for Al If expected to perform autonomous functions, additional
concerns must be addressed, including cybersecurity concerns to ensure trustworthiness and
integrity of models and data used for training and decision-making, and regulatory concerns
which require an assessment of system vulnerability, e.g., data source malfunction or deliberate
falsification.

The development of Al technologies for safety critical applications could present a challenge
to regulators, as many traditional assurance approaches might not be easily applicable. For
example, the limited transparency of Al and ML products may make their actions difficult to
interpret, their biases unclear and their malfunctions mysterious. Moreover, it is sometimes
difficult to fully specify the requirements for Al and ML products, as they may involve
responding to novel situations.
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Demonstration of compliance with standards is challenging due to the fast-moving nature of Al
and ML technologies, and the time lags introduced by work to codify good practice into those
standards. Security also poses unique challenges through data management and threats of
adversarial attacks. Taking the challenges posed by the complexity and potential obscurity of
Al and ML technologies, high level regulatory safety assessment principles and guidance may
need to be developed to ensure that the full benefits of Al and ML can be accrued, particularly
where there may be significant consequences of failure or maloperation.

Standards have always been important for the adoption of new technologies with Al being no
exception. IEC and ISO have already created a dedicated subcommittee, ISO/IEC JTC 1/SC42,
to develop Al standards. Recognizing the potential of Al and its current applications in the
nuclear industry, IEC/SC45A started to prepare a Technical Report with the objective to help
promote rapid transfer of Al technologies from pilot studies to wide applications.

Standardisation is the basis for conformity assessment. In order to enable acceptance of Al in
safety-related applications standards, especially with regard to safety and security, existing
standards would need to be adapted or new standards developed. Depending on the safety-
relevance of an Al application, third party testing could be carried out by conformity assessment
bodies (e.g., based on the ISO/IEC 17000 series of standards) in order to ensure independence
from Al developers.

The attacks used against Al systems differ from the kinds of attacks we are accustomed to
against other systems. The goal of these attacks is to have the model make poor decisions —
either globally, lowering overall reliability, or under very specific conditions, so that given
tailored samples can trigger specific, attacker desired outcomes. Learning systems are uniquely
updated over time and have models that in many cases require extensive and ongoing retraining.
This leads to a large attack surface distributed over time, as attackers can target these systems
in the design phase, during initial and ongoing training, and when deployed on operational
systems.

Being a different approach, Al will bring new specific challenges not faced before. Al specific
cybersecurity concerns, explainability, the higher need for data, new considerations from the
regulatory bodies (to whom Al is also new), etc. are some of them. It is important to proactively
address these as adequate. Whether Al is used autonomously or with human supervision, a
considerable level of assurance is needed.

10.2. NEXT STEPS
10.2.1. Technology development

These are activities which relate to further developing technologies that are in an earlier stage
of maturity. Examples include:

e Further development of speech and gesture control software system;

e Development of anomaly detection from plant monitoring data;

e (Core monitoring techniques and experimental validation and demonstration (CORTEX)
need to be brought to a sufficient level of maturity before utilities can use it for routine core
monitoring to inform operation and maintenance decisions;

e Having been trained to determine fuel core loading plans that meet safety requirements,
neural networks can be further leveraged to guide the optimization of fuel loading.
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10.2.2. Technology deployment

In some specific areas, the industry has the technological means to start practical adoption of
ML. For these cases, field implementation of the applications, initially on a test basis, need to
be pursued to start building trust in the systems, as well as their gradual adoption. One example
is the automated analysis of non-destructive evaluation examinations. Applications for
radiography and ultrasonic examinations are ready for field testing that can be carried out in
parallel with the regular inspections to provide an assessment of field performance. Other
examples include condition monitoring and automation of predictive maintenance procedures.

10.2.3. Enabling technologies

Enabling technologies refer to capabilities that need to be built in order to enable the successful
development or deployment of Al technologies. They can be technical, such as developing an
industry-specific NLP dictionary to support the activities listed in section 10.1.5, or more
programmatic, such as interfacing with regulatory bodies to gain acceptance of the technology,
as applicable. For example, for the successful and safe implementation of Al in the design
engineering process of nuclear power plants, it is reasonable to conduct R&D and their
deployment in the following areas:

e Development of legal regulation for Al application in the engineering design process of
nuclear power plants;

e Development of common database requirements (safety, security, etc.);

e Development of accessible and understandable to Al requirements (optimization,
simplification, specification, etc.) when framing common database requirements;

e Adaptation of existing methodologies in accordance with process approach;

e Development of design algorithms that are accessible and understandable to Al

The development of a roadmap to guide regulatory investigation, research and positioning on
the application of Al systems for nuclear power plants is also extremely valuable to pursue.

10.3. ACCELERATING PROGRESS—IAEA’S ROLE

In this section, a summary of beneficial IAEA assistance is provided, followed by one or more
IAEA implementation mechanisms which could deliver the suggested support.

10.3.1. Data and information management systems

The availability and quality of data is highlighted as a challenge for several application areas.
The nuclear data tends to be sensitive, which imposes limits to its use. In addition, accurate
labelling and data sanitation is a significant undertaking. A few things enabled recent advances
in ML, but the availability of standard data sets for research and performance evaluation was
arguably the most impactful. Training and testing data availability would enable worldwide
research into this area. Thus, increased data sharing and finding ways to make data more
accessible would accelerate the development and adoption of ML methodologies. Potential
beneficial actions include:

e Developing and maintaining a library of synthesised datasets (of similar pedigree to those
collected in nuclear power plants) for hypothetical or representative reactors serving as
benchmark datasets for comparing and evaluating performance of various Al algorithms
[10.8, 10.9].
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e (Guiding development and deployment of privacy-preserving methods for data
anonymization to alleviate concerns over exchange of nuclear systems operational data
leading to their adoption by stakeholders. The method must conceal the identity of the
data source while providing full access to all mathematical features employed by Al
algorithms.

e C(Creation of a repository facilitating the exchange and sharing of data for representative
projects to promote the value of Al to the IAEA’s Member States.

10.3.2. Networks fostering longer-term collaboration around a specific topic

Identifying common solutions and successful application areas across the industry would help
leverage working solutions, as for example, identifying application areas of common interest,
such as the practical use of Al in NPPs. The IAEA could play a role by facilitating a network
with subgroups for each of the main application areas. Each application can have a small
working group for close discussion who meet periodically. Each of these working groups can
report and share to a combined larger technical meeting (all working groups), where all can
learn from their experiences. The IAEA can help identify world leading expertise with an aim
of working in a more cross-sector way. Also, strengthening liaison relationships with relevant
national or international organisations to better coordinate global efforts in standardising Al
applications in the nuclear industry so as to speed up adoption and meanwhile save R&D and
deployment costs.

10.3.3. Training workshops

Model transparency and making the ML systems understandable for both the people that
interface with them and for the people that oversee them is required. While the users may not
need full understanding of the ML techniques applied, they need to build a working
understanding to facilitate effective interaction with the system. Training workshops (courses
development and hands-on training) are typically implemented to assist with capacity building
in Member States. They might be used to assist with the development of needed competencies
and, for example, to train the instructors.

10.3.4. Coordinated research projects

CRPs bring together research institutes in Member States to collaborate on research topics of
common interest. Results of the CRPs are disseminated to all Member States through scientific
and technical publications, and other communications media

For the regulated nuclear environment, field trials and gaining acceptance of the utilities is
crucial. For some of the use cases this is easier, and they may help introduce Al and ML to the
industry. For some use cases, more evidence is required to gain acceptance. Lack of
consideration of potential blockers for deployment at the concept stage could prevent timely
and effective deployment. Facilitating this process and experience sharing would accelerate and
facilitate adoption of Al and ML. CRPs could be implemented to facilitate this, including Al
reliability, with IAEA mediated field testing, round-robin exercises and peer review of Al and
ML solutions. Specific examples include the facilitation and promotion of field testing or
comparative, round-robin testing of technologies as they become available. IAEA could
develop and maintain one or more Standardised Test Suites for validating performance of Al
algorithms in a round-robin demonstration or other contexts.
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10.3.5. Publications on safety or security

Another area of work can be reviewing the impact of Al and ML on existing IAEA guidance
and standards and provide commentary on their applicability, especially in the safety and
security area. Regulatory acceptance is indeed required for the final application in power plant
environments. While the exact regulatory needs depend on the specific country and on the ML
application, the present lack of a clear route to the licensing of Al applications, where this may
affect safety or security, has the potential to prevent deployment on active plants, and for the
benefits of Al to be lost. Common but flexible principles and guidelines addressing the most
common challenges met with gaining regulatory acceptance for Al and ML would help
development and adoption. The guidelines need to highlight the benefits of Al and ML but also
address the need to safely deploy and utilise the technologies and provide an independent view
of standardisation activities and their role, as well as highlight the need for validation of the
standards and monitoring of their obsolescence.

10.3.6. Nuclear Energy Series, Technical Reports, TECDOCS, non-serial publications

Another area of work can be considering development of principles and guidance for Al and
ML systems, including best practices. In addition, IAEA topical reports on Al technology and
or the practical use of Al in a nuclear power context would be beneficial. Examples include:
core design and monitoring, and diagnostics and load optimization; predictive maintenance and
outage optimization; improvement of NDT/ISI results through evaluation, interpretation, and
analysis; material ageing management; condition monitoring; autonomous monitoring;
anomaly detection; elaboration and improvement of models; automating operations and work
processes; streamlining work management process; reliability analysis and risk assessment, as
well as data modelling and simulation.

10.4. EXPECTED OUTCOMES
Examples of outcomes the IAEA could support Al use in the field of nuclear power include:

e Increased data availability for Al applications to achieve their potential systems and to
facilitate and accelerate the application of Al technology.

e Improved modelling and simulation capabilities relevant to Al applications.

e Bridging the gap between the Al community and the industry to identify specific generic
applications of interest.

e Capacity building to develop workforce competencies (students and practitioners)
highlighting the value, mechanics and limitations of Al techniques

e Increased confidence in the adoption of Al in existing and future plants by providing
guidance on the deployment of the technology.

e Streamlined licensing processes of designs comprising Al solutions (through the increased
confidence).

e The availability of specific recommendations to NPP utilities, regulatory bodies, research
and design organisations, as well as vendors with respect to the application of Al
technologies.
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Chapter 11.
NUCLEAR SECURITY

K. Jenkins, M. Hewes, C. Massey, R. Larsen
Division of Nuclear Security,
International Atomic Energy Agency,
Vienna

11.1. STATE OF THE ART

Al can have varied impact depending on how it is applied within different areas of nuclear
security, including radiation detection for material outside of regulatory control, cyber and
information security, forensics, material and facility security, and insider threats.

11.1.1. Radiation detection, analysis, and decision support

Data collection and interpretation are large components of any nuclear security activity. Al is
being explored as an opportunity to provide not only improved data analysis, but to support
complex and variable data processing, in addition to decision making support in order to
increase the effectiveness and efficacy of nuclear security activities.

Research in Al applications for detector data analysis has indicated the potential for machine
learning algorithms and deep learning models to be use for radioisotope identification in high
efficiency but low-resolution plastic scintillator detectors. This can expand the capabilities of
detectors used in nuclear security applications by providing additional information for decision
making and response if detectors alarm. The expanded capabilities potentially offered by Al in
radiation detection may reduce nuisance alarms, and aid in assessing complex and variable data
streams to better focus resources and provide real-time situational awareness [11.1, 11.2].

This is also true for nuclear forensics, where Al is being used to enhance the systematic
approach used to draw conclusions in an investigation. As no single parameter will allow
drawing conclusions with high confidence, it is typical that several parameters will be included
in an evaluation, creating a multi-dimensional problem to analyze. Supervised learning
techniques have been applied to complex data sets, including such processes as image analysis,
colorimetry, and spectra to conduct classifications of material. Increased attention is being paid
to deep learning techniques and the evaluation of non-numerical information to enable high
confidence conclusions with smaller learning sets. [11.3, 11.4].

11.1.2. Cyber and physical defence

Al has significant potential for cutting-edge computer security techniques for NPPs, detecting
and responding both current attacks and future unknown attacks. Al techniques provide various
ways to learn from data and operations, including identifying patterns and anomalies in the vast
quantities of information related to the sensing and control of nuclear processes. Cyber-attacks
on instrumentation and control (I&C) systems can cause physical damage to facilities and may
be targeted within acts of sabotage, indicating the need for both physical and computer security
solutions that can detect evidence of both adversarial actions and the progressive process
impacts that may be indicative of an ongoing cyber-attack.

Due to the large aggregate sum of information and the comparatively small, detailed examples
of adversarial actions much of this data may need to be processed within unsupervised models.
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An autoencoder is an example, a neural network intended to ingest large amounts of data to
produce an internal representation that allows the identification of patterns or features [11.5].

Such examples of Al have been shown to support the detection anomalies in I&C network
traffic, these types of machine and deep learning algorithms hope to compensate for the lack of
abnormal data and also benefit from the abundance of normal data from day to day operations.

Other applications of Al for computer security may seek to observe the state of the process
itself. An Extended Kalman Filter (EKF) is a nonlinear state estimation technique that has been
deployed for this purpose, to generate estimates of process state variables and provide for a
prediction of the future state of the system allowing the identification of anomalies that may be
indicative of cyber-attacks.

A greater benefit may be obtained through combining the dual approaches to network traffic
and process variable anomaly detection. Such an example would be extending the EKF anomaly
detection with a Kalman Filter deployed to produce an independent and concurrent model of
the control network traffic. The output of both applications of EKF and KF may then be
combined through a fuzzy model (or other application of a human-like decision process)
allowing anomalies to be appropriately weighted and identified through comparison to both
models simultaneously forming an even strong indicator to support the detection of cyber-
attacks [11.6].

In order to add additional insight into potential attacks, the development of explainable Al
models provide information about which component is under attack and how much it deviates
from normal operation. Such an explainable Al computer security solution platform may
enhance the detection, analysis, and response to computer security incidents within nuclear
facilities as the output or results of the Al model may be readily interpreted by human operators
and emergency responders ensuring greater integration of the AI solutions into existing
organisational management systems and decision making processes [11.7].

Al may also be used to identify vulnerabilities and compromised employees, operations, and
missions, providing insight to detect anomalous behaviour or patterns. As with detection data
and cyber systems, pattern and anomaly detection can offer analysis of human behaviours to
aid in defending again insider threats. Al technologies can be developed to understand the
requirements for rule compliance and evaluate image data and other data streams to verify if
the rules and measures are being followed or disregarded [11.8].

11.1.3. Blockchain

Blockchain, a subset of Distributed-Ledger Technology (DLT), is not ordinarily included
within Al, however there are opportunities for it to be coupled with Al for nuclear security
activities.

DLT is the use of a decentralize, synchronized database shared across multiple ‘nodes’ to track
the transaction of assets. Blockchain adds cryptographic techniques to protect and authenticate
data, building trust and data consistency across activities. Blockchain has been demonstrated
and adopted in a variety of industry sectors to manage risk and aid in the tracking of high value
assets, including origination. Case studies on cobalt supply chains, the diamond industry, and
food supply chains, among others, offer examples for the potential for integrating Al and
blockchain technologies for nuclear security [11.9, 11.10].
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11.1.4. Considerations

Though there are many positive implications for Al in nuclear security, there are limitations,
risks, challenges, and considerations which must be explored.

Explainable Al is an important consideration for applications of Al that rely on transparency
and replicability. Nuclear forensics findings may be presented as evidence in court, where the
expert witness need to outline to the judge or the jury on what grounds the conclusions have
been reached, and so transparency of the analysis process may be crucial.

Al-enabled technologies require a certain level of infrastructure, including computational needs
and data requirements to properly develop and train AI models. Too much or too little
information, incomplete information or data sets, absence of key data or bias, can be
challenging for realistic application. Not enough abnormal data available or massive quantities
of ‘normal’ data could create errors (one-class classification problem). Al solutions may also
be limited despite available data due to technologic and infrastructure inequities around the
globe [11.11].

Al like other technologies, is not immune to vulnerabilities or risk. Aggregated information
could result in threats to information security, while potential cyber-attacks against Al models
and against the computing infrastructure could lead to a compromise of future Al-supported
functions or decision-making systems in uses of Al across all nuclear fields. Dialog on uses of
Al need to balance this increased risk, keeping in mind the additional susceptibility to cyber-
attack, potential exposure of sensitive information, and the consequences of compromise of Al
supported functions.

Adversarial Al is also a consideration for nuclear security. While Al technologies are useful for
the enhancing of nuclear security activities, adversaries with Al capabilities may post risk, and
thus countermeasures must also be considered [11.12, 11.13].

Al is not a magic solution to solving all challenges and so careful consideration is necessary
when developing and implementing Al. Technology should be deployed intelligently for well-
defined challenges, preserving rather than compromising security. Al raises a number of ethical
and privacy concerns, in addition to questions surrounding data accessibility, sharing,
intellectual property constraints, and even data sovereignty.

11.2. NEXT STEPS

There is a need for more investigation on the positive and negative impact and implications of
Al in nuclear security. Research into specific Al applications for nuclear security topical areas
is needed to understand its use, limitations, and vulnerabilities. Al research focused on
developing or expanding understanding will also be key to enabling future research avenues.

11.3. ACCELERATING PROGRESS—IAEA’S ROLE

The IAEA can have a supporting and transformative role in aiding progress towards the
realization of the impacts of Al in nuclear security, whether they are positive impacts or
negative. IJAEA Webinars, Technical Meetings, and CRPs can provide mechanisms to support
the development, awareness, and application of Al, as well as countermeasures and defence
against, in nuclear security. These information exchanges and collaborative opportunities can
address Member States’ needs in nuclear security, including more investigation on the positive
and negative impact and implications of Al in nuclear security.
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These activities can be disseminated and even enhanced by the IAEA’s development of
guidance on terminology, implementation, training, testing, and regulating Al capabilities for
nuclear security.

11.4. EXPECTED OUTCOMES

The expected outcomes of the activities outlined in the previous section include:

e Increased confidence in the utilization of Al technologies within nuclear security functions,
without compromising defence in depth.

e Enable the exchange of information to support a common understanding of the design,
implementation, and functionality of Al models assuring they do not affect the capacity to
provide adequate nuclear security.

e Expanded cross-cutting and interdisciplinary cooperation internationally since Al impacts
multiple stakeholders within the nuclear community.
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Chapter 12.
SAFEGUARDS VERIFICATION

L. Meirose, D. Finker
Safeguards Division of Technical and Scientific Services,
International Atomic Energy Agency,
Vienna

12.1. STATE OF THE ART

The TAEA conducts various safeguards inspection field activities to ensure states are using
nuclear material for peaceful purposes and the material is not diverted for the production of
nuclear weapons. These field activities are sometimes complex, and many safeguards’
inspections produce a large amount of heterogeneous instrumentation data, as these inspections
are difficult operations. Driven by the increase of material under safeguards and the introduction
of new measurements techniques and sensors expanding global nuclear fuel cycle activities, the
amount of data and number of inspections has been steadily growing, calling for the need to
increase the efficiency of nuclear safeguards processes [12.1].

An extensive range of safeguards data could be used to train ML algorithms. For example, the
volume of available satellite imagery and open-source data has increased dramatically over the
past several years and is expected to keep growing in the near future. Additionally, video
cameras have also been installed by the IAEA, along with various sensor technologies, that are
generating a complex and growing amount of information in the form of data which can be
utilised for various purposes, including Al.

With this rise in the amount of generated data, many tasks are becoming increasingly labour
intensive. However, these larger datasets can be used for different applications: classifying data,
finding patterns, and identifying outliers in the data. These are the domains in which Al could
significantly improve efficiency and effectiveness within safeguards. If Al is appropriately
paired with input from experts and inspectors, the amount of time they spend on tedious or
repetitive tasks will decline, increasing their ability to work within their core expertise.

Key Applications that would be a natural fit for Al are gamma spectroscopy, verification of
spent fuel, robotics, surveillance, and productivity, which are discussed in detail below.

12.1.1. Gamma spectroscopy

ML algorithms look like a promising tool for improving the sensitivity of radiological searches.
An algorithm developed using neural networks and trained using source and spectra data
successfully detected anomalous sources, identified the source type, and located the closest
detector. A more complex dataset is planned for future use to progress the algorithm further and
improve radiological search methods [12.2].

Research performed at the IAEA demonstrated that Al can also be used for fissile mass
quantification, specifically mixed oxide fuel verification. Impure mixed oxide (MOX) fuel
verification is difficult to perform with neutron multiplicity counting and therefore, gamma
spectroscopy was explored as an alternative. Spectra were obtained from Monte-Carlo models,
covering a wide variety of sample parameters and inhomogeneities. These gamma spectroscopy
measurements were then utilised to train a neural network and autoencoders. Once the models
are trained, a sample could theoretically be measured in the field and using this ML algorithm,
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the fissile material's mass, concentration, alpha value, and multiplication could be obtained as
a result of the analysis with the neural network [12.3].

12.1.2. Spent fuel verification

Spent fuel makes up a large portion of the material under safeguards and their inventories are
continually increasing. Spent fuel is measured by utilising the neutrons and gamma rays emitted
by spent fuel, and these inspections generate a large amount of data. Spent fuel verification can
also be performed using Cerenkov imaging data. These data sets can be utilised for Al
algorithms, and numerical simulations can supply training and test datasets for the model.

Several ML models have been examined to determine if models can successfully distinguish
between complete fuel assemblies and defect fuel assemblies. Initial results are promising,
demonstrating the models can detect fuel replacement and further classify spent fuel based on
the percentage of replaced pins [12.4]. ML models can also potentially be used to analyze spent
nuclear fuel inventory data to verify burn-up, cooling time, and initial enrichment [12.5].
Additionally, these models can be utilised to measure the bias of the spent fuel measurement.
Bias is the difference between calculations and measured performance of spent nuclear fuel
properties. These biases can be predicted with ML models and are similar to the observed biases
[12.6]. By utilising Al and ML, inspectors could have the ability to verify spent fuel assemblies
in the field more efficiently.

Al was also used to improve the processing of data obtained from the neXt Generation
Cerenkov Viewing Device (XCVD) with a support vector machine to classify blurry XCVD
images, which may require further image processing [12.7]. Different image improvement
techniques for XCVD image processing were investigated. Although this algorithm is
promising, more investigation is required before it can be used regularly in the field.

Overall, the technology’s accuracy is sometimes on par with traditional instruments, but it is
not mature enough to make autonomous decisions. It still requires improvement and inspector
and expert input to make decisions.

12.1.3. Robotics

Spent fuel verification can also be performed more efficiently with the use of robotics and Al.
For example, robotic technology, such as the RCVD, can assist with spent fuel verification.
Robotics can be implemented within safeguards to increase operational efficiency by collecting
data, performing 3D mapping, calibrating data, etc. By utilising robotics to assist with
safeguards tasks, the efficiency of operations can be increased, particularly in difficult areas,
where data is hard to gather because of inspector safety. Al can be used with robotics to identify
objects and anomalies, provide the robot with autonomous sensor fusion, and improve the
human/machine interface [12.8].

12.1.4. Video surveillance

Implementing Al for video surveillance would allow for significant productivity gains in
safeguards. Surveillance review is challenging and time-consuming for safeguards inspectors.
Classical algorithms currently used for surveillance review are prone to false alarms, leading to
decreased review productivity. Al-based algorithms have the potential to drive down these
false alarms, while more specifically and accurately identifying objects and actions of
safeguards relevance.
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There have been several recent developments in the use of Al for surveillance review at IAEA.
One area of research is the review of surveillance data to detect and track safeguards relevant
objects, operator declarations, and anomalous activities in the data. Surveillance data could also
be used with learning-based algorithms to detect and count objects.

However, further improvements to Al implementation could be made by providing larger video
datasets to train the models better. Image and video data can be acquired from similar facilities
under surveillance, from simulations, and digital twins. Different safeguards objects and
activities could also be added to expand the image datasets and improve the training. An open
challenge for the limited resources at IAEA is the effort needed to annotate training datasets.
Techniques that will help automate the annotation process as well as reduce the overall amount
of training data are required. Al and video surveillance will expand from identifying spent fuel
casks to other safeguards-relevant objects and activities to flag [12.9].

These areas are promising for implementation and require further development and expert
input.

12.1.5. Productivity

Al can be used to increase productivity in many areas of safeguards, and it is important to
examine how Al will impact human performance. When ML was used in conjunction with
human input to detect objects, it helped improve user performance in identifying important
items in images, particularly with novice users [12.10]. Al can assist in identification tasks, but
it may need to consider the expertise level of its user, and different algorithms need to be utilised
for expert vs. non-expert users.

The use of Al in developing a digital safeguards assistant for different field activities was
examined. These digital assistants could decrease the cognitive and physical burden placed on
experts in the field and help mitigate human error [12.11] when performing field activities.

With the current status of Al, there are concerns with the accuracy of the models and the models
producing false alarms. False alarms affect the trust the users have in the algorithms and the
trust between the inspectors and the IJAEA’s Member States. False negatives miss important
events, with grave consequences for safeguards. Therefore, before implementing Al in
safeguards processes, it is necessary to improve output accuracy.

More work needs to be done to determine how best to merge Al with inspector perception and
experience. Inspector knowledge will be an asset to Al and Al will help inspectors by cutting
down on time and energy spent on repetitive tasks. With Al and inspector perception and
experience merged, nuclear safeguards processes will increase inefficiency.

Overall, safeguards can significantly benefit from implementing Al but further development
and exploration into critical applications are necessary before widespread use.

12.2. NEXT STEPS

A crucial aspect will be the merging of inspector expertise with Al and ML development. Al
will not replace inspectors, but it will need to implement safeguards inspectors’ expertise to be
useful for them in the field. It can become an essential aid for inspectors to utilise during various
safeguards operations. IAEA has many experts and inspectors to influence the merging of Al
and safeguards. These experts and inspectors will need to work closely with Al experts outside
of the IAEA to produce practical solutions.
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IAEA has access to safeguards datasets from inspections and can share these large datasets to
facilitate the training of various ML models. There is also an opportunity to make use of digital
twins in safeguards. Digital twins are a virtual environment populated by data obtained from
sensors applied to the physical object that use simulation, reason, and ML to help make
decisions. Digital twins could be used in safeguards to supply data to train ML models.

12.3. ACCELERATING PROGRESS—IAEA’S ROLE

Successful implementation of Al requires a blend of data science and physics throughout the
lifecycle of the nuclear material. IAEA safeguards has a pool of specialists, whose expertise
will be valuable for developing Al algorithms. IAEA safeguards could become a leading use
case or client for specific fault-proof Al research and development. Safeguards require a high
degree of accuracy from inspection results, and Al in safeguards is no different. The
development of greater accuracy Al could greatly benefit other industries outside of safeguards.

IAEA could become involved in a more moderating or stewarding role to help guide the
development of Al instead of being directly involved in its development. Standing up the
capability to develop Al and ML within IAEA would require many resources. Therefore, it
would be more beneficial for the IAEA safeguards group to advise the Member States instead
of directly developing these algorithms.

Additionally, because the future of Al is open-source, the IAEA may need to adapt its policy
frameworks to provide this data. While some safeguards data is open-source, there is a portion
of data IAEA receives and securely analyzes. This structure may need to be adapted to allow
for specific instances of providing data. IAEA’s legal framework and those of its Member States
may also need to be altered to enable data sharing.

12.4. EXPECTED OUTCOMES

The development of ML and Al will improve inspector output and increase the efficiency of
safeguards operations in the field. These developments in Al will decrease the repetitive tasks
necessary for inspectors to perform and increase the ease of inspection. [AEA inspectors and
experts will need to work closely with Al developers to improve the efficiency and accuracy of
Al for future use within safeguards. Implementing Al within safeguards will require a change
in how certain datasets are shared, particularly as open-source data is the future of Al.
Improvements in Al for safeguards purposes will help foster development in other industries.
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