

BNL-223886-2023-JAAM

Investigation of signal characteristics and charge sharing in AC-LGADs with laser and test beam measurements

J. Ott, W. Chen

To be published in "NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-
ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT"

January 2023

Instrumentation Division
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Investigation of signal characteristics and charge sharing in AC-LGADs with laser and test beam measurements

J. Ott^a, S. Letts^a, A. Molnar^a, E. Ryan^a, M. Wong^a, S. Mazza^a, M. Nizam^a, H. F.-W. Sadrozinski^a, B. Schumm^a, A. Seiden^a, T. Shin^a, Ryan Heller^b, Christopher Madrid^b, Artur Apresyan^b, William K. Brooks^{g,h,i}, Wei Chen^c, Gabriele D'Amen^c, Gabriele Giacomini^c, Ikumi Goya^e, Kazuhiko Hara^e, Sayuka Kita^e, Sergey Los^b, Koji Nakamura^d, Cristián Peña^b, Claudio San Martín^{g,1}, Tatsuki Ueda^e, Alessandro Tricoli^c, Si Xie^{b,f}

^a*Santa Cruz Institute for Particle Physics, University of California at Santa Cruz, 1156 High Street, Santa Cruz CA 95064, USA*

^b*Fermi National Accelerator Laboratory, PO Box 500, Batavia IL 60510-5011, USA*

^c*Brookhaven National Laboratory, Upton, 11973, NY, USA*

^d*High Energy Research Organization, Oho 1-1, Tsukuba, Ibaraki, 305-0801, Japan*

^e*University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan*

^f*California Institute of Technology, Pasadena, CA, USA*

^g*Departamento de Física y Astronomía, Universidad Técnica Federico Santa María, Valparaíso, Chile*

^h*Centro Científico Tecnológico de Valparaíso-CCTVal, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile*

ⁱ*Millennium Institute for Subatomic Physics at the High-Energy Frontier (SAPHIR) of ANID, Fernández Concha 700, Santiago, Chile*

Abstract

AC-LGADs, also referred to as resistive silicon detectors, are a recent development of low-gain avalanche detectors (LGADs), based on a sensor design where the multiplication layer and n⁺ contact are continuous, and only the metal layer is patterned. In AC-LGADs, the signal is capacitively coupled from the continuous, resistive n⁺ layer over a dielectric to the metal electrodes. Therefore, the spatial resolution is not only influenced by the electrode pitch, but also the relative size of the metal electrodes. Signal propagation between the metallized areas and charge sharing between electrodes plays a larger role in these detectors than in conventional silicon sensors read out in DC mode. AC-LGADs from two manufacturers were studied in beam tests and with infrared laser scans. The impact of n⁺ layer resistivity and metal electrode pitch on the charge sharing and achievable position resolution is shown. For strips with 100 μm pitch, a resolution of < 6 μm can be reached. The charge sharing between neighboring strips is investigated in more detail, indicating the induction of signal charge and subsequent re-sharing over the n⁺ layer. Furthermore,

Email address: jeott@ucsc.edu (J. Ott)

an approach to identify signal sharing over large distances is presented.

Keywords: ultrafast timing, AC-LGAD, charge sharing, beam test

1 **1. Introduction**

2 Low-gain avalanche diodes (LGADs) are silicon sensors with low to moderate gain on the order
3 of 5-50. LGADs can reach a timing resolution of 18-20 ps and are typically implemented on
4 thin (30-80 μm) active p-type substrates with an n⁺ implant on the readout side, with the gain
5 provided by an additional boron-doped p⁺ multiplication layer below the top electrode.[1, 2, 3] A
6 recent development in ultrafast silicon sensor technology are AC-coupled LGADs, also referred to
7 as Resistive Silicon Detectors (RSD)[4], in which the signal is read out from metal pads on top of
8 a continuous layer of oxide, and the underlying charge-collecting n⁺ implant is contacted only by
9 a separate biasing contact.[1, 5] As the implant and gain layers can be continuous, the challenging
10 termination of the gain layer at the edges of each segment is not required anymore and the inactive
11 regions within the sensor area are eliminated. Furthermore, the spatial resolution of hits in sensors
12 with a continuous implant layer can be improved by analyzing and interpolating the signal sharing
13 between the metal pads.

14 AC-LGAD sensors produced by Hamamatsu P.K. (HPK) and at Brookhaven National Labo-
15 ratory (BNL) were the subject of a test beam campaign at Fermilab[6]. This article focuses on
16 examining various aspects of charge sharing in some of these sensors. First, the impact of n⁺ re-
17 sistivity and strip pitch on the charge sharing, and thus position resolution, is shown. Afterwards,
18 the shape of the maximum signal amplitude profile over the sensor is studied more closely, and a
19 comparison to data obtained in the laboratory with a laser is displayed. Finally, the distinction of
20 charge shared of a real signal from noise by the application of timing cuts is introduced.

21 **2. Experimental**

22 *2.1. Sensors*

23 Two different types of AC-LGAD sensors, a pad sensor produced by HPK and a strip sensor
24 fabricated by BNL, were studied.

25 The BNL2021 AC-LGAD strip sensor [5] has an active thickness of 50 μm , active area of 3 \times
26 3 mm² and ca. 2.5 mm strip length. The strip metal width is kept constant, while the pitch is
27 varied over three groups of strips. A photograph of the sensor, with frames indicating the different
28 pitches, is shown in Fig 1. The strip parameters are listed in Table 1. The n⁺ doping concentration
29 is approximately 100 times less than in a standard DC-LGAD. The sensor was biased at -285 V.

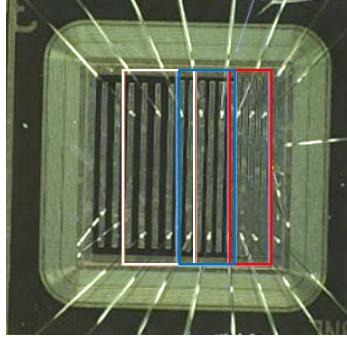


Figure 1: BNL2021 AC-LGAD strip sensor. Channels read out for each pitch are marked with red (Narrow), blue (Medium) and white (Wide).

Table 1: BNL2021 strip parameters.

Label	Narrow	Medium	Wide
Pitch [μm]	100	150	200
Metal width [μm]	80	80	80
Distance between metal edges [μm]	20	70	120

30 The investigated HPK AC-LGADs also has an active thickness of 50 μm and total active area
 31 of $3 \times 3 \text{ mm}^2$, but features a 2×2 pad geometry instead of strips. The pad size is constant with
 32 $500 \times 500 \mu\text{m}^2$, with different interpad gap widths between each of the pads. The channels studied
 33 here had a gap of 50 μm . The n^+ layer resistivity and gain layer doping in the HPK production
 34 is denoted with a letter-number combination; here, sensors B2 and C2 were studied, corresponding
 35 to an n^+ doping concentration of 3.3 and 10 times less than a typical DC-LGAD, respectively.[7]
 36 The sensors were biased at -230 and -180 V.

37 *2.2. Characterization*

38 Sensors were mounted on 16-channel fast analog amplifier boards with 1 GHz bandwidth, de-
 39 signed at Fermilab.

40 At the Fermilab Test Beam Facility [8], the sensors were tested with a 120 GeV proton beam.
 41 The position of the proton tracks was determined with the FTBF silicon beam telescope, consisting
 42 of 3 upstream and 4 downstream layers of pixel detectors, as well as 4 downstream layers of strips,
 43 providing a combined resolution of 5-10 μm . A Photek micro-channel plate detector (MCP-PMT)

44 with a time resolution of ca. 10 ps was used as reference for the proton arrival time. The signals
45 were read out with a Lecroy Waverunner 2 GHz, 10 GS/s oscilloscope.[6]

46 In the laser Transient Current Technique (TCT) measurements, the sensors were excited with a
47 1064 nm infrared (IR) laser. The IR laser has a penetration length in silicon of several mm causing
48 a linearly distributed ionization throughout the bulk. The laser beam was focused by a lens system
49 to a spot size of ca. 20 μm at the focal point, and the laser power was adjusted to mimic the
50 response of the sensor to a minimum-ionizing particle. The analog board was mounted on an X-Y
51 moving stage to enable 2D mapping scans. The sensors were read out by a Lecroy Waverunner
52 oscilloscope (2 GHz, 20 GS/s). For each point in the scan, an average waveform (100 events) was
53 registered for each readout channel to decrease the impact of variations in the laser power as well
54 as noise.

55 **3. Results and Discussion**

56 *3.1. Position resolution*

57 Due to the common resistive n^+ layer, signal sharing between neighboring channels in AC-
58 LGADs can be used to reconstruct the position of a hit to a better precision than in a traditional
59 binary readout, where the position resolution is given by $\text{pitch}/\sqrt{12}$. This method is based on the
60 maximum pulse amplitude (pmax) observed in several channels, and its change with hit position.

61 The pmax fraction of a channel is calculated as:

$$\text{Fraction}_{ch} = \frac{pmax_{ch}}{\sum pmax} \quad (1)$$

62 Here, the position reconstruction is based on two adjacent channels. The pmax fraction as
63 function of position is calculated directly from the experimental data, and is fitted with an error
64 function to replicate the s-shaped curve of the data. Extracting $d(\text{Position})$ and $d(\text{Fraction})$ from
65 this fit, and using the summed pmax and RMS noise of the respective channel in the signal-to-noise
66 ratio, the position resolution is determined as:

$$\sigma_{pos} = \sqrt{2} \frac{d(\text{Position})}{d(\text{Fraction})} / \frac{S}{N} \quad (2)$$

67 In the following, the centered zero position refers to the middle of the gap between strips, and
68 the data ends at the respective center of the two channels used in the pmax evaluation.

69 3.1.1. Impact of n^+ implant in HPK pad sensors

70 In Figure 2 a direct comparison of the charge sharing (in terms of pmax fraction of two neighboring
 71 pads) and the resulting position resolution, determined with Eq.2, is shown for HPK B2 and C2
 72 pad sensors. The slope of the pmax fraction is clearly steeper in the C2 sensor, which features the
 73 higher n^+ resistivity [7]. A similar result was indicated in [6], comparing MPV signal amplitudes.
 74 The reduced charge sharing in the C2 sensor translates into a better position resolution, with 7.5
 75 μm in the center between pads, as opposed to the B2 sensor which reaches 16.5 μm at minimum.
 76 It is visible that the position resolution is not uniform over the examined position: the smaller the
 77 change in pmax fraction, which levels out to almost constant under the metal pad, the worse the
 78 position resolution reconstructed with this method becomes. This implies that very large metal
 79 pads do not provide an improved position resolution over most of the position range. No variation
 80 of the n^+ layer resistivity was available for the BNL2021 strip production. Ongoing and near-future
 81 test beam campaigns including strip sensors from HPK may allow an evaluation of charge sharing
 82 depending on n^+ layer resistivity.

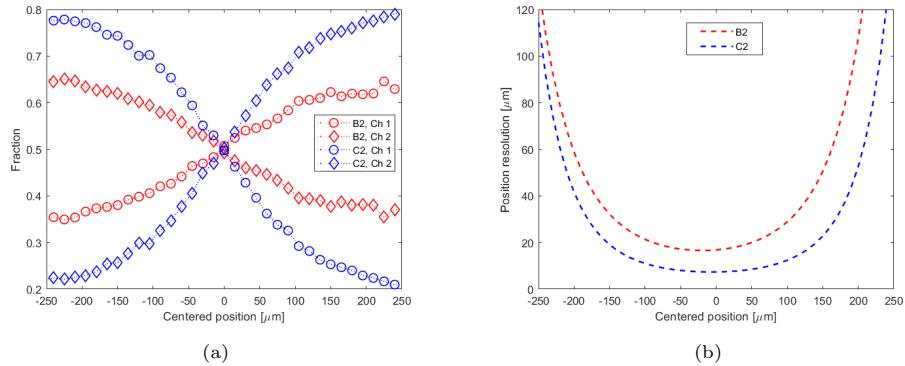


Figure 2: a) pmax fraction and b) position resolution of HPK AC-LGAD pad sensors B2 and C2. Charge sharing is more defined and position resolution lower for the C2 sensor with higher n^+ layer resistivity.

83 3.1.2. Impact of the pitch on charge sharing in strip sensors

84 Figure 3 presents pmax fractions and calculated position resolution as function of position for
 85 the BNL2021 strip sensor and its three different strip pitches.

86 The strip pitch is expected to, and appears to, have a large impact on charge sharing as seen
 87 in the pmax fraction curve. Indeed, between the two strips used for position reconstruction, the
 88 best resolution is determined as ca. 4 μm , 4.5 μm and 5.5 μm for Narrow, Medium and Wide pitch,

89 respectively. At best, this corresponds to $< 1/20$ of the pitch. On the other hand, the position
 90 resolution of ca. 15 μm at the respective strip metal centers is in fact very similar for all three strip
 91 pitches.

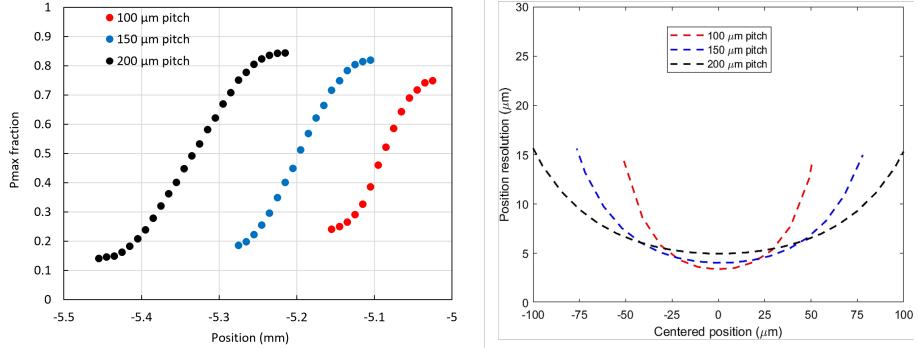


Figure 3: Pmax fraction (left) and position resolution (right) of BNL2021 AC-LGAD strip sensor with different pitches.

92 *3.2. Charge sharing in neighboring strips*

93 Figure 4 shows pmax averages as function of position on the sensor over a group of strips, here
 94 for the Medium pitch. It is noticeable that the profile is not a smooth curve, but exhibits a widening
 95 roughly at the center of the adjacent strips.

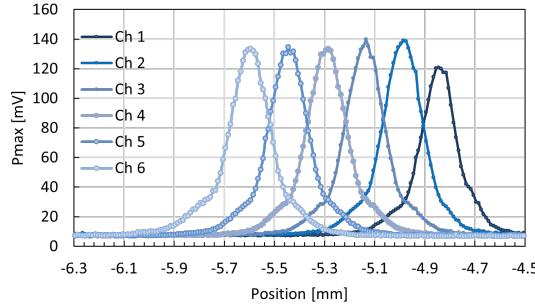


Figure 4: Pmax profiles for several channels of a Medium (150 μm) pitch on the BNL2021 AC-LGAD strip sensor.

96 Figures 5 and 6 show the fitting of the pmax profile as function of position, for the example
 97 case of Ch 4, for different pitches. Fitting the data (after subtraction of a constant floor of ca. 7
 98 mV) with multiple Gaussians reveals that the measured pmax consists of several contributions. For
 99 the Narrow, 100 μm pitch, the overall pmax profile is explained by the contributions from both

100 next neighbors and even second neighbors. Here, the actual sharing extends from the central strip
 101 almost to the far edge of the second neighbor. For Medium, 150 μm , no clear contribution from the
 102 second neighbors can be reliably identified using the available statistics, but the contributions from
 103 the immediate neighbors are larger than for the Wide, 200 μm pitch strips. The localization of the
 104 contributions - i.e., not exhibiting a smooth, single-Gaussian shape for pmax on the strip - indicates
 105 that the charge on the metal is not shared purely by conduction through the resistive n^+ layer from
 106 the channel under investigation, but that the charge generated by an impacting particle induces a
 107 signal on the neighboring strips already during the drift of the carriers in the bulk, which is then
 108 subsequently shared over the n^+ . This needs to be verified by further investigation, including device
 109 simulations, to separate the impact of signal induction and the potential additional impact of the
 110 common n^+ layer especially on charge sharing between strips at longer distances.

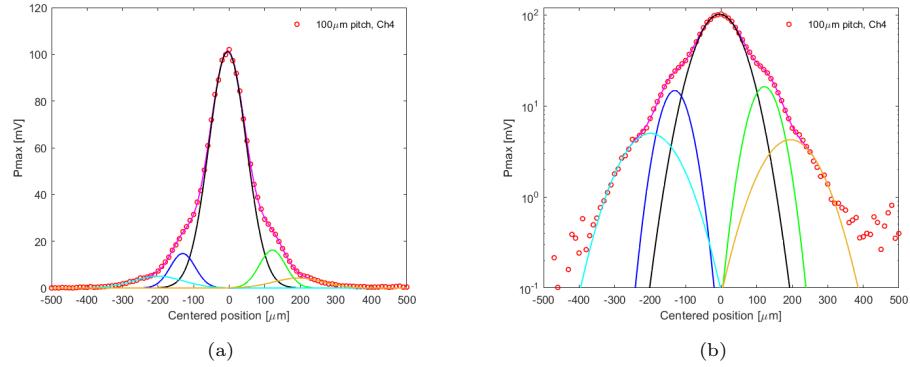


Figure 5: BNL2021 AC-LGAD Narrow (100 μm) pitch strip pmax profile, fitted with multiple Gaussians: a) linear, b) logarithmic y-axis.

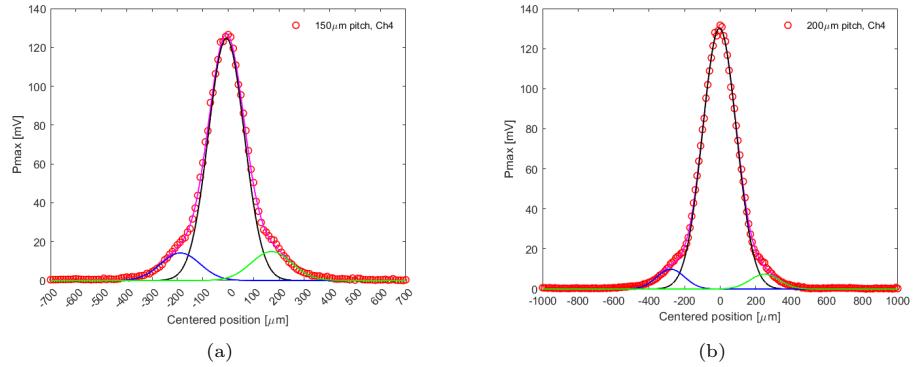


Figure 6: BNL2021 AC-LGAD pmax profile and fits with multiple Gaussians: a) Medium, 150 μm pitch, b) Wide, 200 μm pitch strips.

111 *3.3. Investigation of charge sharing with laser data*

112 It is shown in [9] that the position resolution can be determined by two-channel reconstruction
 113 also from laser data. However, these measurements were conducted on pad sensors with wider
 114 openings in the metal compared to the BNL2021 strip sensor. For an accurate reconstruction, the
 115 laser measurement data in the areas under the metal (where it the signal is zero or near-zero) needs
 116 to be manually excluded from the calculation.

117 When overlaying the laser and beam test data for the same sensor geometry (Fig. 7), normalizing
 118 the pmax profiles to the maxima for their respective pitch, the laser data shows similar trends as
 119 the test beam study. However, in the BNL2021 strip sensor, the gap between strips ranges from 20
 120 μm (Narrow) to 120 μm (Wide) - considering also the width of the laser beam spot, at ca. 15-20
 121 μm at the focal point, it would not be possible to discover the contributions to the pmax profile
 122 from the neighboring strips in this sensor geometry by laser data alone, especially for the Narrow
 123 pitch. Consequently, a thorough understanding of charge sharing in AC-LGAD still relies heavily
 124 on measurements in a test beam.

125 It should be noted that due to the waveform averaging, the noise in the laser data appears to
 126 be zero. In the beam test, signal sharing over very large distances may be hidden in the baseline
 127 offset, which was again subtracted for this comparison.

128 *3.4. Separation of signals and noise by in-time/out-of-time classification*

129 In order to distinguish between charge originating from an actual signal, and the noise or time-
 130 independent pick-up in a channel, the timing of the automatically computed pmax was employed.

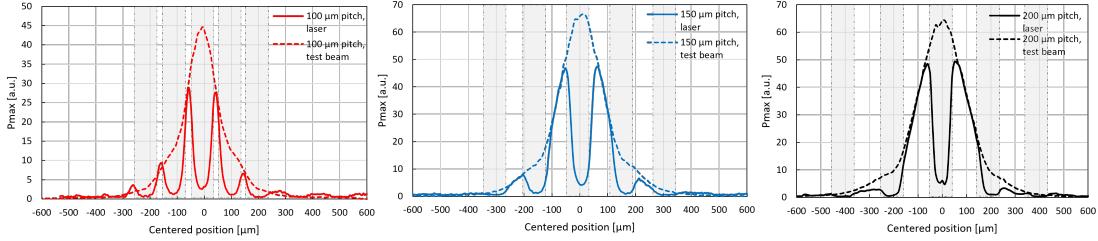


Figure 7: BNL strip pmax profiles, overlay of test beam (dashed line) and laser data (solid line): a) Narrow, 100 μm , b) Medium, 150 μm , c) Wide, 200 μm pitch. Strip metallization is indicated in grey.

131 For this purpose, only events with a large pulse height of 125-135 mV in a central channel (Ch 4
 132 of each pitch) were considered. No cuts were applied on the other channels. The data classified
 133 as "in-time" was as pmax distribution in a 1 ns window around the main signal's typical time
 134 stamp relative to the timing reference. The "out-of-time" data was averaged over three 1 ns time
 135 bins before the signal time window, in order to exclude potentially higher noise of the channel
 136 immediately after the signal.

137 In-time and out-of-time pmax distributions were analysed with Gaussian and Landau fits, as well
 138 as through the median values of the distributions. The analysis method did not have a significant
 139 impact on the result. The Gaussian distribution was chosen as most suitable representation.

140 The respective in-time and out-of-time pmax values (i.e., resulting centroid channels of Gaussian
 141 distribution fit) for different pitches are shown in Fig. 8. This result demonstrates that even 2-3
 142 channels and several hundreds of μm away from the hit and the channel with the largest part of the
 143 signal, a small signal component above the noise level, as determined by in-time/out-of time pmax
 144 values, is observed. For a narrower pitch, more charge is visible on the nearest neighbors. One
 145 hand, this is clear evidence of the charge sharing in AC-LGADs and that even small signals
 146 can be identified far away from the particle track; on the other hand, charge sharing over very
 147 long distances may contribute to elevated background levels for other events, which is detrimental
 148 especially in environments with higher hit rates and luminosities.

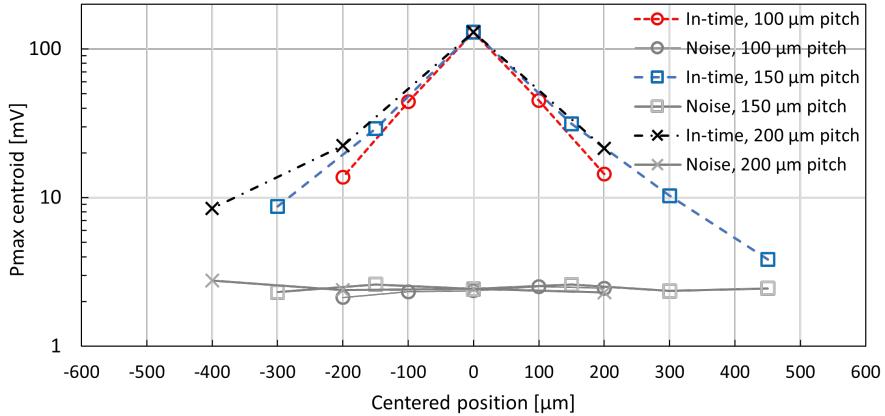


Figure 8: Pmax as function of position, for events with pmax of 125-135 mV on Ch 4. In-time values are indicated in color for different pitches, out-of-time (noise) levels are in grey.

149 4. Summary and conclusions

150 An study of the charge sharing in AC-LGADs from several angles of approach has been shown.
 151 The impact of n^+ layer resistivity and metal electrode pitch on the charge sharing and achievable
 152 position resolution is evident, favoring higher resistivities and to some extent narrower pitches.
 153 In all studied sensors, charge sharing enabled the determination of a significantly better position
 154 resolution than would be the case for a conventional DC-LGAD sensor. The charge sharing between
 155 neighboring strips has been examined in more detail, hinting at the induction of signal charge
 156 on several strips and subsequent re-sharing over the n^+ layer and prompting further thorough
 157 investigation in the future. Furthermore, an investigation of signal sharing over large distances
 158 through pulse height and timing cuts has been initiated.

159 Parameters such as n^+ layer implant concentration or resistivity, dielectric material and thick-
 160 ness vary between manufacturers, and this information is often proprietary. Often, the strip metal
 161 width and strip pitches are not identical either. Therefore it is challenging to directly (quantita-
 162 tively) compare AC-LGAD sensors from different vendors, and the comparison of results remains
 163 on the level of individual cases.

164 While charge sharing between electrodes is one of the fundamental properties of AC-LGADs
 165 and an important motivation for their use in future 4D tracking detectors, distribution of the signal
 166 charge over a wider area than the very next neighbors is not desirable, as this would "blind" large

167 areas of the sensor by a single hit and degrade timing and position resolution. It is observed that
168 for strips with narrow pitch (and consequently, smaller gap in the metal), the second neighbor still
169 contributes to a significant fraction of the signal (ca. 5%). Thus, a pitch of 100 μm is likely too
170 small for most applications, and instead a pitch of at least 150-200 μm would be more suitable.
171 Sparser segmentation of the sensor would also be favorable in terms of a reduced number of readout
172 channels, translating into more relaxed spatial constraints and lower power consumption of the
173 readout electronics. Sensors from a newer production, featuring even wider pitches of 300 and 500
174 μm , are currently under investigation.

175 Acknowledgements

176 We thank the Fermilab accelerator and FTBF personnel for the excellent performance of the
177 accelerator and support of the test beam facility, in particular M. Kiburg, E. Niner and E. Schmidt.
178 We also thank the SiDet department for preparing the readout boards by mounting and wirebonding
179 the AC-LGAD sensors. Finally, we thank L. Uplegger for developing the telescope tracker
180 and a large part of the DAQ system. This study was conducted using the resources of the Fermi
181 National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP
182 User Facility. Fermilab is managed by the Fermi Research Alliance, LLC (FRA), acting under Con-
183 tract No. DE-AC02-07CH11359. This research is partially funded by the U.S.-Japan Science and
184 Technology Cooperation Program in High Energy Physics, through Department of Energy under
185 FWP 20-32 in the USA, and via High Energy Accelerator Research Organization (KEK) in Japan.
186 This work was also supported by the U.S. Department of Energy under grant DE-SC0010107-005;
187 used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science
188 Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704; supported by
189 the Chilean ANID PIA/APOYO AFB180002 and ANID - Millennium Science Initiative Program -
190 ICN2019-044. This research was partially supported by Grant-in-Aid for scientific research on ad-
191 vanced basic research (Grant No. 19H05193, 19H04393, 21H0073 and 21H01099) from the Ministry
192 of Education, Culture, Sports, Science and Technology, of Japan. J. Ott would like to acknowledge
193 funding from the Finnish Cultural Foundation through the Postdoc Pool of Finnish Foundations.

194 References

195 [1] H. F.-W. Sadrozinski, A. Seiden, N. Cartiglia,

196 , Reports on Progress in Physics 81 (2) (2017) 026101. doi:10.1088/1361-6633/aa94d3.

197 URL

198 [2] CMS Collaboration, A MIP Timing Detector for the CMS Phase-2 Upgrade, Tech. Rep. CERN-
199 LHCC-2019-003. CMS-TDR-020, CERN, Geneva (Mar 2019).

200 URL <https://cds.cern.ch/record/2667167>

201 [3] ATLAS Collaboration, Technical Design Report: A High-Granularity Timing Detector for
202 the ATLAS Phase-II Upgrade, Tech. Rep. CERN-LHCC-2020-007. ATLAS-TDR-031, CERN,
203 Geneva (Jun 2020).

204 URL <https://cds.cern.ch/record/2719855>

205 [4] M. Tornago, R. Arcidiacono, N. Cartiglia, M. Costa, M. Ferrero, M. Mandurrino, F. Siviero,
206 V. Sola, A. Staiano, A. Apresyan, K. Di Petrillo, R. Heller, S. Los, G. Borghi, M. Boscardin,
207 G.-F. Dalla Betta, F. Ficarella, L. Pancheri, G. Paternoster, H. Sadrozinski, A. Seiden, Resistive
208 ac-coupled silicon detectors: Principles of operation and first results from a com-
209 bined analysis of beam test and laser data, Nucl. Instrum. Methods. Phys. Res. A 1003.
210 doi:<https://doi.org/10.1016/j.nima.2021.165319>.

211 URL <https://www.sciencedirect.com/science/article/pii/S016890022100303X>

212 [5] G. Giacomini, W. Chen, G. D'Amen, A. Tricoli, Fabrication and performance of AC-
213 coupled LGADs, Journal of Instrumentation 14 (09) (2019) P09004–P09004. doi:10.1088/1748-
214 0221/14/09/p09004.

215 URL <http://dx.doi.org/10.1088/1748-0221/14/09/P09004>

216 [6] R. Heller, C. Madrid *et al.*, Characterization of BNL and HPK AC-LGAD sensors with a 120
217 GeV proton beam (2022). arXiv:2201.07772.

218 URL <https://arxiv.org/abs/2201.07772>

219 [7] K. Nakamura, S. Kita, T. Ueda, K. Hara, H. Suzuki, First Prototype of Finely Seg-
220 mented HPK AC-LGAD Detectors, Proceedings of the 29th International Workshop on Ver-
221 tex Detectors (VERTEX2020)arXiv:<https://journals.jps.jp/doi/pdf/10.7566/JPSCP.34.010016>,
222 doi:10.7566/JPSCP.34.010016.

223 URL <https://journals.jps.jp/doi/abs/10.7566/JPSCP.34.010016>

224 [8] Fermilab Test Beam Facility.

225 URL <https://ftbf.fnal.gov>

226 [9] S. M. Mazza et al, Development of AC-LGADs for large-scale high-precision time and position

227 measurements, IEEE Transactions on Nuclear Science (2022) submitted.