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1. Abstract

Disposal of saltwater co-produced with oil and gas is linked to elevated seismicity in the
Central and Midwest US. There is a concern that these events may lead to widespread damage
and an overall increase in seismicity. Thus an improved understanding of the spatially and
temporally variable deformation and stress field associated with fluid injection operation is
critically important for evaluating time-varying seismic hazards. Despite the improvements in
seismic monitoring capacity and the resulting decrease in the magnitude detection threshold,
estimates of induced earthquake probability remain elusive due to insufficient models incapable
of accounting for the complex physics governing the process of induced seismicity.

The proposed research effort comprehensively analyzes, integrates, and interprets geodetic,
injection and seismic data in the vicinity of the injection sites in Oklahoma to resolve the 4-
dimensional distribution of pore pressure and stress in the shallow crust. This project, in particular,
is focused on exploring the statistical relation between injection operation and increased
earthquake hazard. The amplitude of and the extent to which pore pressure changes are
determined by some factors, in particular, the hydrogeological properties of the rocks, such as
diffusivity. Thus the available deformation data is used to constrain hydrogeological properties of
the medium, to accurately resolve the evolution of crustal stresses due to fluid injection. Having
the time-varying models of stress changes, a statistical framework is implemented to estimate the
time-dependent probability of large earthquakes on the nearby fault systems. These data and
models help to improve seismic hazard estimates and aid in constructing operational-induced
earthquake forecast models. This information can also be integrated into the updated U.S.
National Seismic Hazard Map, which local communities and authorities use in their earthquake
risk estimates and mitigation efforts.
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2. Highlights and Progress Report

Highlight 1. Shirzaei et al. (2019) EPSL. Fluid injection in some cases is accompanied by
surface uplift detectable by using interferometric synthetic aperture radar (InSAR). To
demonstrate that uplift can be measured and used to constrain subsurface mechanical properties
and pore pressure evolution. We applied an advanced multitemporal interferometric algorithm to
35 synthetic aperture radar images acquired by ALOS L-Band satellite over a 4-year period before
the 2012 Timpson earthquake sequence in east Texas, where large volumes of wastewater are
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disposed at depths of ~800 m and ~1800 m. To solve for the hydraulic diffusivity of the injection
layers, we jointly inverted the injected volume and uplift data, considering a poroelastic layered
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Fig 2. (a) Line-of-sight (LOS) velocities and displacements associated with seismicity-
injection activity in San Ardo. (b) comparison against GPS measurements, derived bulk
c) time series of LOS deformation at San Ardo, d) Seismicity (red curve) modulii we
and fluid-injection (blue curve) rates within 20 km of the San Ardo oilfield cénstrained
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values of 5.5 x 107'* m2 and 1.9 x 10713 m2 for these layers, consistent with the permeability
range reported for Rodessa formation and well test values. Hydraulic conductivity determines the
evolution of pore pressure and thus the origin and location of induced seismicity. This study
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highlights the value of geodetic observations to constrain key hydrogeological properties of
injection layers and to monitor the evolution of the subsurface pressure change. For more details,
see fig.1 and [24].

Highlight 2. Goebel and Shirzaei (2021), SRL. We investigated California's induced
seismicity, which is seldom observed, despite widespread injection close to seismically active
faults. To this end, we chose the San Ardo oilfield, which began its operations in the early 1950s.
The largest potentially induced events occurred in 1955 (ML 5.2) and 1985 (Mw 4.5) within ~6
km from the oilfield. We analyzed SAR images acquired by Sentinel-1A/B C-Band satellites
between 2016 and 2020 and found surface deformation of up to 1.5 cm/yr, indicating pressure
imbalance in parts of the oilfield. Fluid injection in San Ardo is concentrated within highly
permeable rocks directly above the granitic basement at a depth of ~800 m. Seismicity
predominantly occurs along basement faults at 6—-13 km depths. Seismicity and wastewater
disposal wells are spatially correlated to the north of the oilfield. Temporal correlations are
observed over more than 40 yr with correlation coefficients of up to 0.71 for seismicity within a 24
km distance from the oilfield. Such large distances have not previously been observed in
California but are similar to the large spatial footprint of injection in Oklahoma. For more details,
see Fig. 2 and [25].

Highlight 3. Zhai, Shirzaei and Manga (2021), PNAS. Although much of the induced
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calculated stress and pressure changes at seismogenic depth using a coupled poroelastic model.
We showed that the widespread deep seismicity is driven by shallow wastewater injection through
the transmission of poroelastic stresses (shallow seismicity may continue to arise from pore
pressure increases). Comparing the poroelastic responses from injection and extraction
operations, we find that the basement stress is most sensitive to shallow reservoir hydrogeological
parameters, particularly hydraulic diffusivity. For more details, see Fig. 3 and [5].
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Highlight 4. Zhai, Shirzaei et al. (2019), PNAS. We have developed the first physics-based
induced earthquake forecasting framework for evaluating seismic hazard due to fluid injection,
considering both pore pressure and poroelastic stresses. Applying this model to complex settings
like Oklahoma, we showed that the regional induced earthquake timing and magnitude are
controlled by the process of fluid diffusion in a poroelastic medium, and thus seismicity can be
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successfully forecasted using a rate-and-state earthquake nucleation model. We found that pore
pressure diffusion controls the induced earthquakes in Oklahoma. However, its impact is
enhanced by poroelastic effects. This finding has significant implications for induced earthquake-
forecasting efforts by integrating the physics of fluid diffusion and earthquake nucleation. For more
details, see Fig. 4 and [7].
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Highlight 5. Shirzaei et
al. (2022) in prep. The fluid
injection can not only induce
earthquakes but also
suppress large earthquakes
or at least delay their
occurrence, thereby
mitigating seismic hazards.
The Parkfield segment of the
San Andreas fault has
produced fairly regular
earthquakes with similar
magnitudes (m, > 5.5) and
near-identical waveforms
between 1857 and 1966.
This observation has led
scientists to predict that no
later than 1993, a similar
event would likely strike the
area. However, the next
event of comparable size did

not occur until September 28, 2004, with a delay of ~11 years. Several mechanisms have been
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suggested to explain this delay, including viscoelastic relaxation of the crust following the 1857
Fort Tejon earthquake, stress shadowing due to the 1983 Coalinga-Nufiez earthquakes, and
stress release through slow slip events [26]. None of these mechanisms can explain the entire
delay. In our ongoing research, we created models that suggest a link between the delayed
occurrence of the 2004 Parkfield event and wastewater injection at the San Ardo oilfield, 22 km
west of the San Andreas Fault. Our coupled poroelastic model indicated that San Ardo
wastewater injection had imparted a Coulomb stress change of -1.5 KPa/yr on the Parkfield
segment of the San Andreas Fault, causing an 8-13 year clock delay.
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