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Introduction

e Criticality benchmark calculations are highly sensitive to cross section fluctuations (usually In
the keV neutron energy region for fissile actinides)

- Average resonance parameters and related probability tables are commonly used to generate cross section
fluctuations

* Measured cross sections possesse a rapidly varying resonant behavior depending on the inci-
dent neutron energy

- At low energies, the resonance-like structure from the quasi-bound state of the compound nucleus can be
measured fairly easy since the experimental resolution is higher than the spacing of the level states

- However, as the energy increases, the number of levels is so large that only fluctuations related to very closely-
spaced levels can be measured

* These data are generally evaluated with a relatively simple method (R-matrix theory)

* For resonance that cannot be resolved experimentally, the cross section fluctuations are usually
described in terms of S-matrix elements calculated from average quantities obtained from R-
matrix analyses
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Motivation and Overarching Goals

« Evaluated data files do not entirely describe the cross section fluctuations available in measured
data

- This information could improve the performance in benchmark calculations

« High-fidelity description of measured data in neutron energy regions where fluctuations are
Important and relevant for applications

 Fluctuating cross sections evaluated within a consistent theoretical formalism

- The energy averaged cross sections are defined in terms of the average resonance parameters simply because
the Single Level Breit Wigner approximation is used

* Inclusion of fluctuating cross section aiming to limit the size of the evaluated data files as well
as maintaining performance in benchmark calculations
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Experimental Data
Fluctuations in Measured Cross Section (n+*°Pu)
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Experimental Data
Fluctuations in Measured Cross Section (n+23°Pu)
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Experimental Data
Fluctuations in Measured Cross Section (n+23°Pu)
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Experimental Data
Fluctuations in Measured Cross Section (n+23°Pu)
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Experimental Data
Fluctuations in Measured Cross Section (n+23°Pu)
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Experimental Data
Fluctuations in Measured Cross Section (n+23°Pu)
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Experimental Data
Fluctuations in Measured Cross Section (n+23°Pu)
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Theory: S-matrix Elements
Reich-Moore Representation of the Reduced R-matrix Function

All physical quantities defined by v, (reduced-width amplitudes) and E; (resonance energies)

YAcYAd
R./(E) = (1)

and the S-matrix elements are given by

See(E) = ¢ ") /P{[1-R(L—B)] " [1 = R(L" = B) ]}/ Por, (2)

where ¢. is the hard-sphere phase-shift and L., = (S.+P.)d.~ is related to S. (hard-sphere shift
factor) and P. (hard-sphere penetrability) for chosen B. (boundary parameters)

The cross section for the entrance channel ¢ (neutron) and exit channel ¢’ (neutron, v, ...) is
T
_zgc | 600’ — Scc’ |2

O/ (E) — k

(3)

where g. Is the statistical spin factor
g,()mc RIDGE
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Link S-matrix Function to Average Total Cross Sections

The total cross section averaged over the energy interval I can be calculated from the average

S-matrix elements S,.. with a Lorentzian weight function
oo I/m
S, (E)) = dE’ S..(E' 4

Since there are no poles above the real axis due to the causality of the S matrix

(See(E)) = Sce(E +1) ()
A common approximation is to average only the R-matrix function
<SCC(E)> ~ 6_21%\/]70[1 o <RCC> (Lc _BC)]_IU B <RCC> (Li _BC)]\/}TCa (6)

where (R..(E)) = R..(E +d) and the energy dependence of ¢.,P. and L. is neglected
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Extrapolating Energy Levels and Resonance Amplitudes
Statistics from Resonance Parameters below 2.5 keV
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239py Total Cross Section in the Resonance Region
Fit to Measured Data
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239py Total Cross Section in the Resonance Region
Fit to Measured Data
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Link R-matrix to Optical Model Calculations
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S-matrix Elements from Extrapolated Populations
Real and Imaginary Components (J=0" Population)
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S-matrix Elements from Extrapolated Populations
Real and Imaginary Components (J=0" Population)
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S-matrix Elements from Extrapolated Populations
Real and Imaginary Components (J=0" Population)
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S-matrix Elements from Extrapolated Populations
Real and Imaginary Components (J=0" Population)
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S-matrix Elements from Extrapolated Populations
Real and Imaginary Components (J=1" Population)
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S-matrix Elements from Extrapolated Populations
Real and Imaginary Components (J=1" Population)
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S-matrix Elements from Extrapolated Populations
Real and Imaginary Components (J=1" Population)
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S-matrix Elements from Extrapolated Populations
Real and Imaginary Components (J=1" Population)
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239py Energy-average Total Cross Section
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239py Energy-average Total Cross Section
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239py Energy-average Total Cross Section
10+2

(o) (250 eV) ——
U'tot(E —+ ll)

I e 1 L AR

Total cross section (b)
[
o
=

10*0 | | | | - I10+1
Neutron incident energy(keV)

OAK RIDGE

Mational T.:hnm'rrn'_\-'

27




239py Energy-average Total Cross Section
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Resolving Key Issues in the Intermediate Structure Region

e The intermediate structure observed in the measured data can be described by including in the
evaluated data files average cross sections calculated from the average S-matrix function

« With a proper energy grid the average cross sections can be broadened and calculated at the
desired temperature

* In the case of selected applications for which the temperature dependence is particularly im-
portant and sensitive to the fluctuations, the resonance parameters could be used instead of
the average cross sections

» Theoretical development to rigorously quantify the shape and compound component of the
cross sections might be still needed
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Coupling the Thermal and RRR Region to New PFNS

» Background: The recently released ENDF/B-VIII.0 was based on evaluations performed within the international collaboration CIELO
aiming to improve nuclei of fundamental importance such as 23°U and 23°Pu. The 23°U R-matrix evaluation (ORNL) was updated with
the latest thermal constants and prompt fission neutron spectra (PNFS) improving the benchmark performance of the thermal solutions.
However, for 23%Pu evaluation the focus was in the high energy range and the prediction on the thermal solution benchmarks was
underpredicted

* Results: Within IAEA coordinated research activities, newly evaluated PFNS showed a reduction of 1.8% on the average energy :
PFNS((Eav)=2.08 MeV). This changes were combined to recent work on 23°Pu R-matrix evaluation (ORNL) aimed to update the thermal
constants. This led to improved benchmark performance in the thermal solutions
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Conclusion and Remarks

» A procedure to accurately model the measured cross section fluctuations for inclusion into eval-
uated nuclear data files was developed and tested on 2*°Pu total cross sections

* The procedure consisted on defining population of levels as well as related amplitudes extrap-
olated from the systematics of the resonance parameters in the resolved resonance region

By using realistic population of extrapolated levels, the fit of measured total cross section pro-
duced a continuous S-matrix function S(E) in Reich-Moore approximation

 The S-matrix function averaged over a suitable energy interval was used to obtain averaged
Cross sections consistent with the measured data

* In the thermal energy region preliminary results coupling the RRR and the new PFNS evaluation
were generated
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