

LA-UR-22-22594

Accepted Manuscript

Accumulative Roll Bonding of Alloy 2205 Duplex Steel and the Accompanying Impacts on Microstructure, Texture, and Mechanical Properties

Carpenter, John S.

Savage, Daniel Jonathan

Miller, Cody

McCabe, Rodney James

Zheng, Shijian

Coughlin, Daniel Robert

Vogel, Sven C.

Provided by the author(s) and the Los Alamos National Laboratory (2023-01-11).

To be published in: Metallurgical and Materials Transactions A

DOI to publisher's version: 10.1007/s11661-022-06897-7

Permalink to record:

<http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-22-22594>

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **Accumulative Roll Bonding of Alloy 2205 Duplex Steel and the Accompanying Impacts on**
2 **Microstructure, Texture, and Mechanical Properties**

3 JS Carpenter^{1*}, DJ Savage¹, CA Miller¹, RJ McCabe¹, SJ Zheng², DR Coughlin³, SC Vogel¹
4

5 ¹*Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America 87545*

6 ²*Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School*
7 *of Materials Science and Engineering, Hebei University of Technology, Tianjin, China, 300130*

8 ³*United States Steel Corporation, Pittsburgh, Pennsylvania, United States of America 15219*

9 * Corresponding author (Email: carpenter@lanl.gov)

10 *Keywords: Accumulative Roll Bonding, Duplex Steel, Alloy 2205, Nanograined*

11 **ABSTRACT**

12 The mechanical and microstructural evolution of Alloy 2205 during severe plastic deformation is
13 examined in this study. A combination of accumulative roll bonding (ARB) and cold-rolling
14 results in the successful formation of a nanograined dual-phase microstructure of austenite and
15 ferrite with some transformed martensite. Severe deformation to cumulative reductions of 80.5,
16 92.5, 95, and 97% were performed. Microscopy indicates that grain dimensions in the sheet
17 normal direction is less than 100 nm for reductions $\geq 92.5\%$. Shear banding is observed at
18 reductions $\geq 95\%$ while twinning is only observed at reductions $< 92.5\%$. Neutron diffraction
19 measurements indicated the presence of martensite for reductions $\geq 95\%$ at $\sim 8\%$ volume
20 fraction. Taken in conjunction, it appears that during initial ARB processing, both slip and
21 twinning are active plastic mechanisms. As twinning becomes exhausted, martensitic
22 transformation, slip, and intermittent shear banding account for the active plasticity mechanisms.
23 Material hardness saturates at 92.5% reduction, with a maximum hardness of 45 HRC. Sub-sized
24 tensile testing confirms this approximate hardness with measurements indicating a UTS of ~ 1440
25 MPa. Texture analysis of crystal orientation distributions in the plate normal direction suggest
26 an approximate Kurdjumov-Sachs orientation relationship at all reductions above 80% indicating
27 stability of the orientation relationship at high strains. The intragranular structure develops a fine
28 scale sub-grain content with increasing deformation, resulting in a continual evolution of texture
29 up to and including 97% reduction. The final structure presents strong components of Goss and
30 rotated cube texture in both the austenite and ferrite. This body of work aims to compare
31 accumulative roll bonding of an industrially relevant FCC/BCC system (Alloy 2205) to historical
32 model FCC/BCC systems such as Cu/Nb.

33 **1.0 INTRODUCTION**

34 Over the past several decades, exploration of nanoscale metallic composites fabricated
35 via vapor deposition and severe plastic deformation has been undertaken. Attention was drawn
36 to these materials initially in the 1970s-90s when several publications pointed towards the high
37 strength that could be obtained [1-10]. Recent studies have noted advantages in properties such
38 as high thermal stability [11-14] and irradiation resistance [15-17]. These properties were found
39 to be associated with the close proximity of the interphase interfaces as well as their atomic
40 structure which were shown to provide constraints on damage accumulation in these materials
41 [18-21].

44 Bulk processing through accumulative roll bonding (ARB) of many composite systems
45 [22-27] is one synthesis route that has been well-studied recently. The ARB process can be used
46 to bond stacks of metal materials and, when repeated, can lead to large strain and reduced layer
47 thickness [28]. The studies largely focus on model systems that can incorporate highly pure
48 materials (Cu, Nb, Zr, V, Ta, etc.) that are expensive. Starting with sheets of highly pure,
49 immiscible material and careful processing ensure that a layered structure is maintained so that
50 the role of interfaces and microstructure on the achievement of these desirable properties can be
51 studied. Cu/Nb as an example has been very well-studied [4-6, 9, 11-12] and will form the basis
52 for some comparisons later in this paper.

53 In this study, commercially available duplex stainless steel (DSS) 2205 was roll bonded
54 to create a composite type architecture using the stabilized FCC austenite and BCC ferrite
55 components. Duplex steels, or dual-phase steels, have been shown to exhibit a wide array of
56 characteristics that are desirable for applications requiring high strength or superior corrosion
57 resistance [29]. In recent years, a considerable amount of research has looked into expanding
58 these alloys for use in more demanding environments [30-33]. The intent of the roll bonding in
59 this study was to identify whether the interfacial structure development and mechanical
60 properties in this common material with an irregular layer pattern would compare favorably with
61 results found in model systems using high purity materials. The duplex steel begins with a
62 material that has BCC islands within a FCC matrix. After processing to large strains, these
63 islands are stretched and the material creates a pseudo-layered structure where the distance
64 between interphase interfaces in the rolling direction and transverse direction are many orders of
65 magnitude larger than the distance between interphase interfaces in the normal direction. This
66 layer-type structure creates a reasonable comparison with previous studies on nanolamellar
67 metallic composites such as Cu/Nb [4-6, 9, 11-12].

68 It should be noted that other studies have explored duplex steels under high strains.
69 Kiechel et. al [34] examined the texture evolution of duplex steels as a function of cold- and hot-
70 rolling (up to 90%). This alloy behaved as one would expect for a single-phase microstructure,
71 with components of α - and γ -fibre as well rotated cube texture in the ferrite, and a mixed
72 brass/goss texture in the austenite [34]. However, similar work by Ryś et. al have shown no
73 evidence of γ -fibre in ferrite up to 90% cold rolling reduction, and Hamada et. al have shown
74 only the brass component within the austenite (up to 65% reduction) [35-37]. Along with these
75 differences in texture evolution, several authors have seen corresponding differences in
76 microstructural evolution and mechanical properties. Macroscopic shear bands across the
77 ferrite/austenite interphase interface have been observed [35-36], austenite transformation into
78 stress-induced martensite [38-40], austenite twinning, shear band formation and phase boundary
79 sliding [39] have all been observed in nanolaminate Alloy 2205. Additionally, Akdut et. al
80 reported no saturation of mechanical properties, up to and including 90% cumulative reduction
81 [39]. The most recent work by Zielińska-Lipiec et. al presents the most representative evaluation
82 of nanograined Alloy 2205 [31]. In this work, a common band-like structure was observed with
83 no evidence of macroscopic shear banding even at high rolling reductions. Deformation induced
84 austenite to ferrite transformations were observed, with dynamic recovery occurring in the
85 ferrite. The austenite phase presented a Brass texture while the ferrite developed α - and γ -fibre
86 components.

87 It is clear that DSS responds to severe plastic deformation in a variety of ways that are
88 highly dependent on starting chemistry, rolling schedule, temperature, and lubrication. This
89 paper does not aim to define this processing space. Rather the authors show results of using a

90 dual phase material as a means to reduce the number of cycles needed to achieve FCC/BCC
91 interfaces in nanolamellar composites. The use of accumulative roll bonding to quickly achieve
92 reductions above 90% and the accompanying results have notably not been reported (to the
93 authors knowledge). As a result, this work adds to both the body of literature concerning
94 nanolamellar composites and that concerning severe plastic deformation of DSS.

95 2.0 EXPERIMENTAL METHODS

96 A nanolaminate structure of Alloy 2205, that began with equal proportions of austenite
97 (51% volume fraction) and ferrite (49% volume fraction), was produced by accumulative roll
98 bonding (ARB) and subsequent cold rolling at room temperature. The starting material consisted
99 of a single plate of Alloy 2205 (4.76mm thick) purchased from Langley Alloys (Vancouver,
100 WA, USA), with the composition listed in Table 1. Volume fraction of the austenite and ferrite
101 phases in the starting material was confirmed via electron back scatter diffraction (EBSD) and
102 neutron diffraction (NeD).

103 Table 1: Compositions of Alloy 2205 duplex steel, as defined by Langley Alloys.

Fe	C	Cr	Ni	Mo	N	Si	P	S	
at. %	bal.	<0.03	22-23	4.5-6.5	3.0-3.5	0.14-0.20	0.2-0.7	<0.03	<0.02

104
105 The material in this study began as 4.76 mm thick plate and is referred to as the 0% reduction
106 condition. In order to promote bonding, a 5 min ultrasonic acetone bath and wire-brushing was
107 performed prior to each roll bonding step. To create the initial bonded plate, two sections of
108 plate material were stacked and given an 80.5% reduction in a single pass on a two-high rolling
109 mill with 46 cm diameter rolls rotating at 38 cm/sec (Waterbury-Farrel, Brampton, Ontario,
110 Canada), resulting in a two-layer (L=2) laminate structure. Previous work in accumulative roll
111 bonding (ARB) has shown that a minimum of 50% rolling reduction is required to fully bond
112 bulk material layers and was therefore the desired level of deformation during ARB [22]. ARB
113 steps, after the noted surface preparation, was then used to produce the 80.5% and 92.5%
114 reduced material. From here, sections of material were given additional cold-reductions (CR)
115 resulting in 95% and 97% cumulative strain conditions, each with 8-layers (L=8). No heat
116 treatments were applied at any point during the process. The change from ARB to cold rolling
117 was due to the hardness of the material. In ARB ~50% reductions in a single pass are required to
118 achieve bonding. With hard material this can damage the rolls. Due to the hardness observed, a
119 decision was made to change to cold rolling to achieve finer length scales.

120 Sample preparation for EBSD consisted of mounting samples in two-part epoxy with the
121 section plane oriented in the transverse direction (TD) or perpendicular to both ND and RD,
122 grinding on SiC papers to 1200 grit, polishing to a 0.05 μm finish using colloidal alumina,
123 followed by vibratory polishing with a 0.05 μm colloidal silica suspension. Preparation for
124 S/TEM examination similarly consisted of grinding on SiC papers to reveal the TD to ~100 μm
125 thick with a 600 grit finish, punching into 3 mm discs, and twin-jet electropolishing in a 10%
126 perchloric, 45% acetic, 45% methanol (by volume) electrolyte at 45 mA, 15 V, -30 °C to electron
127 transparency.

128 EBSD was performed on a FEI Inspect (FEI, Hillsboro, OR, USA) scanning electron
129 microscope (SEM) using a TSL/EDAX Hikari EBSD camera and software (TSL, Draper, UT,
130 USA) at 20 kV, a 50 μm objective aperture, and a 0.5 μm step size. Data cleanup consisted of a
131 neighbor confidence index correlation (NCIC) cleanup with a minimum CI of 0.3, followed by a
132 Neighboring Phase Correlation, with less than 15% of the total dataset being adjusted. S/TEM

133 examination was conducted on a FEI Tecnai TF30 at 300 kV and FEI Titan image corrected 80-
134 300 at 300 kV (FEI, Hillsboro, OR, USA).

135 NeD was conducted at the Los Alamos Neutron Science Center (LANSCE) using the
136 HIPPO diffractometer [41-42]. Sample preparation consisted of cutting a ~ 1 cm² coupon from
137 the rolled material at each reduction level to allow the ~ 10 mm diameter NeD spot size to
138 provide a bulk measurement for each deformation step. The volume from the edges deformed
139 during cutting is estimated to be less than 5% and deemed negligible. Diffraction data were
140 acquired from five groups of detector panels at nominal diffraction angles of $2\theta = 144^\circ, 120^\circ,$
141 $90^\circ, 60^\circ$, and 39° . To increase pole figure coverage, measurements were taken for different
142 rotations around the sample holder axis by $0^\circ, 67.5^\circ$ and 90° with respect to the beam. A
143 Rietveld refinement employing the MAUD program [43] was performed against the resulting
144 135 neutron diffraction patterns per sample using the E-WIMV method with a 7.5° resolution in
145 order to simultaneously fit all of the diffraction data and determine the orientation distribution
146 function (ODF) of each sample [42,44]. In addition, the anisotropic crystallite size and broaden
147 model of POPA [53] with an L_{max} of 6 was used to capture the (hkl) specific peak broadening.
148 The MTEX texture analysis software was used for interpretation of the ODFs presented in this
149 paper [44-45]. Adjustments for minor sample misalignments due to mounting inaccuracies were
150 made using the MTEX orthorhombic symmetry search function *centerSpecimen* which aligns the
151 material frame with the intrinsic orthorhombic symmetry of the ODF that arises during the
152 rolling process. This procedure virtually aligns the sample frames during the data analysis
153 enabling reliable comparisons between samples.

154 The evolution of mechanical properties was examined primarily using Rockwell hardness
155 indentation on a Buehler Macromet 3 (Buehler, Lake Bluff, Illinois, USA). Approximate values
156 of ultimate tensile strength (UTS) were calculated using an ASTM standard conversion table
157 [68] and were verified for the 92.5% reduction condition using a conventional INSTRON 1125
158 screw-driven load frame (INSTRON, Norwood, MA, USA) at a strain rate of $10\text{E-}3\text{ s}^{-1}$. The mini
159 tensile geometry used in this study can be seen in Figure 1.

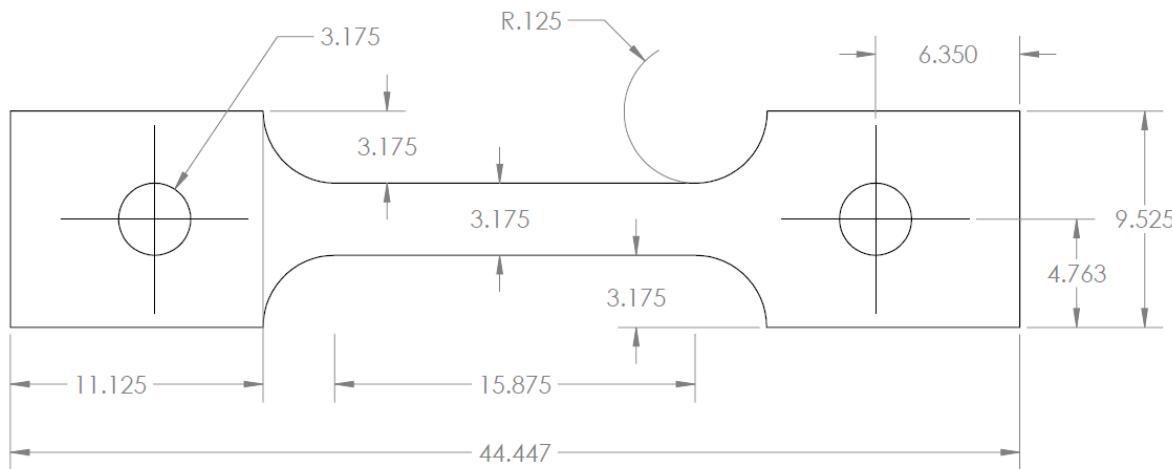
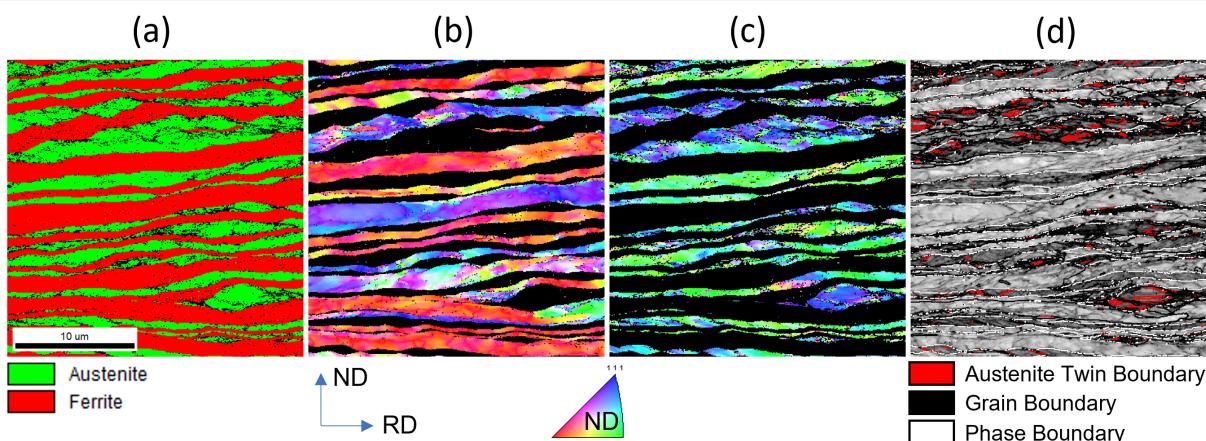


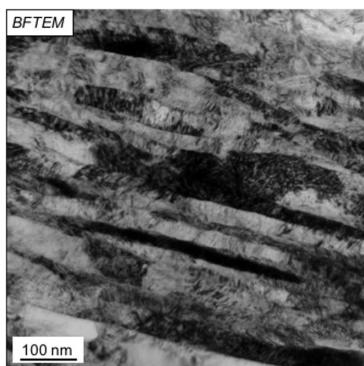
Figure 1: Specifications for the mini tensile specimens tested in this study. Units are in mm.

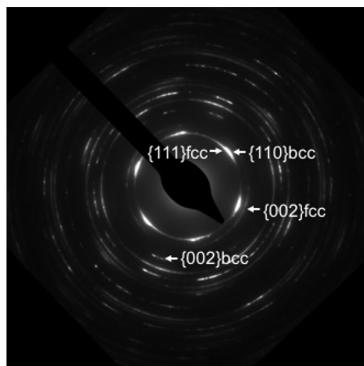

160

3.0 RESULTS

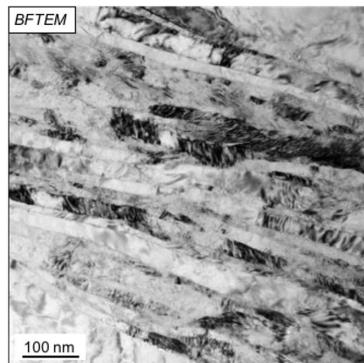
161

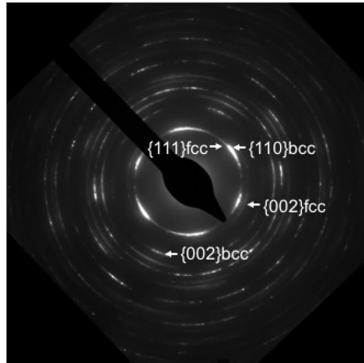
3.1 Grain Structure


162 The as-received plate material of Alloy 2205 exhibited a ferrite/austenite microstructure,
163 as determined by High Pressure Preferred Orientation (HIPPO) neutron diffraction (NeD). EBSD
164 results from the 80.5% reduction material (Figure 2) show a highly banded two-phase
165 microstructure, often consisting of a single grain through individual layers. At this level of
166 reduction, the layer/grain thickness is approximately 2 μm with alternating layers of austenite
167 and ferrite. A high density of coincident site lattice (CSL) $\Sigma 3$ boundaries were observed in the
168 austenite phase, consistent with deformation twinning observed by other authors [46].
169 Conversely, no special boundaries were observed in the ferrite structure. It should be noted that
170 no macroscopic or microscopic shear bands were observed during ARB processing but were later
171 observed during traditional cold rolling beyond 92.5% reduction. Similarly, the twinning seen in
172 Figure 2 was not observed during TEM investigations at reductions higher than 80.5%.

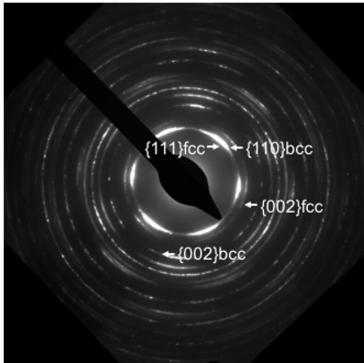

174
175 Figure 2: EBSD along the transverse direction for 80.5% reduction of Alloy 2205 showing (a)
176 phase fraction map identifying austenite and ferrite, (b) inverse pole figure (IPF) map of ferrite,
177 (c) IPF map of austenite and (d) an image quality map identifying twin boundaries in the
178 austenite phase.

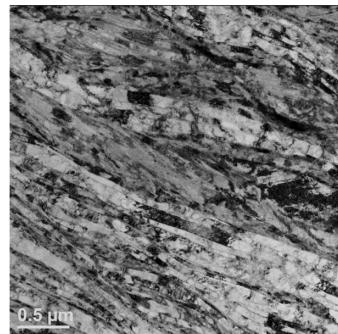
179 Bright Field TEM (BFTEM) examination of the (a-b) 92.5, (c-d) 95, and (e-f) 97% reduction
180 materials are shown below in Figure 3. In all cases the spot diffraction patterns are consistent with
181 an approximate Kurdjumov-Sachs (KS) orientation relationship between the austenite and ferrite.
182 With rare exception, the morphology is highly layered in both EBSD and TEM studies and
183 exhibits grains of austenite or ferrite with some dislocation content. This is indicated by both
184 the contrast in BFTEM micrographs as well as the streaking in selected area electron diffraction
185 (SAED) images. The TEM makes it clear that the grains are layer-like features elongated in the
186 rolling direction and transverse direction. However, the small grain size makes it difficult to
187 quantify how often a layer of austenite or ferrite consists of a single grain. This is why Table 2
188 reports results in terms of grain size as opposed to layer thickness. Note that evidence of
189 localized shear banding was observed at 95 and 97.5% reduction. Observed areas of shear
190 banding showed much finer grain sizes than the majority of grains observed in TEM. Reporting
191 an approximate grain size in Table 2 is meant to convey the heterogeneity of the microstructure
192 at these length scales. While the dislocation substructure was not identified through microscopy
193 as a martensitic morphology, it is noted that the neutron diffraction results show an increase in


194 ferrite volume fraction, indicating the presence of martensite. As was clearly shown by Rys et
195 al., [51], martensite should form within the austenite with a KS relationship and thus a similar
196 orientation to the ferrite. Differentiating between ferrite and martensite is challenging within
197 diffraction and the development of martensite would be observed as an increase in ferrite volume
198 fraction via bulk neutron diffraction measurements. However, due to increasing defect density
199 with reduction, the isotropic thermal displacement (which is enhanced by defect density and
200 must be refined [54]), the size-strain model, and texture contributions become increasingly
201 correlated and the global quality metric response surface (i.e. Rietveld fit quality as a function of
202 phase fractions) becomes flat. As a result, certainty in phase fraction decreases with reduction
203 (see Appendix A and Section 4 for further discussion). In Table 2, best fit Rietveld estimates
204 suggest an increase in ferrite of ~8% at 97% reduction and is consistent with martensitic
205 transformation. This indicates that much of the contrast observed in BFTEM is likely due to
206 dislocation content, but that some could be due to martensitic transformation. No obvious
207 regions of martensite in austenite layers were observed during TEM, which also suggests low
208 volume fractions of martensite.


(a)


(b)


(c)


(d)

(e)

(f)

(g)

210 Figure 3. BFTEM images and SAED patterns ($B = [011]_{\text{fcc}} \parallel [111]_{\text{bcc}}$) of Alloy 2205, showing
211 the substructure evolution and a preference for near Kurdjumov-Sachs orientation relationships
212 after (a-b) 92.5%, (c-d) 95%, and (e-f) 97% reduction. The viewing direction for the images is
213 the the TD with the sectioned plane containing the sheet normal (ND) and rolling directions
214 (RD). (g) Evidence of shear banding at 95% reduction.
215

216 **3.2 Mechanical Properties**

217 Rockwell hardness (HRC) shows a significant increase in hardness up to 92.5%
218 reduction, after which no increase in hardness and by extensions UTS is observed. To verify the
219 hardness estimates, a sample from the 92.5% material was taken for tensile testing, and the
220 results (Figure 4) closely correlate with the hardness estimated from UTS. Note that Figure 4
221 shows that the material exhibits high tensile strength (~1439 MPa) with reasonable ductility.
222 Furthermore, the hardness value obtained from the 92.5% is consistent with results from other
223 authors that reported between 42 and 47 HRC for rolling reductions between 85% and 96.6%,
224 despite widely varying quantities of reported transformed martensite [38,52]. A summary of the
225 mechanical properties for the various rolling reductions can be found in Table 2.

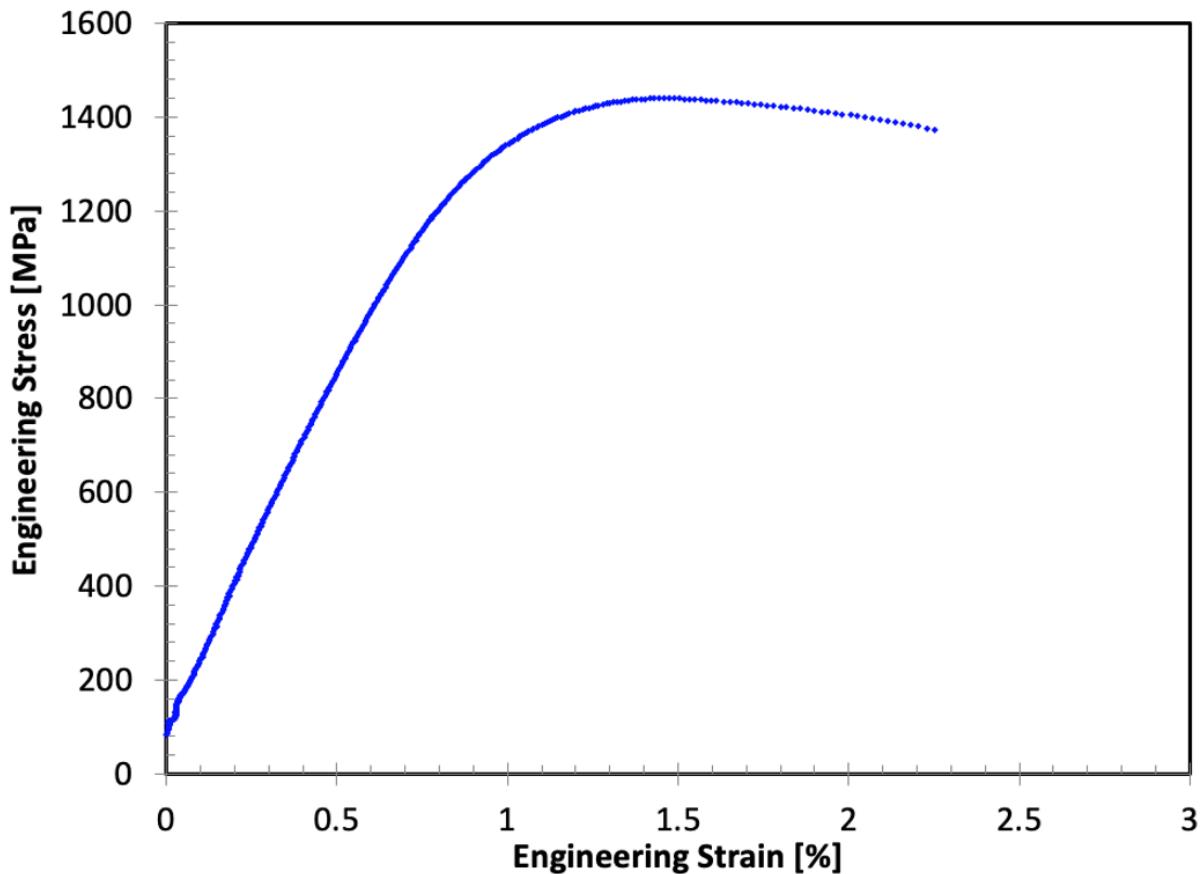


Figure 4: Tensile stress-strain curve of the 92.5% reduction material. Rockwell C predicts an approximate UTS of 1480 MPa [68], and the experimentally observed value is 1439 MPa.

226 Table 2: Summary of mechanical properties for Alloy 2205 as a function of cold reduction.

% Reduction	Grain Thickness (h)	HRC	UTS-HRC# (MPa)	UTS (MPa)	% Ferrite/Martensite*	# ARB Layers
0	---	20	760	---	49	1
80.5	1-2 μm	40	1250	---	49	2
92.5	100 nm	45	1480	1439	50	8
95	< 100 nm	45	1480	---	52	8
97	< 100 nm	44	1430	---	57	8

*Percent ferrite as determined by neutron diffraction and analysis in Appendix 1. # [68]

227 3.3 Texture

228 This section details the various texture components within the austenite and ferrite phases
229 as determined by HIPPO neutron diffraction. As seen in Figure 5, the ferrite phase of this dual-
230 phase structure in the as-received condition (0%) contains a strong rotated cube component
231 (10.45 times random), along with a very minor Goss component. With increasing deformation,
232 we see the development of α - and γ -fiber texture fibers and with continued intensities at the
233 rotated cube orientation, but no presence of a Goss component. The austenite phase in the as-
234 received (0%) condition exhibits weak textures with small amounts of bias (~2 times random)
235 towards cube, copper, and brass textures. With increasing deformation, we see the disappearance
236 of the cube, S, Dillamore, and copper components, transitioning into a mixed brass and Goss
237 texture.

238

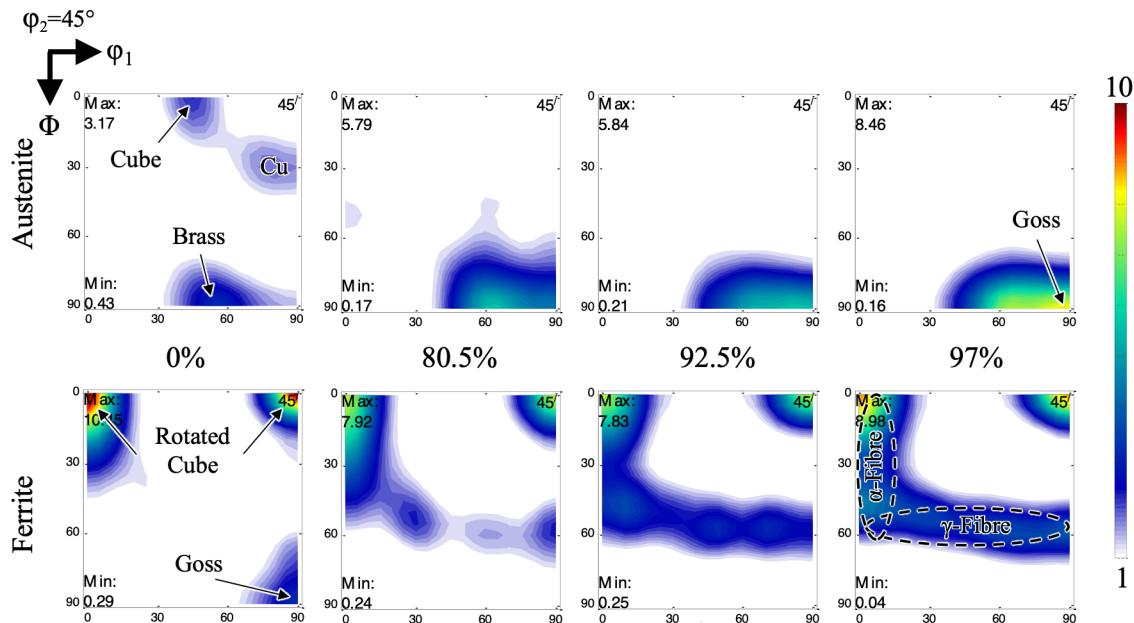
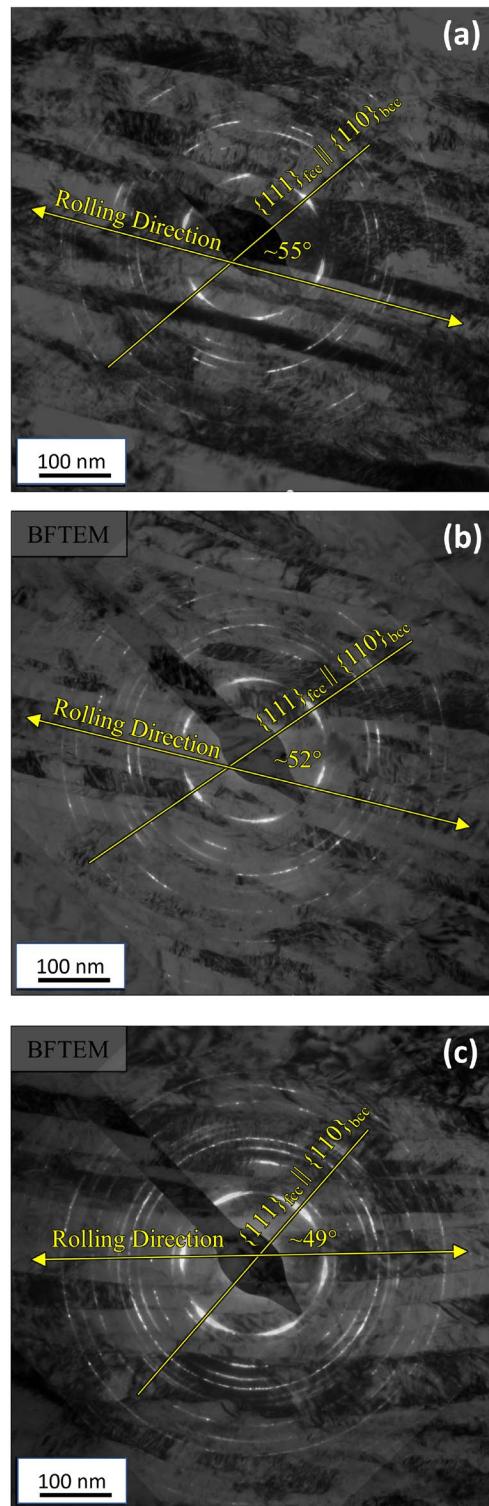
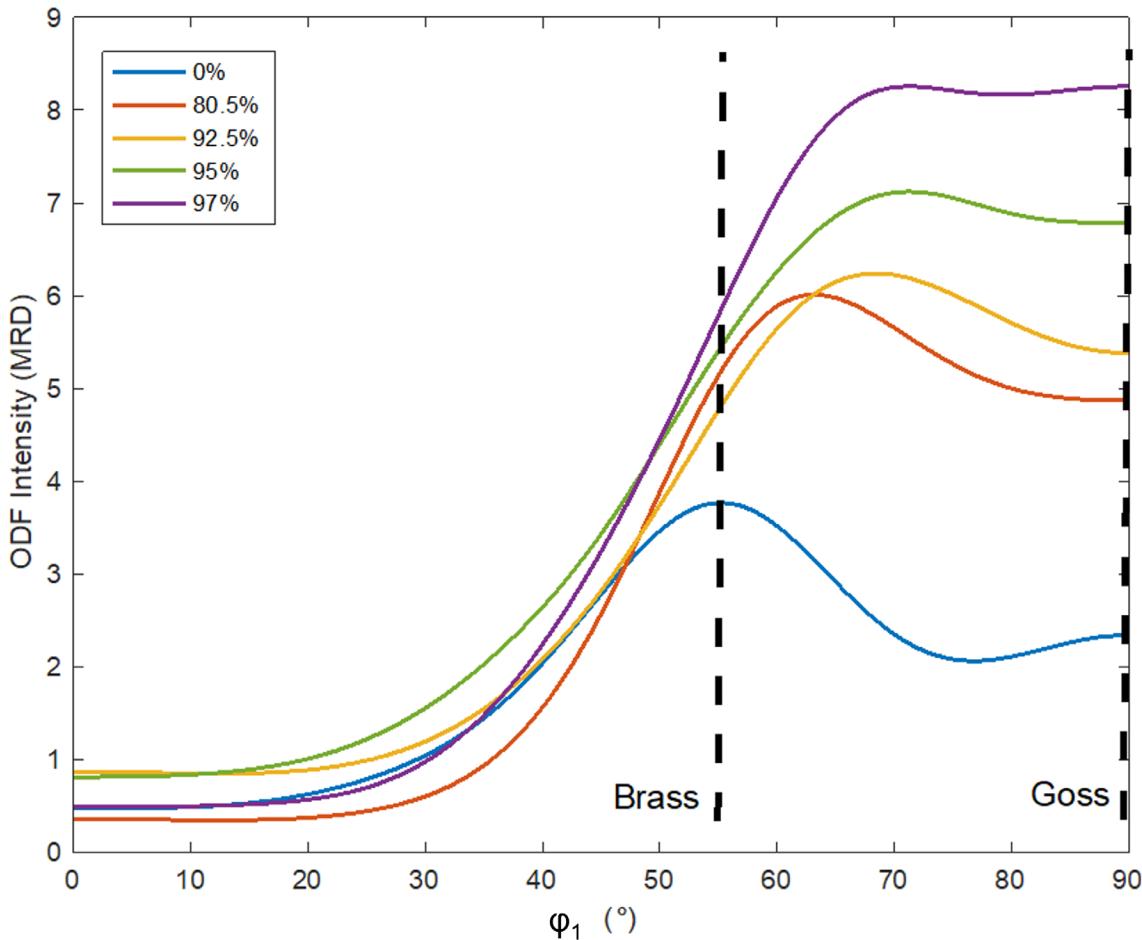



Figure 5: Texture evolution of the austenite (top) and ferrite (bottom) phases with increasing rolling reduction, shown by the orientation distribution function (ODF) 2D slices where $\varphi_2 = 45^\circ$.

239

240 Figure 6: TEM SAED overlaid on the BFTEM image for the (a) 92.5%, (b) 95%, and (c) 97%
 241 reduction material, showing the deviation between the Kurdjumov-Sachs habit plane
 242 and the interphase interface normal of 30-40°.


243 **4.0 DISCUSSION**

244 As stated in the introduction, the over-arching purpose of this manuscript is to identify
245 differences in behavior between DSS2205 that has undergone ARB and the well-studied Cu/Nb
246 system.

247 Single phase rolling of austenite to 92% provided textures consisting of copper, cube, and
248 brass indicating that the presence of the ferrite phase did affect the deformation of the austenite
249 phase [34]. The resultant texture for austenite in the composite in this study showed strong brass
250 and Goss components to the exclusion of other orientations. This is consistent with the observed
251 stable near-KS interface structure shown in Figure 6.

252 The presence of the ferrite phase in the composite and the associated co-deformation
253 condition, leads to texture evolution and the grain orientations that provide a near KS
254 relationship that are stable with continuing deformation. Unlike single phase ferrite, the rotated
255 cube component orientation was prominent in the ferrite of this composite and is consistent with
256 literature comparing rolled duplex steel with rolled single phase ferrite [50]. The K-S interface
257 relationship is similar to that observed in Cu/Nb which also maintained this orientation
258 relationship at the interface from macroscale down to nanoscale [22, 49]. Figure 6 also clearly
259 shows that the shared K-S plane (bcc (110) / fcc (111) is rotated 30 to 40° away from the
260 interface normal. The offset observed in Cu-Nb was on the order of a few degrees and was
261 shown to be defined by the creation of aligned slip planes after twinning in the Cu phase [55].

262 BF TEM exhibited no evidence of stress-induced martensite contrary to reports of other
263 authors [38-40]; however, bulk neutron diffraction measurements identified that up to 8%
264 martensite could be present. Appendix A discusses a parametric study of weight fraction versus
265 the increasing dislocation density in ferrite and austenite with rolling reduction. This
266 methodology allows a determination of the range of likely martensitic fractions while significant
267 correlation in Rietveld parameters exist. Since recovery is not expected, the dislocation content
268 in the austenite phase and Rietveld fit quality suggests 4.5% to 8% martensite is possible.
269 Literature indicates that the transition to martensite can be observed as the Brass texture
270 component in the austenite phase decreases. Observed transitions in peak intensity from Brass
271 and Goss to Goss only were seen to be driven by the instability of the brass component and
272 transformation to strain induced martensite [47]. Figure 7 provides the alpha fiber intensities
273 observed in neutron diffraction. It is clearly shown that Goss strengthens at a faster rate than
274 Brass, perhaps because of martensitic transformation. In addition, literature indicates that 12%
275 of the austenite was observed to transform to martensite at rolling reductions of 85% for
276 DSS2205 as observed by neutron diffraction for cold rolling without bonding [38]. Higher
277 amounts have been seen in similar grades of DSS such as S31803 [52] in which ~ 28% of
278 austenite had transformed at 92.5% reduction and ~ 50% of austenite had transformed at 96.6%.
279 The austenite to martensite transformation accommodates an equivalent strain on the order of
280 20% and given the low volume fraction of martensite observed here, martensite does not
281 contribute significantly to the deformation. When this result is coupled with the minimal shear
282 banding and austenite twinning at reductions beyond 80.5% (see Figure 2), it is apparent that slip
283 remains the dominant deformation mechanism even at layer thicknesses below 100 nm and strain
284 induced martensite also assists to a much lesser extent with deformation. The Cu orientation in
285 Cu/Nb, on the other hand, began to undergo twinning at low length scales as an alternative to slip
286 and this was observed by clear texture changes in the material at length scales below 200 nm
287 [48].

288
289 Figure 7: Alpha fiber plot for FCC austenite showing stability of brass orientation and increase
290 in Goss intensity with increases in rolling reduction.

291 The chemical and mechanical driving force associated with the austenite to martensite
292 transformation as described by Patel and Cohen is augmented by both the stress state and
293 temperature [56]. It is important to note that small changes in chemistry are present between the
294 starting material in this study and the cited literature which prevents direct comparisons as
295 chemical changes affect the energetics of martensitic formation. In austenitic stainless steels it is
296 well known that for the transformation to occur, the mechanical driving force has to increase in
297 magnitude if the temperature is raised e.g. due to the large rolling reduction of an ARB step [57,
298 58]. As a general rule, most of the mechanical energy during rolling is dissipated through
299 adiabatic heating of the sample and in the present study it is expected that the sample would heat
300 significantly given the strain magnitude, strain-rate, and literature for austenitic stainless steels
301 [59, 60]. In addition, changing the deformation mode or ratio of modes is known to introduce a
302 stress dependence on the kinetics of the transformation [58, 60, 61]. Thus, it is not surprising that
303 large reduction ARB would significantly alter the driving forces for martensite transformation
304 and by extension observed martensite fractions from other DSS2205 rolling works [38-40] and
305 that of cold rolling with smaller rolling reduction would be more favorable for transformation of
306 austenite to martensite – whether that is due to strain and stress components changing from
307 reduced roll contact area or due to reduced adiabatic heating [62].

308 Hardness of the duplex structure saturated at 92.5% rolling reduction with a measured
309 hardness of 45 HRC (~1430 MPa). Verification of hardness values via tensile testing were
310 performed on the 92.5% reduction material and correlated well. Unlike the aforementioned
311 FCC/BCC composites, layer/grain thickness did not continue to diminish with increasing
312 reduction above 92.5% (see Table 2). Unlike Cu/Nb, for instance, the layers are not continuous
313 through the length of the rolled plate. This could allow for non-uniform deformation across the
314 plate thickness which would allow some overall height reduction with no commensurate layer
315 thickness reduction. In addition, unlike Cu/Nb, shear banding was observed for deformations
316 above 92.5%. The localized nature of the shear bands could allow for an increase in overall plate
317 length without leading to large changes in texture or observed layer thickness. Finally, the
318 limited area observable in TEM showed variations in grain thickness similar to that seen in
319 Figure 2. This stemmed from the non-uniform grain sizes that were present in the initial
320 material. Grain measurements with limited statistics pointed towards areas where grains were 10
321 nm in thickness and as high as 200 nm in thickness at 95% reduction. It is entirely likely that all
322 three of these listed effects, in combination, lead to the lack of a uniform observed layer
323 thickness decrease with reductions beyond 92.5%.

324 The lack of increase in hardness above 92.5% reduction can be explained as localized
325 shear banding, discontinuous layers with non-uniform starting thicknesses, and martensitic
326 transformation, leaving the bulk of the microstructure in a similar configuration as seen at
327 92.5%. When shear banding is observed in austenitic and duplex stainless steels, the martensite
328 is initially observed near the shear bands [64,65]. The onset of shear banding and the
329 transformation of martensite beginning simultaneously is consistent with literature. This
330 provides a strong indication that this change in mechanism from co-deforming layers to shear
331 banding is a result of any of these three options; (a) the change in processing from roll bonding
332 to rolling; (b) the mismatch in flow stress has become too significant and leading to layer pinch-
333 off; or (c) twinning as a mechanism for accommodating plasticity has become exhausted. In the
334 Cu/Nb system, co-deformation was maintained to the nanoscale even when adjustments from roll
335 bonding to rolling to cross-rolling were made [63]. Notably, duplex steel is observed to undergo
336 extensive shear banding during cold rolling [65]. The transition to shear banding coupled with
337 martensitic transformation upon resumption of reduced reductions via cold rolling could be
338 indicative that ARB provides certain advantages in delaying or deactivating certain plasticity
339 accommodating mechanisms. Roll bonding, as noted earlier, was halted because the material
340 was unable to undergo a 50% reduction with the mills available at LANL. In the future,
341 performing three consecutive ARB steps without the use of cold rolling and comparing could
342 provide a comparison to this work and determine if (a) leads to the onset of shear banding. The
343 mismatch in flow stress would be challenging to determine as there are few ways to accurately
344 measure the flow stress in grains that are \leq 100 nm in a dimension. Twinning in austenite in
345 DS2205 has been observed to cease as a deformation mechanism as austenite grain sizes are
346 reduced to 100 to 200 nm [66]. It was noted that this arose as a result of the diminished length
347 scale of the grains and leads to the onset of dislocation mediated plasticity and shear banding. It
348 is, therefore, inconclusive, if one or a combination of (a), (b), and (c) lead to the onset of shear
349 banding.

350 Hardness values are observed to be saturated consistent with the observed, average grain
351 size. Further ARB of the DSS 2205 beyond 92.5% was unsuccessful as the material was too hard
352 to achieve the required reductions for bonding with the current equipment. Cold rolling of the
353 material beyond 92.5% leads to minimal layer thickness reduction, limited texture evolution, and

354 no increase in strength (but increase in martensite fraction). It is unclear whether this saturation
355 of several microstructural quantities would change if further roll bonding was performed using
356 92.5% reduction. Interestingly and perhaps coincidentally, it is only upon rolling without ARB
357 that the austenite to martensite phase transformation appears in bulk Neutron diffraction. This
358 may indicate that shear and temperature play an important part in the transformation of austenite
359 to martensite when sample thickness diminishes and rolling reductions are reduced. It is also
360 possible that the lack of continuous layers (despite their elongated structure) is responsible for
361 the saturation of mechanical properties, grain size, and texture. A UTS of 1430 MPa, however is
362 extremely high for DSS 2205 [29] and this was accomplished with only two roll bonding passes.
363 The route shown in this manuscript points to a rapid way to both refine and strengthen DSS
364 2205. It also shows that further reductions beyond 92.5% do not lead to an increase in strength
365 or hardness but deformation mechanisms such as slip, martensitic transformation, and shear
366 banding allow for continued texture development and overall plate thickness reduction.

367 **5.0 CONCLUSIONS**

368 In summary, DSS 2205 was processed with ARB and cold rolling to reductions of 97%.
369 Nanoscale layers below 100 nm in thickness were created in only two ARB steps and the
370 material exhibited strengths greater than 1400 MPa in ultimate tensile strength. This
371 methodology is a rapid way to produce nanoscale DSS2205 with high strength. As with other
372 FCC/BCC composites processed by ARB to the nanoscale, the texture of both the FCC austenite
373 and BCC ferrite were observed to strengthen around a few specific orientations. In addition,
374 these orientations were different from those expected for single phase rolling reductions of the
375 constituent phases indicating that the co-deformation condition exerted influence on orientation
376 evolution. Changes in expected texture were also observed in Cu/Nb as compared to single
377 phase rolling to high reductions. The strong textures developed result in many phase interfaces
378 exhibiting an orientation relationship that is close to the KS orientation relationship, which is
379 also consistent with Cu/Nb, albeit with a different offset from the interface normal. No twinning
380 was observed in FCC austenite upon reaching the nanoscale despite its propensity and observed
381 history of twinning. This is in contrast to the twinning observed in nanoscale Cu in Cu/Nb
382 multilayers [48]. It is likely that the austenite's ability to twin was exhausted during the early
383 stages of ARB as Figure 2 clearly shows the expected, high amounts of twinning and texture
384 results indicate a diminishment in Cu, S, and Dillamore texture components which are conducive
385 to twinning in fcc materials. Martensitic transformation was observed via neutron diffraction
386 and, importantly, quantified with amounts of martensite much less than those published in
387 literature during conventional rolling of DSS2205 and similar grades of DSS. Finally, the grain
388 size and hardness were observed to saturate above 92.5% reduction coupled with the onset of
389 shear banding. Finally, it appears that the roll bonding of an industrial relevant FCC/BCC
390 composite provides a rapid way to achieve small length scales with high strength lending
391 credibility to the transition of the observed properties in model systems like ARB Cu/Nb towards
392 industrially relevant starting materials. Neutron diffraction indicates that a martensitic
393 transformation of ~8% is required in order to provide realistic trends in dislocation density
394 development and achieve high quality fits.

395

396 **6.0 ACKNOWLEDGMENTS**

397

398 This work was supported by the U.S. Department of Energy through the Los Alamos National
399 Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for
400 the National Nuclear Security Administration of the U.S. Department of Energy under contract
401 89233218CNA000001. This work was funded through Los Alamos National Laboratory
402 Directed Research and Development (LDRD) projects ER20200375 and DR20200182. This
403 work has benefitted from the use of the Los Alamos Neutron Science Center (LANSCE) at
404 LANL. DJS and SCV gratefully acknowledge funding from Information Science and
405 Technology Institute and the Institute for Materials Science for support in data analysis
406 automation applied for this project.
407

408 **7.0 CONFLICT OF INTEREST STATEMENT**

409 On behalf of all authors, the corresponding author states that there is no conflict of interest.

410 **8.0 REFERENCES**

1. P.D. Funkenbusch and TH Courtney, , Acta Metall., 33, (1985).
2. H.P. Wahl and G. Wassermann, Z. Metallk., 61, (1970).
3. G. Frommeyer and G. Wassermann, Acta Metall., 23 (1975).
4. CL Trybus and WA Spitzig, Acta Metall., 37 (1989) 1971-1981.
5. WA Spitzig, AR Pelton, FC Laabs, Acta Metall., 35 (1987) 2427-2442.
6. A Misra, M Verdier, YC Lu, H Kung, TE Mitchell, N Nastasi, JD Embury, Scripta Mat., 39 (1998) 555-560.
7. JT Wood, AJ Griffin Jr, JD Embury, R Zhou, M. Nastasi, M. Veron, Journal of the Mechanics and Physics of Solids, 44 (1996) 737-750.
8. K Adachi, S Tsubokawa, T Takeuchi, HG Suzuki, Journal of the Japan Institute of Metals, 61 (5) (1997) 397-403.
9. TE Mitchell, YC Lu, AJ Griffin, M Nastasi, H Kung, J. Am. Ceram. Soc., 80 (1997) 1673-1676.
10. SA Barnett and M Shinn, Ann. Rev. Mater. Sci., 24 (1994) 481-511.
11. A Misra and R. Hoagland, Jour. Mater. Res., 20 (2005) 2046-2054.
12. JS Carpenter, SJ Zheng, RF Zhang, SC Vogel, IJ Beyerlein, NA Mara, Philos. Mag., 93 (2013) 718-735.
13. JS Riano, and AM Hodge, Scripta Mater. 166 (2019) 19-23.
14. WF Yang, IJ Beyerlein, QQ Jin, HL Ge, T Xiong, LX Yang, JC Pang, YT Zhou, XH Shao, B Zhang, SJ Zheng, XL Ma, Scripta Mater. 166 (2019) 73-77.
15. WZ Han, MJ Demkowicz, NA Mara, EF Fu, S Sinha, AD Rollett, YQ Wang, JS Carpenter, IJ Beyerlein, A Misra, Adv. Mater. 25 (2013) 6975-6979.
16. LF Zeng, P Fan, LF Zhang, R Gao, ZM Xie, QF Fang, XP Wang, DQ Yuan, T Zhang, CS Liu, J. Nucl. Mater., 508 (2018) 354-360.
17. WZ Han, NA Mara, YQ Wang, A Misra, MJ Demkowicz, J. Nucl. Mater., 452 (2014) 57-60.
18. HPA Ali, I Radchenko, N Li, A Budiman, Mater. Sci. Eng. A 738 (2018) 253-263.
19. J. Wang, Q Zhou, S Shao, A Misra, Mater. Res. Lett., 5 (2017) 1-19.
20. M. Ardeljan, M Knezevic, T Nizolek, IJ Beyerlein, NA Mara, TM Pollock, Int. J. Plast. 74 (2015) 35-57.
21. X He and Y Shen, JOM, 67 (2015) 1486-1490.

442 22. JS Carpenter, SC Vogel, JE LeDonne, DL Hammon, IJ Beyerlein, NA Mara, *Acta*
443 *Mater.*, 60 (2012) 1576-1586.

444 23. LF Zeng, R Gao, ZM Xie, S Miao, QF Fang, XP Wang, T Zhang, CS Liu, *Sci. Rep.* 7
445 (2017) 40742.

446 24. LF Zeng, R Gao, QF Fang, XP Wang, ZM Xie, S Miao, T Hao, T Zhang, *Acta Mater.*
447 110 (2016) 341-351.

448 25. JS Carpenter, T Nizolek, RJ McCabe, M Knezevic, SJ Zheng, BP Eftink, JE Scott,
449 SC Vogel, TM Pollock, NA Mara, IJ Beyerlein, *Acta Mater.*, 92 (2015) 97-108.

450 26. MM Mahdavian, L Ghalandari, M Reihanian, *Mater. Sci. Eng. A*, 579 (2013) 99-107.

451 27. YF Sun, N Tsuji, H Fujii, FS Li, *J. Alloys and Comp.*, 504 (2010).

452 28. Y Saito, H Utsunomiya, N Tsuji, T Sakai, *Acta Mater.* 47 (1999) 579-583.

453 29. *Practical Guidelines for the Fabrication of Duplex Stainless Steels*. International
454 Molybdenum Association, 2009.

455 30. J. Hay, *Appl. Note*, pp. 1-4.

456 31. J. Ryś and A. Zielińska-Lipiec, *Int. J. Mater. Res.*, 106, (2015) 771-781.

457 32. R. Shashanka and D. Chaira, *Powder Technol.*, 259, (2014) 125-136.

458 33. R. Shashanka, and D. Chaira, *Mater. Char.*, 99, (2015) 220-229.

459 34. J. Keichel, J Foc, G Gottstein, *ISIJ Int.*, 43, (2003) 1781-1787.

460 35. J. Ryś and M. Witkowska, *Arch. Metall. Mater.*, 55, (2010) 733-747.

461 36. J. Ryś and A. Zielińska-Lipiec *Arch. Metall. Mater.*, 57, (2012) 1041-1053.

462 37. J. Hamada and N. Ono, *Mater. Trans.*, 51, (2010) 644-651.

463 38. M. Breda, K Brunelli, F Grazzi, A Scherillo, I Calliari, *Metall. Mater. Trans. A*, 46,
464 (2015) 577-586.

465 39. N. Akdut and J. Foc, *ISIJ Int.*, 36, (1996) 883-892.

466 40. JL Lv, TX Liang, C Wang, LM Dong, *Mater. Sci. Eng. C*, 62, (2016) 558-563.

467 41. HR Wenk, L Lutterotti, SC Vogel, *Nucl. Instrum. Methods. Phys. Res. Sect. A*, 515
468 (2003) 575-588.

469 42. SC Vogel, C Hartig, L Lutterotti, RB Von Dreele, HR Wenk, DJ Williams, *Powder*
470 *Diff.*, 19 (2004) 65-68.

471 43. L. Lutterotti, S Matthies, HR Wenk, AS Schultz, JW Richardson, *J. Appl. Phys.*, 81,
472 (1997) 594-600.

473 44. R. Hielscher and H. Schaeben, *J. Appl. Crystallogr.*, 41, (2008) 1024-1037.

474 45. NC Popa, *J. Appl. Cryst.*, 31 (1998) 176-180.

475 46. F. Bachmann, R. Hielscher, and H. Schaeben *Solid State Phenom.*, 160, (2010) 63.

476 47. Standard Test Methods and Definitions for Mechanical Testing of Steel Products,
477 ASTM Standard A370-21, American Society for Testing and Materials, (2021).

478 48. G. Krauss, *Steels: Processing, Structure, and Performance*, 4th ed. Materials Park:
479 ASM International, 2005.

480 49. J. Ryś, G. Cempura, , *Mater. Sci. Eng. A* 700 (2017) 656-666.

481 50. K Zhang, IV Alexandrov, AR Kilmametov, RZ Valiev, K Lu, , *J. of Phys. D: Appl.*
482 *Phys.*, 30 (1997).

483 51. S.S.M. Tavares, MR da Silva, JM Pardal, HFG Abreu, AM Gomes, *J. Mater. Process.*
484 *Tech.*, 180 (2006) 318-322.

485 52. J. Capek, M Cernik, N Ganev, K Trojan, J Nemecek, K Kolarik, *IOP Conf. series:*
486 *Materials Science and Engineering* 375 (2018) 012025.

487 53. JS Carpenter, RJ McCabe, JR Mayeur, NA Mara, IJ Beyerlein, *Adv. Eng. Mater.*, 17
 488 (2015) 109-114.

489 54. SJ Zheng, JS Carpenter, RJ McCabe, IJ Beyerlein, NA Mara, *Sci. Rep.* 4 (2014)
 490 4226.

491 55. D Raabe, *Acta Mater.*, 45 (1997) 1137-1151.

492 56. RJ McCabe, IJ Beyerlein, JS Carpenter, NA Mara, *Nat. Comm.*, 5 (2014) 3806.

493 57. JR Patel, M Cohen, *Acta Metallurgica*, 1, (1953) 531-538.

494 58. CB Finfrock, D Bhattacharya, BNL McBride, TJ Ballard, AJ Clarke, KD Clarke,
 495 *JOM*, 74 (2022) 506-512.

496 59. LE Murr, KP Staudhammer, SS Hecker, *Metallurgical Transactions A*, 13 (1983)
 497 627-635.

498 60. J Talonen, H Hanninen, P Nenonen, G Pape, *Metallurgical and Materials
 499 Transactions A*, 36 (2005) 421-432.

500 61. SS Hecker, MG Stout, KP Staudhammer, JL Smith, *Metallurgical Transactions A*, 13
 501 (1982) 619-626.

502 62. AM Beese, D Mohr, *Acta Materialia*, 59 (2011) 2589-2600.

503 63. T Inoue, edited by David Moratal. London: IntechOpen, 2010. 10.5772/10233.

504 64. G. Sun, L. Du, J. Hu, B. Zhang, *Mater. Char.*, 159 (2020) 110073.

505 65. G. Gianini Braga Maria, D. Gomes Rodrigues, E. Tadeu Fraga Freitas, D. Brandao
 506 Snatos, *Mater. Lett.*, 234 (2019) 283.

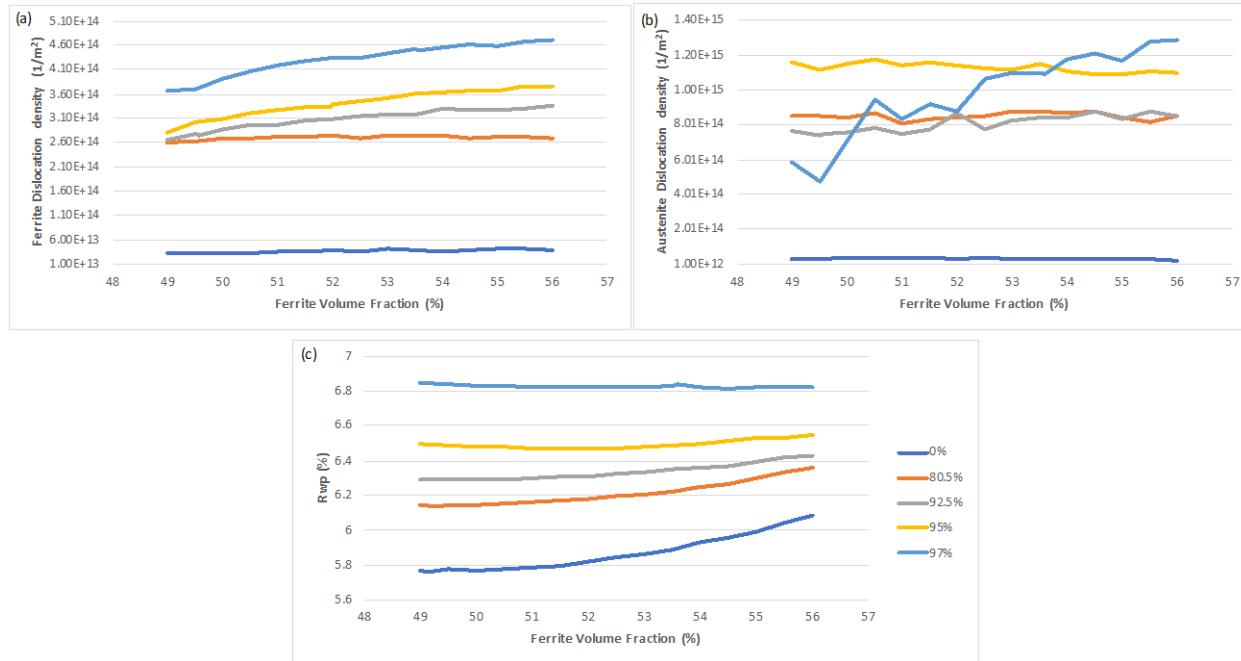
507 66. JS Carpenter, RJ McCabe, SJ Zheng, TA Wynn, NA Mara, IJ Beyerlein, *Met. Mater.
 508 Trans. A* 45:4 (2014) 2192-2208.

509 67. M. Ma, H. Ding, Y. Huang, C.W. Tian, T.G. Langdon, *Crystals*, 10 (2020) 1138.

510 68. GK Williamson, RE Smallman, *Philosophical Magazine*, 1 (1956) 34-46.

511

512 9.0 APPENDIX A


513 During Rietveld refinement of neutron diffraction patterns collected at HIPPO, model parameters
 514 for size and strain, isotropic thermal displacement parameter (Biso), phase fractions, and texture
 515 must be refined among other standard variables such as lattice parameters, background and
 516 intensity scaling to model diffraction pattern features. With increased deformation level, there is
 517 an observed increase in Biso as observed in other extreme plastic deformation literature [54].
 518 The ratio of Biso of two phases is moderately correlated with the volume fraction and is
 519 generally fixed to well accepted values for accurate phase fractions. However, with increased
 520 dislocation content this Biso ratio results in suboptimal diffraction pattern fits. In addition, the
 521 Biso also becomes correlated with the size and strain model and the signature of phase fraction in
 522 the global goodness of fit parameter Rwp becomes increasingly insensitive to small changes in
 523 phase fractions with rolling reduction. A general rule of thumb is to use details of difference
 524 curves to inform appropriate model selection, but the correlations result in similar pattern fit
 525 quality upon inspection for different phase fractions. For martensite transformed from a low
 526 carbon austenite, the BCT martensite structure is not distinguishable from the BCC ferrite
 527 diffraction pattern, thus it is not obvious if any Martensite has formed at first inspection of the
 528 Rietveld fits.

529 To address these uncertainties, a systematic study of the correlations (summarized in Figure A1)
 530 is performed by fixing the volume fraction of ferrite at various levels and refining Biso, texture,
 531 and the size-strain model. The most interesting of the trends in parameters is arises from the size-
 532 strain model. The POPA anisotropic size-strain broadening model was reduced in MAUD to an

533 isotropic equivalent crystallite size, D , and isotropic equivalent microstrain, ϵ . Dislocation
 534 density estimates using the peak broadening analysis of Williamson and Smallman [67] are
 535 calculated as:

$$536 \quad \rho = \sqrt{\frac{3k\epsilon^2}{D^2 b^2}} \quad (A.1)$$

537 where k is an unknown material constant taken as unity and b is the burgers vector magnitude
 538 taken as $\frac{\sqrt{3}}{2}a$ where a is the lattice parameter of the phase. While the magnitude of this
 539 estimate may be incorrect, the trends should be relevant. The dislocation density of austenite is
 540 not correlated to volume fraction of ferrite up to 95% reduction while after 80.5% reduction,
 541 there is a correlation in the ferrite dislocation density. Most notably, the second ARB step does
 542 not appreciably increase the dislocation density in either phase, while it appears to increase
 543 substantially from ARB quantities when cold rolling is performed. Also evident is that the
 544 dislocation density of Austenite becomes highly correlated with the volume fraction of ferrite at
 545 97% reduction. Assuming no recovery causing a decrease in dislocation content, then the volume
 546 fraction of ferrite has likely increased above 53.5% and an upper limit from pattern fit inspection
 547 can be utilized to establish an upper boundary of ~57% volume fraction of ferrite with
 548 approximately 8% of ferrite being martensite transformed from austenite.
 549

551
 552 Figure A1: Summary of Rietveld parametric study of dislocation content in (a) ferrite and (b)
 553 austenite and (c) global refinement quality Rwp trend as a function of ferrite
 554 volume fraction. Ferrite volume fraction above 49% represent austenitic
 555 transformation to martensite.
 556
 557