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Abstract 

We developed a novel operando Raman spectroscopy method for investigation of hydrogen (H) 
isotope exchange reactions in the lithium aluminate (γ-LiAlO2) that allows modeling of tritium 
behaviors in high temperature and in an irradiated sample. The lithium aluminate pellet is a 
main component in the Tritium-Producing Burnable Absorber Rod (TPBAR). We used deuterium 
(2H or D) as a surrogate to simulate tritium (3H or T). We used a surface analysis tools in 
situ/operando Raman spectroscopy to observe the transformation OH and OD compositional 
changes. We also used ToF-SIMS to analyze the lithium aluminate pellet control sample to build 
the baseline for future in situ/operando analysis. To conduct operando Raman spectroscopy, we 
developed a custom reaction cell with a detachable micro heater using microelectromechanical 
systems (MEMS) and 3D printing techniques. Multiple versions were developed and tested. 
Using the new reaction cell, we demonstrated operando Raman spectroscopy of water (H2O) 
and deuterated water (D2O) with nitrogen (N2) exposure onto the lithium aluminate (LiAlO2) 
pellet specimen, respectively, using a wet gas injection setup. We also successfully developed a 
detachable microheater that can heat up to ~250°C for ~90 mins. The Raman spectra did not 
show clear H2O and D2O characteristic peaks, which indicates that introducing H2O and D2O 
onto the surface of the pellet is challenging due to its dense structure nature. Our efforts 
suggest that various improvements are needed, such as increasing reaction cell operating gas 
pressure and thinning pellet sample thickness, to obtain meaningful measurements.  
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Summary 

We developed an in situ/operando Raman spectroscopy setup to investigate the isotope 
exchange behaviors in γ-LiAlO2 pellet used in TPBAR.  ToF-SIMS was also used to obtain 
composition information of γ-LiAlO2 pellet.  

There were three aims in this project: 1). Fabricate a reaction cell compatible with Raman 
spectroscopy and integrable to the existing SIMS heating stage;2). Use in situ/operando Raman 
to study the isotope exchange rates and to understand the hydrogen behaviors in γ-LiAlO2; and 
3) Use in operando heating in ToF-SIMS to study the isotope exchange reaction products.  

These aims were used to answer the following questions: 1) Are there isotope effects in γ-
LiAlO2 pellet? If so, what are the isotope exchange rates in different temperature conditions? 2) 
Is there an anomalous isotope difference in the hydrogen exchange, assuming that the isotope 
exchange rates are different in H/D and D/H process?  

We utilized MEMS and 3D printing techniques to develop the new Raman reaction cell. We 
developed multiple versions of reaction cells. The cell contains multiple layers, and each has a 
specific function including a reaction layer (top layer), flexible sealing layer (middle layer), and 
microheater function layer (bottom layer).  

We also successfully developed a detachable microheater using photolithography and lift out 
microfabrication techniques in the cleanroom. The microheater was tested for maximum 
temperature and endurability. The test data showed that the new system can sustain heating up 
to ~250°C for ~90 min. With the completed reaction cell prototype, we performed Raman 
experiments while introducing H2O and D2O wet gas on the surface of LiAlO2 pellet. The H2O 
and D2O wet gas injection setup utilized two glass flasks, polytetrafluoroethylene (PTFE) tubing, 
PEEK fittings, and PEEK gas valves. The result suggests that the reaction cell and the pellet 
sample preparation need improvements such as reaction chamber for high pressure and thinner 
pellet sample.   

The newly developed Raman setup showed the potential to provide direct observations of 
hydrogen isotope exchange reactions and to study the isotope exchange rates in γ-LiAlO2 
substrate under unirradiated conditions in the future.  
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Acronyms and Abbreviations 

Al   Aluminum  

Bi   Bismuth 

CAD   Computer-Aided Design 

D   Deuterium 

D2O   Deuterium Oxide (Heavy Water, Deuterated Water) 

H2O   Hydrogen Oxide (Water) 

LiAlO2   Lithium Aluminate 

Li   Lithium 

MEMS   Micro Electromechanical Systems 

PNNL   Pacific Northwest National Laboratory 

T   Tritium 

TPBAR  Tritium Producing Burnable Absorber Rods 

ToF-SIMS  Time-of-Flight Secondary Ion Mass Spectrometry 
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1.0 Introduction 

1.1 Background 

The dynamic behavior of hydrogen (H), such as diffusion, retention, and re-emission of H 
isotopes in bulk and at the surface of tritium breeding materials in fusion reactors, has received 
extensive attention in fundamental and application views [1, 2, 3, 4]. Previously there has been 
limited effort [5] to demonstrate in situ/operando Raman spectroscopy to observe the H isotope 
exchange reactions and to quantify the isotope exchanges rates at different temperatures in 
proton conducting oxides (Figure 1C). The isotope exchange rates in the D-H exchange and H-
D exchange are different, indicating there is an anomalous isotope effects during the hydrogen 
isotope reactions. Different from high-temperature protonic ceramic conductor, tritium can 
transport through substitutional tritium diffusion and oxygen-tritium diffusion in tritium breeding 
materials. Therefore, it is important to study the dynamic behavior of hydrogen isotopes in 
tritium breeding materials, specifically the lithium aluminate pellet from TPBAR, by studying the 
hydrogen isotope exchange reactions to understand gaseous transport and isotopic exchange 
and provide insights into the mechanism of tritium separation and production. 
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2.0 Technical Methods and Materials 

2.1 Development Workflow 
 

 

Figure 1. Workflow of hydrogen isotope exchange reactions in the γ-LiAlO2 pellet using a novel 
reaction cell: A-1) the controlled atmospheric setup, A-2) photo of the implemented 
setup, B-1) the microfluidic/MEMS based reaction cell for in situ/operando heating 
Raman spectroscopy, B-2) the developed reaction cell, C) representative Raman 

spectra of H isotope exchange reactions after changing the atmosphere from N2/H2O 
to N2/D2O, and D) sample SIMS spectra from an irradiated pellet. 

The objective of this project is to use in situ and operando Raman spectroscopy and in 
operando ToF-SIMS to characterize the isotope exchange reactions in γ-LiAlO2 to understand 
the dynamic behavior of hydrogen isotopes in the bulk and at the surface of pellet under 
elevated temperatures ranging from 25 – 400 °C in this project.   

We designed the experiment process in three parts: 1) inducing in situ isotopic exchange of 
LiAlO2 substrate using H2O and D2O with nitrogen (N2) as a carrier gas (Figure 1A-1, 2); 2) 
developing the custom reaction cell (Figure 1B-1) that is compatible with in operando Raman 
measurements; and 3) performing in operando heating analysis to determine hydrogen isotopes 
using Raman (Figure 1C) and to obtain mass spectra and images in ToF-SIMS (Figure 1D) of 
the retrieved LiAlO2 pellet materials. 

There were four tasks: I) Fabricate a transferrable reaction cell for Raman spectroscopy; II) 
Perform in situ Raman spectroscopic measurements to study H isotope exchange reactions on 
the microfluidic device and quantify reaction rates; III) Perform in operando heating analysis in 
ToF-SIMS to characterize the surface species before and after H isotope exchange reactions in 
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Raman to understand the isotope exchange reactions on the surface of γ-LiAlO2; and IV) Project 
management.  

2.3 Reaction Cell Development 

 

Figure 2. Reaction cell design process: A) different versions of the heating cell design, B) 
detailed reaction cell including upper layer, bottom layer, and detachable microheater of the 

reaction chamber, and C) CAD design showing four views of the prototype.   

In task I, several reaction prototypes have been made using CAD design, 3D printing MEMS 
technique. Key results are show in Figure 2. The heating cell contains a multi-layer structure, 
which provides inter-connected gas flow channel, a reaction cell, and microheater structure 
(Figure 2C). Inside the reaction chamber, there are three gas flow channels for inlet, outlet, and 
pressure release, respectively (Figure 2B-2, 2C-4). On the top of the reaction chamber, there is 
a transparent glass window to seal the chamber. There is a microheater on the bottom structure 
of the cell (Figure 2-B-1, C-1). There are three channels for DC power for positive and negative 
lines and a thermocouple in the bottom cell structure (Figure 2B-1, 2C-2).  

The LiAlO2 sliced sample with a dimension of approximately 4 × 3 × 2 mm3 was placed in the 
middle of the reaction chamber, while the top of the microheater surface was used for heating 
sample. Top and bottom structure was sealed with the polyurethane membrane sealer to form 
an enclosed chamber, respectively, making it adaptable to the Raman spectroscopy setup 
(Figure 2B-2). The whole structure is clamped as one structure with bolts and nuts (Figure 2B-
2). The structure is detachable after Raman experiments, and it allows easy access to the pellet 
sample for in operando heating experiments in ToF-SIMS after Raman, thus obtaining 
correlative information.  
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Figure 3. Raman spectroscopy test for possible background interference A) overview of the 
testing setup, B) close-up of the cell prototype on the Raman sample stage.  

We conducted a Raman spectroscopy background test with an experimental setup shown in 
Figure 3. The purpose of this experiment was to investigate possible background interference 
from spectral shift in Raman data. We loaded a piece of LiAlO2 sample in the reaction chamber 
of the prototype reaction cell; and we looked for expected Raman peaks (i.e., Li, Al, and LiO2). 
The spectral profile is compared with reference ones acquired from a normal Raman sample 
holder using the same setup to determine if there are possible differences from the materials of 
the new reaction cell.   

2.3.1 Microheater Development 

 

Figure 4. The fabricated microheater and testing setup: A) the fabricated microheater on a 
glass substrate, B) close-up view of the microheater, C) mask feature for the UV exposure 

process, D) testing setup for the microheater, and E) two temperature measure locations on the 
back surface of the fabricated substrate.  
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The microheater was developed using photolithography and lift-out technique on the surface of 
glass substrate (22 mm × 22 mm × 200 nm) shown in Figure 4-A. The dimension of the heater 
design was decided based on maximal heating surface exposure of the sliced pellet material. 

The standard photolithography was conducted to develop heating features. First, the feature 
was developed using UV exposure on photoresist (Figure 4-C). Then titanium (210 nm) and 
gold (30 nm) layers were sputter coated using the Denton Vacuum sputtering system. Lastly, 
excessive metal materials were lifted out, which made the final feature on the glass substrate 
(Figure 4-B).    

The heating capability test of the heater was conducted separately for max temperature and 
endurability (Figure 4-D). DC voltage source and thermal couple sensor was utilized for this test. 
Two leads of thermal couples were place the back side of the microheater glass substrate which 
were able to measure the center of heater area and edge of the heater substrate (Figure 4-E). 
The heater was powered up DC voltage up to 50V. The temperature of the heater was recorded 
util its failure which also gives its endurance time. 

2.4 In situ and operando Raman Experimental Setup 

 

Figure 5. A) In situ/ operando Raman experiment setup overview, B) H2O and D2O wetted N2 
gas injection setup, C) DC voltage source for microheater, D) close-up look of the 
implemented reaction cell on the Raman sample stage. E-F) close-up top view of 

sample loaded reaction cell.     

In task II, in situ/ operando Raman spectroscopy experiments were performed to demonstrate 
isotope exchange reactions using the prototype cell.  Mixtures of N2/H2O and N2/D2O were used 
Figure 5 shows a photo of the experimental setup. A sliced LiAlO2 sample was loaded into the 
reaction chamber (Figure 5-E, F); and the external gas line was permeated using two different 
wet N2 gases that include H2O and D2O, respectively, (Figure 5-B) for certain period of times 
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(i.e., 30 min., 1 hr., 2hr.). The H2O and D2O wet gas injection setup utilized two glass flasks, 
polytetrafluoroethylene (PTFE) tubing, PEEK fitting, and PEEK gas valves. A switch valve was 
used to alternate between H2O and D2O conditions (Figure 5-B). During gas exposure, Raman 
spectra were acquired for different times (i.e., 30 min, 1 hr., and 2 hr.) to determine if the current 
setup was adequate or not.   

A set of standard pellet samples covered with droplets, namely ~40 µL of H2O and D2O, were 
also analyzed using Raman to verify the effectiveness of the reaction cell in terms of gas 
exposure. These samples were placed under the droplet for 15 min and 30 min before spectral 
acquisition.  

2.5 ToF-SIMS Analysis of the Pristine Pellet Sample 

 

Figure 6. A LiAlO2 sample loaded in the ToF-SIMS back-mount sample holder 

ToF-SIMS V spectrometer (IONTOF, BmbH, Münster, Germany) was used for providing 
information on the chemical composition of a pristine LiAlO2 pellet sample as control. The 
scanning area size was 250 µm × 250 µm using the 25 keV Bi+ primary ion beam. The scan 
cycle was 60 scans, and the main vacuum chamber was 3.9E-8 mbar. 
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3.0 Results and Discussions 

3.1 Reaction Cell Fabrication  

 

Figure 7. The prototype reaction cell contains a microheater and DC voltage power connection. 

Multiple reaction cell prototypes were constructed, and each cell contained a detachable 
microheater and interconnected gas channels. The reaction chamber was sealed and placed on 
a glass substrate. The chamber layer and the bottom microheater layer were clapped with a 
flexible polyurethane membrane. DC power cables (+/-) are fed in the bottom structure; and 
they were physically contacted on the two microheater contact areas, respectively.   

3.1.1 Microheater  

Fabricated microheaters were tested for endurance under 50 V. The maximal temperature of 
the center heater feature had been kept at ~254°C for 90 min, while the DC power and current 
were kept at 48.1V and 0.21A, respectively.  The maximal temperature ramping time was less 
than ~2 min from 23 to 245°C. The average temperature of the edge of the heater substrate 
was ~48°C. The heater could go longer than 90 min.  However, the voltage of the last few 
minutes of testing was slightly increased by 0.6 V. This may cause overheat and burning up of 
the heating element.  In the next step, longer heating can be tested.  
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3.2 Preliminary Raman Spectroscopy Results 

3.2.1 Raman test for possible background interference 

 

Figure 8. Raman spectroscopy testing result of the LiAlO2 pellet sample. 

Figure 8 shows typical peaks of the LiAlO2 pellet. Measurements of the pellet were made 
between a glass slide as the reference (black) and in situ/operando testing cell (Red).  Even 
considering intensity difference, spectral features appear identical with prominent peaks, such 
as Li (501 cm-1), Al (779 cm-1), and LiO2 (1215 cm-1). This result suggests that the cell chamber 
materials have no interference to the pellet measurements using Raman.  
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3.2.2 Operando Raman with exposure of mixtures of H2O and N2 and D2O and 
N2  

 

Figure 9. Raman spectra of operando Raman of the LiAlO2 pellet exposed to H2O and N2 (A) 
and D2O  and N2 (B). 

Raman spectra (Figure 9) show operando Raman spectroscopy results using the prototype 
reaction cell. The mixed H2O and N2 and D2O and N2 gases were used to expose on the pellet 
sample, respectively.  Different gas exposure times were used, such as ranging from 30 min to 
2 hrs.  The spectral results were almost identical without H2O (~3200 cm-1) and D2O (~2500 cm-

1) profile peaks. These results represent current gas exposure process was not efficient enough 
to introduce H2O and D2O on the surface of the sample. This can be improved by longer 
exposure or higher-pressure gas exposure. These improvements require reinforcement of cell 
structure and gas inlet fittings.  
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3.2.3 Raman Spectroscopy of the standard pellet with H2O and D2O 

 

Figure 10. Raman spectra using the standard pellet: A) the control sample with H2O droplet 
exposure after15 min and 30 min respectively, B) H2O droplet, and C) a photo 

showing the pellet sample with H2O droplet on the glass slide. 

Figure 10 shows Raman spectral results.  The spectral results shown in Figure 10-B 
demonstrate that H2O (~3200 cm-1) can be detected.  However, there were not significant 
signals of D2O on the pellet surface after 15 min and 30 min. This observation indicates that 
introducing D2O on the sliced pellet sample will require more effort.    

 

Figure 11. Raman spectra using the standard pellet: A) the control sample with D2O droplet 
exposure after15 min and 30 min respectively, B) D2O droplet, and C) a photo 

showing the pellet sample with D2O droplet on the glass slide. 
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Figure 11 shows Raman spectral results.  The spectral results shown in Figure 11-B 
demonstrate that D2O (~2500 cm-1) can be detected.  However, there were not significant 
signals of D2O on the pellet surface after 15 min and 30 min. This observation indicates that 
introducing D2O on the sliced pellet sample will require more effort.    

3.3 ToF-SIMS Spectral Results of the Reference of Pellet Sample 

 

Figure 12. ToF-SIMS spectra of the pristine LiAlO2 pellet sample in the positive ion mode. 

We acquired reference ToF-SIMS spectra data of pellet samples in the positive ion mode (Fig. 
12). This result shows that ToF-SIMS can provide detailed chemical information of the pellet 
surface. Data will be used as reference, and they will be compared with samples after exposure 
of H2O/ D2O and N2 gas mixtures. The negative mode measurements were tried; however, 
results were not good, likely due to charging and beam effects. Additional experiments are 
needed to use charge compensation and obtain better results.     



PNNL-33842 

 12 
 

4.0 Conclusions and Future Work 

We developed a prototype heating cell for in-situ/ operando Raman spectroscopy to study 
hydrogen exchange reactions. The cell prototype was fabricated using MEMS and 3D printing 
techniques. We also successfully developed a detachable microheater which can heat up to 
~250°C for ~90 mins. Using the completed prototype reaction cell, we conducted operando 
Raman spectra experiments while inducing H2O and D2O wet gas on the surface of LiAlO2 
pellet. However, the Raman spectral results did not show characteristic H2O and D2O peaks, 
which indicates that the experimental setup needs improvement. The challenge is due to the 
dense structure of the pellet material and also likely insufficient reaction time.  

The Raman spectra of standard pellet exposed to H2O/ D2O droplets have demonstrated that 
the approach can detect H2O and D2O characteristic peaks. This result indicates that the 
technical approach is reasonable, however improvement from sample preparation and reaction 
cell structure are in need.  There are four possible approaches to improve the operando Raman 
reaction experiment.  

First, we can acquire less dense (~15% porosity) LiAlO2 pellet instead of standard pellets (~98% 
dense) to provide the more porous surface sample slice. This can promote more diffusion of wet 
gas within the sample surface.   

Second, the microheater can be improved to achieve higher temperatures (~400°C) and more 
durability by using a reinforced structure and thicker heating materials (e.g., titanium and gold 
layers). 

Third, the mixture of H2O/ D2O and N2 gas can be applied using higher pressure in a reinforced 
reaction chamber, for example employing high pressure fittings (i.e., Swagelok parts). This 
should offer a higher efficiency of gas induction onto the pellet surface.  

Forth, more Raman instrument time is needed. We had challenges in FY22 due to lack of 
instrument access (i.e., laboratory moving, instrument repairs). More testing time will allow 
improvement.  

If we could implement the aforementioned improvements, it is anticipated that the isotopic 
exchange efficiency can be studied by changing the reaction chamber environment between 
N2/H2O and N2/D2O to quantify the isotope exchange rates using operando Raman 
spectroscopy while heating the pellet in a controlled manner.  
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