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INTRODUCTION
• Advances in flat-panel radiography device design have 

increased the use of radiation imaging as a nondestructive 
evaluation tool

• Neutron radiography offers many advantages compared to 
photon-based radiography
• Neutrons penetrate dense, high-Z metals more 

effectively than photons
• Typical neutron imaging systems:

• Large, immobile neutron facilities
• Reliant on absorption-based conversion
• Uses a thin (<1mm) scintillator, mirror, and camera
• High resolution with cold neutrons
• Poor image resolution with fast neutrons

• A flat-panel fast-neutron radiography imager must:
• Have a compact and portable form factor
• Use proton recoil instead of absorption
• Use thick (>1mm) higher efficiency scintillators
• Be comprised of tileable readout modules
• Achieve millimeter-scale resolution with fast neutrons

METHODS
• Zemax simulations were used to simulate scintillation light 

spread on silicon photomultipliers (SiPMs)
• Simplified to a 3 x 3 area of SiPMs with Anger logic 

localization
• Quantified differences between actual scintillation 

event position and computed event position with 
varying light spreader thicknesses

• Tileable detector module assembled using:
• Ideas ROSSPAD readout module
• 8 by 8 array of 6 mm SensL MICROFJ-60035-TSV SiPMs
• 3 mm of Eljen Technologies EJ-200 scintillator
• Polycarbonate light spreader

• Data collection and processing methods were developed
• Packet capture data processed and stored in a SQLite 

database file
• Using flood field illumination data, background, noise, 

and gain corrections were generated for each SiPM
• Scintillation events were localized using a dual 1D 

Gaussian fitting method
• Localized events were combined into high-resolution 

energy weighted and unweighted radiographs
• A fan beam image was generated using a narrowly 

collimated Cs-137 source
• The spatial resolution of the system was determined 

using the full-width half-max (FWHM) and modulation 
transfer function (MTF) of the fan beam
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RESULTS
• 3 mm thick light spreader allows for the best localization 

based on Anger logic methods
• Gaussian localization methods provide better continuous 

event localization compared to nearest neighbor Anger 
logic localization

• Precise background, noise, and gain correction drastically 
improves localization accuracy within the detector

• Fan beam measurements using Cs-137 show a spatial 
resolution of 2.25 mm
• Spatial resolution is approximately 1/3 the pitch of the 

SiPMs, effectively turning every SiPM into 9 pixels
• Goal of sub-SiPM resolution achieved

FUTURE WORK
• Edge correction to spread events to edge of the ROSSPAD
• Characterize spatial resolution using neutrons
• Build a prototype flat-panel neutron radiography imager
• Improve localization methods to span across multiple 

adjacent ROSSPAD readout modules
• Develop and characterize thicker, segmented scintillator 

blocks
• Increase spatial resolution to 1.25 - 1.00 mm (1/4 - 1/6 

SiPM pitch)
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