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INTRODUCTION

Advances in flat-panel radiography device design have
increased the use of radiation imaging as a nondestructive
evaluation tool

Neutron radiography offers many advantages compared to

photon-based radiography
 Neutrons penetrate dense, high-Z metals more
effectively than photons
Typical neutron imaging systems:
e Large, immobile neutron facilities
e Reliant on absorption-based conversion
e Uses a thin (<1mm) scintillator, mirror, and camera
e High resolution with cold neutrons
e Poor image resolution with fast neutrons
A flat-panel fast-neutron radiography imager must:
e Have a compact and portable form factor
e Use proton recoil instead of absorption
e Use thick (>1mm) higher efficiency scintillators
e Be comprised of tileable readout modules
 Achieve millimeter-scale resolution with fast neutrons

METHODS

Zemax simulations were used to simulate scintillation light
spread on silicon photomultipliers (SiPMs)
e Simplified to a 3 x 3 area of SiPMs with Anger logic
localization
 Quantified differences between actual scintillation
event position and computed event position with
varying light spreader thicknesses
Tileable detector module assembled using:
* |deas ROSSPAD readout module
e 8 by 8 array of 6 mm SensL MICROFJ-60035-TSV SiPMs
e 3 mm of Eljen Technologies EJ-200 scintillator
e Polycarbonate light spreader
Data collection and processing methods were developed
e Packet capture data processed and stored in a SQLite
database file
e Using flood field illumination data, background, noise,
and gain corrections were generated for each SiPM
e Scintillation events were localized using a dual 1D
Gaussian fitting method
 Localized events were combined into high-resolution
energy weighted and unweighted radiographs
A fan beam image was generated using a narrowly
collimated Cs-137 source
e The spatial resolution of the system was determined
using the full-width half-max (FWHM) and modulation
transfer function (MTF) of the fan beam
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RESULTS

e 3 mm thick light spreader allows for the best localization
based on Anger logic methods
e Gaussian localization methods provide better continuous
event localization compared to nearest neighbor Anger
logic localization
* Precise background, noise, and gain correction drastically
improves localization accuracy within the detector
e Fan beam measurements using Cs-137 show a spatial
resolution of 2.25 mm
e Spatial resolution is approximately 1/3 the pitch of the
SiPMs, effectively turning every SiPM into 9 pixels
* Goal of sub-SiPM resolution achieved
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FUTURE WORK

e Edge correction to spread events to edge of the ROSSPAD

e Characterize spatial resolution using neutrons

e Build a prototype flat-panel neutron radiography imager

 |Improve localization methods to span across multiple
adjacent ROSSPAD readout modules

 Develop and characterize thicker, segmented scintillator
blocks

e |ncrease spatial resolution to 1.25-1.00 mm (1/4 - 1/6
SiPM pitch)
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