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ABSTRACT
Some of the most significant achievements of the modern era of

particle physics, such as the discovery of the Higgs boson, have

been made possible by the tremendous effort in building and oper-

ating large-scale experiments like the Large Hadron Collider or the

Tevatron. In these facilities, the ultimate theory to describe matter

at the most fundamental level is constantly probed and verified.

These experiments often produce large amounts of data that require

storing, processing, and analysis techniques that continually push

the limits of traditional information processing schemes. Thus, the

High-Energy Physics (HEP) field has benefited from advancements

in information processing and the development of algorithms and

tools for large datasets. More recently, quantum computing appli-

cations have been investigated to understand how the community

can benefit from the advantages of quantum information science.

Nonetheless, to unleash the full potential of quantum computing,

there is a need to understand the quantum behavior and, thus,

scale up current algorithms beyond what can be simulated in clas-

sical processors. In this work, we explore potential applications

of quantum machine learning to data analysis tasks in HEP and

how to overcome the limitations of algorithms targeted for Noisy

Intermediate-Scale Quantum (NISQ) devices.
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1 INTRODUCTION
High-energy physics (HEP) is the branch of physics that deals

with understanding matter at the most fundamental level. Our

current understanding of the universe is encapsulated in the so-

called standard model (SM) of particle physics. Although the SM has

been verified extensively through validating theoretical predictions

with experimental results, many questions remain unanswered,

such as the nature of dark matter and the neutrino mass.

Large-scale experiments have been built to probe or extend the

SM. An example of these experiments is the Large Hadron Collider

(LHC) and the upcoming Deep Underground Neutrino Experiment

(DUNE). At these large-scale facilities, high-performance data stor-

age and processing schemes are needed to store, access, retrieve,

distribute, and process experimental data, posing a challenge to

conventional information processing techniques.

HEP research programs could benefit tremendously from current

and future QIS technologies and applications. Both fields are woven

into the fabric of reality at the deepest level, and it should not

be surprising that QIS represents powerful enabling technological

advances in HEP. Some of the applications that have been explored

include:

• Simulation of quantum systems [3, 13],

• Calculation of HEP-relevant nuclear physics calculations,

such as neutrino-nucleus scattering cross sections [7],

• Understanding quantum gravity [15],

• Quantum sensors for the detection of beyond-the-SM physics

and particles [1, 2], and

• Data analysis with quantum computers [11].

This manuscript focuses on the latter, analyzing experimental

data from HEP experiments, assisted by quantum-enhanced algo-

rithms, and particularly quantum machine learning (QML) tech-

niques.

2 QUANTUMMACHINE LEARNING
QIS is a rapidly developing field focused on understanding the anal-

ysis, processing, and transmission of information using quantum

mechanical principles and computational techniques. QIS could ad-

dress the conventional computing gap associated with HEP-related

problems, specifically those computational tasks that challenge

CPUs and GPUs, such as efficient and accurate event generators

and classifiers. Another potential groundbreaking application of

QIS technologies is the quantum-enhanced search for beyond-the-

SM physics.

QML lies at the intersection of QIS and machine learning. The

hope is to leverage QIS and speed up some subroutines in classical
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Figure 1: Diagram of a typical interaction of a proton-proton
collision at the LHC, where two protons collide at a speed
close to that of light. The collision debris is studied by multi-
purpose detectors such as the Compact Muon Solenoid (CMS)
and ATLAS, which employ different detection mechanisms,
including calorimetry and silicon pixel trackers, to recon-
struct the initial interaction as accurately as possible. The
combined information from these sub-detector systems is
integrated in an optimized way to construct higher-level ob-
jects such as jets and particle tracks, amenable to statistical
analysis for signal extraction. Thus, a typical HEP analysis
of experimental data involves reliable simulation, clustering,
and classification tools.

machine learning algorithms to speed up training times, enhance

model expressibility and generalization, find correlations that are

not trivial for classical neural network-based models, and reduce

the training sample size.

In HEP, several algorithms have been explored to analyze experi-

mental data, including track reconstruction [19], jet clustering [10]

and tagging [12], and generative modeling [9]. See Ref. [11] for an

extensive overview of QML applications to HEP data analysis.

3 VARIATIONAL CIRCUIT TRAINING.
Currently, most QML models are trained in a hybrid setting in the

universal quantum computing model, incorporating both classical

and quantum resources. In this context, a parameterized quantum

circuit (PQC) replaces the classical neural network. Its parameters

are optimized through classical means, such as gradient and non-

gradient based optimization on a classical device.

A parameterized quantum circuit is typically structured as a

composition of repeated layers

𝑈 (𝜃 ) =
𝐷∏
𝑑=1

𝑈𝑑 (𝜃 (𝑑) ) (1)

where𝑈𝑑 is a parameterized unitary with trainable parameters 𝜃 (𝑑)

and that is repeated 𝐷 times. Each unit-cell or circuit block consists

of a rotation and an entangling component.

Thus, PQCs can be seen as components of a model designed for

a data-driven task, such as classification or generative modeling.

Figure 2: Diagram of the differentiable QCBM training
scheme.

Circuit learning then involves iteratively updating the parameters

according to a pre-defined cost function towards a goal.

4 UNSUPERVISED QUANTUM CIRCUIT
LEARNING

Quantum generative models are expected to exhibit an advantage

over their classical counterparts in terms of runtime and the number

of parameters needed to learn data distributions due to their strong

expressive power. Furthermore, the ability of quantum information

processors to represent vectors in 𝑁−dimensional spaces using

log(𝑁 ) qubits and to perform manipulations of sparse and low-rank

matrices in time 𝑂(poly(log(𝑁 ))) [16] motivates the exploration of

quantum generative models as an alternative to classical generative

models in HEP.

A quantum circuit Born machine (QCBM) is an example of an

implicit model for generative learning [18] that generates samples

by performing measurements in a given quantum register, as a

Born machine[4, 8]. To train a QCBM, we start by constructing a

parameterized unitary ⟨0|𝜃 |0⟩ that prepares 𝑁 - qubits in the state

|ΨΘ⟩ = 𝑈 ( ®𝜃 ) |Φ0⟩. Then, a classical distribution can be obtained

over 2
𝑁
computational basis states by measuring |ΨΘ⟩ in a fixed

basis. The parameter optimization is then performed by minimizing

a loss function L(𝑃𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑃𝑄𝐶𝐵𝑀 ) that computes the similarity

between the target distribution (𝑄) and the distribution sampled

from the QCBM(𝑃 ).

In Ref. [9], we use non-adversarial gradient-based training of

8- and 12-qubit QCBMs to generate joint distributions over 2 and

3 variables to generate synthetic data of a typical HEP process.

We used several circuit ansatzes found in the quantum comput-

ing literature and tested the trainability of QCBM initialized with

different quantum states. These ansatzes were chosen because of

their proven trainability for QML applications and their ability to

be deployed on hardware.

Although both circuit designs (Figure 3) were able to reproduce

the joint target distribution and associated marginals with high

fidelity, only Ansatz 1 was able to fit the correlations between 2- or

3-variables. Furthermore, we observed a high impact in the ansatz

choice in the model capacity and trainability, suggesting a need for

an efficient way to design circuit ansatz tailored to the task at hand.

Motivated by the success of gradient-based training for 12 qubits

QCBM, we seek to explore the scalability of quantum generative

models trained in an unsupervised setting beyond 12 qubits and
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Figure 3: Diagram for one layer of the circuit templates used
to construct and train the QCBM in Ref. [9]. For both ansatz,
a final layer of rotation gates is added before measurement.
The rotational gates used in the unitary are the universal
rotation gates, with three trainable parameters.

to develop strategies to overcome the limitations of training large-

scale QML models.

5 BUILDING SYMMETRIES INTO QUANTUM
CIRCUIT LEARNING

The PQC design plays an essential role in the performance of any

QML model by defining the hypothesis class. Highly parameter-

ized circuits designed for noisy intermediate-scale quantum (NISQ)

device applications offer great flexibility by providing generaliza-

tion capabilities for a wide range of potential solutions in shallow

depths. However, scalability is often an issue. Enhanced expressibil-

ity comes at the expense of trainability issues limiting the extent

to which these circuits can be optimized at a scale [6, 14, 17]. Fur-

thermore, parameter optimization over deep circuits can lead to

noise-induced trainability issues [21]. This problem affects QML ap-

plications specifically, where it is hard to find a "problem-inspired"

ansatz, as in the case of quantum simulations. To this end, we study

an informed ansatz design with sufficiently independent parame-

ters per layer to be realized in a shallow depth but maintain the

expressibility needed for the QML task at hand.

In Ref. [20], the concept of ORB circuits that incorporate spatial

symmetries of the system under study was introduced. The method

is based on the correlation of gate parameters belonging to the

same "orbit" according to the symmetries of the problem. It was

also shown that the ORB method allows maximizing the number of

free parameters per circuit layer without impeding the trainability

of the circuits. The general idea behind the construction of ORB-like

circuits for unsupervised circuit learning tasks is the possibility

of reducing the space of states that need to be explored during

training.

We employ the hardware-efficient SU(2) 2-local circuit to explore

this effect. The circuit consists of layers of single-qubit operations

spanned by SU(2) and CX entanglements. 𝑆𝑈 (2) stands for special
unitary group of degree 2. The group elements are 2 × 2 unitary ma-

trices with determinant 1, such as the Pauli rotation gates. Here, we

use the Pauli-Y and Z single qubit gates, along with CX gates for en-

tanglement, applied in a "linear" configuration, among neighboring

pairs of qubits

Figure 4: Diagram of the circuit designs considered in this
study for n=5 qubits.

𝑈 (𝜃 (𝑑) ) = 𝑈𝑒𝑛𝑡 ×
𝑛∏
𝑖=1

𝑅𝑌 (𝜃𝑑𝑖,1)𝑅𝑍 (𝜃
𝑑
𝑖,2) (2)

for rotations acting on the qubits 𝑖 = 1, ..., 𝑛. All the rotational gates

used to construct the circuit are independent and updated in every

single iteration of the training workflow (Figure 4(a)).

An ORB-inspired circuit is also considered, where, assuming a

vertical symmetry on reflection over the middle qubit in the circuit,

rotational gates are grouped into "orbits". Gates in the same orbit

share parameters, effectively reducing the number of trainable

parameters (Figure 4(b)).

6 RESULTS
To understand the impact of reducing the number of trainable pa-

rameters in our circuit design, we study their performance, focusing

on their scaling for increased problem size.

We start by training a parameterized Efficient SU(2) circuit to re-

produce a gaussian probability distribution through gradient-based

optimization. The cost function is the Jensen-Shannon loss evalu-

ated between the target and the QCBM-sampled distributions, and

optimized using the Adam optimizer with a learning rate optimized

for every circuit. We obtain the optimal number of layers (𝐿𝐶 (𝜖))
by trating 𝐿𝐶 (𝜖) as a hyperparameter during training. By starting

from circuits with two layers, we increase the number of layers by

one, until the JS value reaches a plateau. Circuits are initialized in

the all-zero state and random parameters. A numerical simulation

is performed in a noiseless setting in PennyLane [5].

In Figure 5, we observe the effect of increasing the number of

layers in a circuit. For a small number of layers, the JS value is

high, and performance is highly dependent on the choice of initial

parameters.

To gauge the performance of ORB circuits when compared to

the fully parameterized Efficient SU(2) circuit, we compare the JS

loss value between circuits constructed with the Efficient SU(2) and

the ORB-like ansatzes evaluated on the trained parameters. The

experiment is repeated 25 times, and the mean JS value is plotted

in Figure 6. The bars correspond to the standard deviation. We

notice that for 𝑛𝑞𝑢𝑏𝑖𝑡𝑠 = 5 (gray), the JS value converges at a similar

number of layers for both Efficient SU(2) and ORB circuits. For

𝑛𝑞𝑢𝑏𝑖𝑡𝑠 = 7, it takes a larger number of layers for the ORB circuit to

reach a similar performance than the Efficient SU(2) circuit.
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Figure 5: JS value between target and QCBM distributions as
a function of the number of layers in the circuit.

Figure 6: JS value between target and QCBMdistributions as a
function of the number of layers in circuits constructed with
the Efficient SU(2) ansatz (open circles) and ORB-inspired
ansatz (solid circles) for 𝑛𝑞𝑢𝑏𝑖𝑡𝑠 = 5 (gray) and 7 (green).

Figure 7: Number of independent parameters at 𝐿𝐶 (𝜖) as a
function of the number of qubits in circuits constructed with
the Efficient SU(2) ansatz (green) and ORB-inspired ansatz
(gray).

Additionally, we will report the number of independent param-

eters corresponding to 𝐿𝐶 (𝜖) and where 𝑛𝑙 denotes the number

of parameters per layer. In Figure 7, the number of independent

parameters at 𝐿𝐶 (𝜖) is plotted as a function of the number of qubits

in circuits constructed with the Efficient SU(2) ansatz (green) and

ORB-inspired ansatz (gray). For the case of 𝑛𝑞𝑢𝑏𝑖𝑡𝑠 = 3 and 5, 𝐿𝐶 (𝜖)
is the same. For 𝑛𝑞𝑢𝑏𝑖𝑡𝑠 = 7, 𝐿𝐶 (𝜖) = 13 and 18 for circuits con-

structed with the Efficient SU(2) ansatz and ORB-inspired ansatz,

respectively. The general trend is a smaller number of indepen-

dent parameters needed to train 𝑂𝑅𝐵−inspired circuits than the

traditional Efficient SU(2) ansatz.

7 CONCLUSION
Quantum computing, specifically quantum machine learning, has

found many applications in the field of HEP for analyzing experi-

mental data. Although several algorithms have been explored and

benchmarked on various NISQ devices, several limitations are still

associated with the adaption of QIS technologies in day-to-day

analysis workflows.

One of the challenges explored in this study is the scalability

of some of the traditional circuit designs available in the QML

literature. The number of resources required for training QML

models scales with the depth and size of the circuits. Thus, it is

desirable to incorporate domain knowledge into the ansatz design to

reduce the number of circuit evaluations and trainable parameters.

We extend the work presented in Ref. [9], where we success-

fully trained a 12-qubit QCBM by leveraging the symmetry asso-

ciated with the circuit structure in the Efficient SU(2) ansatz. In

unsupervised quantum circuit learning, we demonstrate that by

considering the symmetry related to the Efficient SU(2) ansatz, we

can pack many more free parameters per layer while ensuring a

similar expressibility. These preliminary results show that although

the number of parameters is considerably reduced, trainability is

not affected, and learning performance is comparable to the over-

parameterized circuit baseline. As a follow-up, we will test this

methodology for circuits with 𝑛𝑞𝑢𝑏𝑖𝑡𝑠 greater than seven qubits

and expand the study to leverage symmetries introduced by two-

qubit gates and other circuit designs.
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