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ABSTRACT
Aria is a Galerkin finite element based program for solving coupled-physics problems described by

systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state

problems in two and three dimensions on parallel architectures. The suite of physics currently

supported by Aria includes thermal energy transport, species transport, and electrostatics as well as

generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for

manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low

Reynolds number (𝑅𝑒 < 1) regime. Enhanced modeling support of manufacturing processing is made
possible through use of either arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving

boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control.

Coupled physics problems are solved in several ways including fully-coupled Newton’s method with

analytic or numerical sensitivities, fully-coupled Newton-Krylov methods and a loosely-coupled

nonlinear iteration about subsets of the system that are solved using combinations of the

aforementioned methods. Error estimation, uniform and dynamic ℎ-adaptivity and dynamic load
balancing are some of Aria’s more advanced capabilities.
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1. INTRODUCTION

This document describes the theoretical foundation of thermal analysis in Sierra Mechanics. The

SIERRAMultimechanics Module: Aria, henceforth referred to as Aria for brevity, was developed at

Sandia National Laboratories under the ASC program, and approximates linear and nonlinear

continuummodels of heat transfer. Aria uses the SIERRA Framework [8], which provides data

management services commonly required by computational mechanics software, and facilitates the

development of coupled, multi-mechanics applications for massively parallel computers. The

mathematical models in Aria are based heavily on those of COYOTE, a well-established thermal analysis

program that was also developed at Sandia [10, 11] and its ASC code predecessor, Calore [3]. Aria, Calore

and COYOTE share a significant body of numerical methods, which are described in detail by Reddy

and Gartling [23]. Throughout this document, the terms software and implementation are

synonymous with the Aria thermal-fluid analysis computer program.

Whether one uses Aria to perform heat transfer analysis, or in developing a new capability for the Aria

application, this document provides the information needed understand the existing numerical

algorithm implementations. Justification for the fundamental assumptions of heat transfer, nor

derivation of the energy conservation equations are included in this document. For a more thorough

theoretical background, one is referred to one of the many available textbooks, e.g. [21, 17]. Another

reference, which is freely available in downloadable electronic form, is Lienhard and Lienhard [18].
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2. GOVERNING EQUATIONS

Aria, Sierra TF, was primarily developed to perform steady and unsteady thermal analysis of systems

that consist of multiple solid materials, though it provides a limited capability for simulating fluid

materials. Particular emphasis is given to systems that are associated with nuclear weapons components

in normal and abnormal thermal environments, as well as certain manufacturing processes thereof. The

main governing equations are the energy conservation equation in unsteady or steady form. A

fundamental assumption of the mathematical models described herein is that the relevant length scales

are large with respect to the molecular mean free path, so that the laws of continuummechanics may be

applied.

The governing equations and associated mathematical models may evolve with each release of Aria. It is

not our intent to publish corresponding versions of this document and maintain a one-to-one

correlation with each released version of Aria. Instead, we regard this document as a reference for all

versions of Aria, and will note in the text if the implementation of a particular model equation is either

obsolete or forthcoming at the time of writing. For a description of the features available in a particular

version of Aria, the reader should consult the Aria Users’ Reference Manual and Release Notes.

In this chapter, we begin with a brief discussion of a representative heat transfer problem, and present

the conservation equation in differential form. These equations include terms for modeling volumetric

heat sources and other, more specialized phenomena. Next, we discuss the set of initial and boundary

conditions that are available in Aria.

To fix the notation, consider Figure 2.0-1, which is a schematic representation of a typical heat transfer

problem. The entire domain is represented byΩ, which, for example, lies in three-dimensional
coordinate space, with spatial coordinates x. In this particular case,Ω consists of two separate

subdomains,Ω = Ω1 ∪ Ω2. These subdomains may consist of different materials. The entire boundary

ofΩ is indicated by 𝜕Ω, subject to one or more boundary conditions on subsections we denote with a
subscript on Γ. For example, let Γ𝑞 be that portion of 𝜕Ω along which a specified heat flux normal to

the boundary is applied; similarly, let Γ𝑇 be subject to an applied temperature; let the surface Γ𝑎 be

adiabatic (no heat flux); let Γ𝑟, be subject to an applied radiation heat flux; and let Γℎ be subject to a

convective heat flux, which is modeled by Newton’s law of cooling. Note that the boundary conditions

are of two types: either the flux or the temperature is specified. Finally, the interface betweenΩ1 andΩ2

is denoted 𝜕Ω1−2. The interface conditions applied along a boundary such as 𝜕Ω1−2 are that both the

temperature and the normal component of the heat flux are continuous. Given appropriate initial

conditions, the problem is to determine the time-evolution of the temperature field.
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Figure 2.0-1.. A schematic diagram of the mathematical thermal model, showing the domainΩ; the subdomainsΩ𝑖 and their

interfaces 𝜕Ω𝑖−𝑗 ; and the boundary conditions on the surface Γ.

2.1. CONSERVATION OF ENERGY

The conservation of energy within a solid material may be expressed as

𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
+∇ · q = 𝑞, (2.1)

where 𝑇 is the temperature, 𝑡 is time, 𝜌 is density,𝐶𝑃 is constant pressure specific heat, q is the heat flux

vector, and 𝑞 the volumetric heating. Note that very complex functional forms of the volumetric
heating term are possible so that in general 𝑞 = 𝑞(x, 𝑡, 𝑇 ). For example, as discussed in Section 3.1, it is
possible to introduce non-diffusive chemical reactions so that 𝑞 depends on additional chemical species
variables, which are not represented in (2.1). In this case, additional conservation equations for the time

evolution of the species must be solved. Fourier’s Law of Heat Conduction expresses the heat flux as a

function of temperature gradient, namely

q = −K∇𝑇, (2.2)

whereK = 𝑘𝑖𝑗 denotes a thermal conductivity tensor. The corresponding conductivity matrix must be
positive definite (in both the stationary and transient problems). For the case of an isotropic thermal

conductivity (principal axes aligned with coordinate directions), the matrix is diagonal, with the

element of row 𝑖 and column 𝑗 given by

𝑘𝑖𝑗 =

{︂
𝑘 for 𝑖 = 𝑗
0 for 𝑖 ̸= 𝑗

(2.3)

and the heat flux model simplifies to

q = −𝑘∇𝑇 . (2.4)
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Upon substitution of equation (2.2) into (2.1), we obtain

𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
−∇ · (K∇𝑇 ) = 𝑞 (2.5)

For fluid materials, energy of fluid motion characterized by the velocity vector v and pressure 𝑃 gives

rise to changes in temperature owing to deformation of the flow. Accounting for this energy leads to

two different forms of the energy equation, one expressed in terms of𝐶𝑣, the constant volume specific

heat

𝜌𝐶𝑣

(︂
𝜕𝑇

𝜕𝑡
+ v · ∇𝑇

)︂
+ 𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂⃒⃒⃒⃒
𝑣

∇ · v −∇ · (K∇𝑇 ) = 𝑞, (2.6)

and another in terms of the constant pressure specific heat𝐶𝑝

𝜌𝐶𝑃

(︂
𝜕𝑇

𝜕𝑡
+ v · ∇𝑇

)︂
− 𝜌𝑇

(︂
𝜕𝑣

𝜕𝑇

)︂⃒⃒⃒⃒
𝑃

(︂
𝜕𝑃

𝜕𝑡
+ v · ∇𝑃

)︂
−∇ · (K∇𝑇 ) = 𝑞, (2.7)

where evaluations of the partial derivatives 𝜕𝑃/𝜕𝑇 and 𝜕𝑣/𝜕𝑇 require an equation of state for the

fluid.

For constant density fluids the second term of equation(2.6) is zero and likewise for the second term of

equation(2.7) by virtue of 𝜕𝑣/𝜕𝑇 . Furthermore for nearly incompressible flows and nearly constant
pressure flows the second term of both equation(2.6) and (2.7) are zero. Hence in many cases one

considers the energy transported by mechanism of convection by adding an additional term to equation

(2.1) to obtain

𝜌𝐶𝑃

(︂
𝜕𝑇

𝜕𝑡
+ v · ∇𝑇

)︂
−∇ · (K∇𝑇 ) = 𝑞 . (2.8)

We remark that if the ratio of convective forces to diffusive forces is large, then (2.8) becomes difficult to

solve numerically. In many cases, specialized techniques for convection-dominated flows must be

used [16, 23].

Typically, v is an unknown which is obtained from solving the mass and momentum conservation

equations of fluid dynamics. These equations are outside the scope of the mathematical models

described herein but are discussed in the Aria user manual. As long as the velocity field is divergence

free, it may be regarded as input data and used in equation (2.8).

2.1.1. Statement of the Transient Problem

We are now in a position to state mathematically the initial–boundary value problem described at the

beginning of this chapter. Let the domainΩ consist of𝑁 non-overlapping subdomains, each of which

may be either solid or fluid. Let 𝒮 be the set of subdomains in solid phase, andℱ the set of subdomains

in fluid phase. Then the statement of the boundary value problem becomes, find the temperature

12



𝑇 = 𝑇 (x, 𝑡), which satisfies

𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
−∇ · (K∇𝑇 ) = 𝑞 ∀ x ∈ {Ω𝑖 |Ω𝑖 ∈ 𝒮}; 𝑡 > 𝑡0 (2.9a)

𝜌𝐶𝑃

(︂
𝜕𝑇

𝜕𝑡
+ v · ∇𝑇

)︂
−∇ · (K∇𝑇 ) = 𝑞 ∀ x ∈ {Ω𝑗 |Ω𝑗 ∈ ℱ}; 𝑡 > 𝑡0 (2.9b)

𝑇 (x, 𝑡0) = 𝑇0(x) ∀ x ∈ Ω (2.9c)

𝑇 (x, 𝑡) = 𝑇𝑏(x, 𝑡) ∀ x ∈ Γ𝑇 (2.9d)

𝑞𝑛 = 𝑓𝑏(x, 𝑡, 𝑇 ) ∀ x ∈ 𝜕Ω ∖ Γ𝑇 (2.9e)

[[𝑞𝑛]] = 0 ∀ x ∈ {𝜕Ω𝑖−𝑘 |Ω𝑖,Ω𝑘 ∈ 𝒮} (2.9f )

Here 𝑞𝑛 is the component of flux normal to a surface, where 𝑞𝑛 = q · n̂, and n̂ is the outward unit

normal vector. The notation 𝜕Ω ∖ Γ𝑇 indicates the complement of Γ𝑇 in 𝜕Ω,

𝜕Ω ∖ Γ𝑇 = {x ∈ 𝜕Ω | x /∈ Γ𝑇} ,

or the boundary ofΩ excluding the surface Γ𝑇 . In order for the problem to be well posed, it is not

possible to specify both the flux and the temperature at the same location. Note that the initial

condition 𝑇0, the temperature boundary condition 𝑇𝑏, and the flux boundary condition 𝑓𝑏 are usually
specified in a piecewise manner over the subdomains and their boundaries. Various forms of the

specified flux function 𝑓𝑏(x, 𝑡, 𝑇 ) are possible and will be described later in this chapter. For example,
an adiabatic condition is specified if 𝑓𝑏(x, 𝑡, 𝑇 ) = 0. The notation [[𝑞𝑛]] represents the jump in the
normal flux across a surface between two subdomains.

2.1.2. Statement of the Stationary Problem

For stationary, or steady-state problems, (2.1) may be simplified since the time derivative vanishes, by

definition. Accordingly, for solid subdomains we obtain

−∇ · (K∇𝑇 ) = 𝑞, (2.10)

and for fluid subdomains, (2.8) reduces to

𝜌𝐶𝑃v · ∇𝑇 −∇ · (K∇𝑇 ) = 𝑞 (2.11)

Hence, we are led to the following boundary value problem statement: Given a domainΩ, which
consists of solid and fluid subdomains as described in Section 2.1.1, find the temperature 𝑇 = 𝑇 (x),
which satisfies

−∇ · (K∇𝑇 ) = 𝑞 ∀ x ∈ {Ω𝑖 |Ω𝑖 ∈ 𝒮} (2.12a)

𝜌𝐶𝑃v · ∇𝑇 −∇ · (K∇𝑇 ) = 𝑞 ∀ x ∈ {Ω𝑖 |Ω𝑖 ∈ ℱ} (2.12b)

𝑇 (x) = 𝑇𝑏(x) ∀ x ∈ Γ𝑇 (2.12c)

𝑞𝑛 = 𝐹𝑏(x, 𝑇 ) ∀ x ∈ 𝜕Ω ∖ Γ𝑇 (2.12d)

[[𝑞𝑛]] = 0 ∀ x{𝜕Ω𝑖−𝑘 |Ω𝑖,Ω𝑘 ∈ 𝒮} (2.12e)
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We assume that all the symbols in the equations have the meaning known in calculus. A summary of

notation and symbols is given in Table 9.0-1 and 9.0-2 on page 63. We assume, also, that the various

fields and their derivatives are well behaved. Later, in Section 5.2, we provide some discussion on the

requirements on the values and derivatives of both material properties and boundary conditions such

that a temperature solution exists and is unique.

2.2. MATERIAL PROPERTIES

To avoid issues in applying these equations to domains with multiple materials, i.e., discontinuities in

conductivity, finite element boundaries must always be aligned with material boundaries [2].

In the software implementation, the density, specific heat, and thermal conductivity are allowed to vary.

Note that in equation (2.5) the product 𝜌𝐶𝑃 may change with time, but its sign must not be allowed to

change. For all material properties, predefined Aria modules handle constants, piecewise linear

time-dependent and temperature-dependent functions, and a user subroutine interface allows

completely arbitrary variation. Particularly in the case of a user subroutine, it is left to the user to meet

smoothness and admissibility requirements.

2.2.1. Anisotropic Thermal Conductivity

In the previous section on governing equations the thermal conductivity was treated as being an

isotropic tensor where the tensor principal directions were aligned with the coordinate (𝑥𝑦) axes.
However, in a more general setting one will often know the principal values of conductivity in a material

orientation (𝑥′𝑦′) as shown in Figure 2.2-1 rather than the coordinate axes. In this case provisions are
made to transform the thermal conductivity into a coordinate frame consistent with the formulation.

x

y

y'
x'

Figure 2.2-1.. Material thermal conductivity principle directions relative to computational axes directions.
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Since the material orientation can vary spatially the transformation capability is supported for all

elements of the meshed discretization thus the orientation and principal directions are more

conveniently supplied from file. Alternatively, the transformation can be performed within a user

subroutine. This capability is supported for both two and three dimensions.
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3. VOLUMETRIC HEATING

In this chapter, we discuss the volumetric heating term, 𝑞, which appears in the problem statements

given in equations (2.9) and (2.12). This termmay vary in space and time, and is defined piecewise over

each subdomainΩ𝑖. Physically, 𝑞 represents a local heat source or heat sink, expressed in the units of
power per unit volume.

In Section 3.1 we discuss endothermic and exothermic chemical reactions, in Section 3.2 we discuss the

concentrated point source, and in Section 3.3 we discuss the radiative source term.

3.1. CHEMICAL HEATING

Materials undergoing non–diffusive endothermic or exothermic chemical reactions can be modeled in

Aria. The effect of such reactions is incorporated into the energy conservation equation as a volumetric

heating term, which is calculated from the reaction rates. In this section, we give a brief overview of the

equations implemented in Aria
1
.

The volumetric heating due to the reactions may be written as

𝑞(x, 𝑡, 𝑇 ) =
𝑁𝑟∑︁
𝑗=1

R𝑗𝑟𝑗, (3.1)

whereR𝑗 is the known endothermic or exothermic energy release for step 𝑗 of the reaction, 𝑟𝑗 is the
calculated reaction rate for the same step, and the summation over the index 𝑗 is performed for the𝑁𝑟

reaction steps.

Step 𝑗 of a multi–step chemical reaction can be expressed using the stoichiometric equation

𝑁𝑠∑︁
𝑖=1

𝜈 ′𝑖𝑗𝑀𝑖 →
𝑁𝑠∑︁
𝑖=1

𝜈 ′′𝑖𝑗𝑀𝑖, (3.2)

where𝑀𝑖 is the chemical symbol for species 𝑖, 𝜈
′
𝑖𝑗 is the stoichiometric coefficient of the reactant species

𝑖 in reaction step 𝑗, 𝜈 ′′𝑖𝑗 is the stoichiometric coefficient of the product species 𝑖 in reaction step 𝑗, and𝑁𝑠

represents the number of chemical species. When a species does not occur as a reactant or product in

equation (3.2) for a particular reaction step, the corresponding stoichiometric coefficient is set to zero.

1
Heat transfer in the presence of chemical reactions is detailed in Glassman’s Combustion [13].
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The net rate of change in the concentration of the species is determined from the following ordinary

differential equation:

𝑑𝑁𝑖

𝑑𝑡
=

𝑁𝑟∑︁
𝑗=1

(𝜈 ′′𝑖𝑗 − 𝜈 ′𝑖𝑗)𝑟𝑗, (3.3)

where𝑁𝑖 is the concentration (or mole fraction) for species 𝑖. In equations (3.1) and (3.3), the reaction
rates are calculated according to the law of mass action

𝑟𝑗 = 𝑘𝑗

𝑁𝑠∏︁
𝑖=1

𝑁
𝜇𝑖𝑗

𝑖 for 𝑗 = 1, 2, . . . , 𝑁𝑟, (3.4)

where 𝑘𝑗 is the kinetic coefficient for reaction step 𝑗, and 𝜇𝑖𝑗 is the given concentration exponent for

reaction step 𝑗 and species 𝑖. The kinetic coefficient, 𝑘𝑗 , for each reaction step is usually determined
from the Arrhenius equation, which may be written as

𝑘𝑗 = 𝐴𝑗 exp

(︂
−𝐸𝑗

𝑅𝑇

)︂
𝑇 𝛽𝑗 , (3.5)

where𝐴𝑗 is the pre-exponential factor,𝐸𝑗 is the activation energy,𝑅 is the appropriate universal gas

constant, 𝑇 is the temperature and 𝛽𝑗 is the steric coefficient.

Upon substitution of (3.5) and (3.4) into (3.3), we obtain a nonlinear system of ordinary differential

equations for the evolution of the chemical species concentrations, namely

𝑑𝑁𝑖

𝑑𝑡
=

𝑁𝑟∑︁
𝑗=1

[︃
(𝜈 ′′𝑖𝑗 − 𝜈 ′𝑖𝑗)𝐴𝑗 exp

(︂
−𝐸𝑗

𝑅𝑇

)︂
𝑇 𝛽𝑗

𝑁𝑠∏︁
𝑘=1

𝑁
𝜇𝑘𝑗

𝑘

]︃
(3.6)

Equation (3.6), with appropriate initial conditions for the species concentrations, must be solved

simultaneously with equation (2.9) to obtain the time evolution of the temperature field and species

concentrations. This is a difficult coupled system of nonlinear equations to solve, because the time scales

associated with the chemical reactions can be very different from the time scale associated with

conduction. Furthermore, the time scale associated with one chemical reaction step may be very

different from the next. An operator splitting strategy is used to decouple the concentration equations

from the energy equation at every time step. More detail on this subject is presented in chapter 8.

Finally, the thermal properties of the chemical material are regarded as weighted averages of the𝑁𝑠

values associated with each species component. Another weighted average that is sometimes useful

when interpreting results is the reacted gas fraction, 𝑓𝑅𝐺, which is defined as the fraction of reacting

material that exists in gas phase,

𝑓𝑅𝐺 =

(1−𝑋𝑐)
𝑁𝑠∑︀
𝑖=1

𝑁𝑖𝑔𝑖

𝑁𝑠∑︀
𝑖=1

𝑁𝑖

(3.7)

where𝑋𝑐 represents the condensed fraction for the reactive material, and the parameter 𝑔𝑖 is defined
as

𝑔𝑖 =

{︂
1 if𝑁𝑖 is a gas phase species

0 if𝑁𝑖 is not a gas phase species
(3.8)
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3.2. POINT SOURCES

It is possible to specify a heating source or sink that is concentrated at a single point. In this case

𝑞 = 𝑞0(𝑡)𝛿(x− x0), (3.9)

where 𝑞0(𝑡) is the magnitude of the point source and has units of power, x0 is the coordinates of the

point at which the point source is located, and 𝛿(x− x0) is the Dirac delta function. Note that 𝛿 has
units of the reciprocal of the volume. A point source of the form (3.9) has no real physical basis, since

the power is concentrated at an infinitesimal point. Nevertheless, it is sometimes a useful model.

3.3. RADIATIVE SOURCES

Thermal energy may be transferred through radiation as well as conduction. Aria treats radiative

transfer through the Simplified Spherical Harmonics (SPn) approximation [22], an asymptotic

correction to the diffusion limit of the linear Boltzmann equation.

−∇ ·
(︂
𝜇2
𝑛

𝜎𝑇
∇𝐼𝑛

)︂
+ 𝜎𝑇 𝐼𝑛 = 𝜎𝑆4𝜋

(𝑁+1)/2∑︁
𝑚=1

𝑤𝑚𝐼𝑚 + 𝜎𝐴𝐼𝑏 (3.10)

with the Mark boundary condition given by

− 𝜇𝑛

𝜎𝑇
∇𝐼𝑛 · 𝑛⃗ =

𝜖

2− 𝜖
(𝐼𝑛 − 𝐼𝑏)+

1− 𝜖

2− 𝜖

⎡⎣∑︀(︁
𝐼𝑘 − 𝜇𝑘

𝜎𝑇
∇𝐼𝑘 · 𝑛⃗

)︁
𝜇𝑘𝑤𝑘∑︀

𝜇𝑘𝑤𝑘

− 𝐼𝑛 +
𝜇𝑛

𝜎𝑇
∇𝐼𝑛 · 𝑛⃗

⎤⎦ (3.11)

where 𝜇𝑛 and𝑤𝑛 are the nodes and weights of the Gauss-Legendre quadrature rule respectively. Only

𝜇𝑛 > 0 are included due to symmetry. 𝐼𝑏 is the blackbody intensity given by 𝐼𝑏 =
𝜎𝑇 4

𝜋
. 𝜎𝑆 , 𝜎𝐴, and 𝜎𝑇

are the isotropic scattering, absorption, and extinction coefficients which are related by 𝜎𝑇 = 𝜎𝐴 + 𝜎𝑆 .
The volumetric source is

𝑞 = 4𝜋𝜎𝐴

⎛⎝(𝑁+1)/2∑︁
𝑚=1

𝑤𝑚𝐼𝑚 − 𝜎𝑇 4

𝜋

⎞⎠ (3.12)
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4. INTERFACE AND BOUNDARY
CONDITIONS

The initial–boundary value problem given in (2.9) and the boundary value problem given in (2.12)

include specification of the temperature and flux on the external and internal surfaces. In this chapter

we discuss the conditions that may be applied at these surfaces.

4.1. INTERFACE CONDITIONS

Heat conduction in a multi-material body, as shown in Figure 2.0-1, is a common occurrence in thermal

models. At the interface between two subdomainsΩ𝑖 andΩ𝑗 , we assume a zero jump in the heat flux in

the direction normal to the interface,

[[𝑞𝑛]] = 0, (4.1)

and one of two conditions involving the temperature.

4.1.1. Perfect Contact, or Tied Contact

The first and most common condition is to enforce continuity of temperature at the interface,

𝑇 |𝜕Ω𝑖
− 𝑇 |𝜕Ω𝑗

= 0, (4.2)

where the notation 𝑢 |𝜕Ω𝑖
indicates that the temperature is to be evaluated on the surface 𝜕Ω𝑖, which is

associated with the subdomainΩ𝑖.

4.1.2. Contact Resistance

The second condition allows for a model of imperfect contact between two solid surfaces, which can

take account of surface roughness. Through such an interface, heat transfer follows different paths:

effective conduction through solid-to-solid contact, poor conduction through gas-filled interstices, and

inefficient thermal radiation across gaps.

We treat this contact by setting the “gap” flux across the interface proportional to the temperature

drop,

𝑞𝑛|𝜕Ω𝑖
− 𝑞𝑛|𝜕Ω𝑗

= ℎ𝑐

(︁
𝑇 |𝜕Ω𝑖

− 𝑇 |𝜕Ω𝑗

)︁
, (4.3)
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where the constant ℎ𝑐 is the contact conductance, which is similar to a heat transfer coefficient, e.g., it
would have the unitsW/m2K. The value of contact conductance is dependent upon the following1:

• temperatures of the two materials at the contact surface;

• the materials in contact;

• surface finish and cleanliness;

• pressure at which the surfaces are forced together;

• the substance, or lack of it, in the interstitial spaces.

4.1.3. Surface Radiation

In the case where radiation heat transfer is present in one subdomainΩ𝑖 but not in an adjacent

subdomainΩ𝑗 the radiative heat flux must be accounted for at the interface betweenΩ𝑖 andΩ𝑗 . In this

case, the total heat flux must be conserved.

𝑞𝑛|𝜕Ω𝑖
− 𝑞𝑛|𝜕Ω𝑗

= 𝑞𝑟𝑎𝑑, (4.4)

For the SPn approximation, the radiative heat flux is given by

𝑞𝑟𝑎𝑑 = −4𝜋

(𝑁+1)/2∑︁
𝑚=1

𝑤𝑚
𝜇2
𝑚

𝜎𝑇
∇𝐼𝑚 (4.5)

4.2. BOUNDARY CONDITIONS

As mentioned in Section 2.1.1, either the temperature or the flux may be specified on a given boundary

surface: it is mathematically incorrect to specify the temperature and the flux at the same location. For

the temperature solution to be well-behaved, the boundary data should be smooth. This means, for

example, that the boundaries themselves should not have re-entrant corners or discontinuities in the

curvature. Also the applied temperatures and fluxes should be continuous. However, when performing

thermal analysis on systems of practical interest, such restrictions are often difficult to meet. Generally

speaking, the effects of such discontinuities are usually manifested as local singularities, or localized

oscillations in the temperature field. In practical terms, this may mean sub-optimal convergence of the

associated numerical method.

1
More on the theory of contact conductance, and the values of conductances for typical surface finishes andmoderate contact

pressures can be found in [15, 18, 19].
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4.2.1. Specified Temperature

The specified temperature boundary condition is probably the most straightforward boundary

condition to apply. Since, by definition, it is not a function of the unknown temperature field, its

complexity is limited to being a known function of space and time. The specified temperature must be

continuous on the surface of each subdomain, 𝜕Ω𝑖.

4.2.2. Specified Heat Flux

The heat flux boundary condition may be written as

𝑞𝑛 = −k∇𝑇 · n̂ = 𝑞𝑏 (x, 𝑡, 𝑇 ) , (4.6)

where 𝑞𝑏(x, 𝑡) is a given function. Note that an adiabatic boundary condition defines a zero heat flux
boundary condition:

𝑞𝑛 = 0 (4.7)

4.2.3. Convection Heat Flux

Heat exchange that occurs across surfaces that are exposed to a fluid environment may be modeled using

Newton’s Law of Cooling,

𝑞𝑛 = ℎ (𝑇 − 𝑇𝑟) , (4.8)

where ℎ indicates the convection coefficient, and 𝑇𝑟 represents the reference temperature. In the finite
element literature, this boundary condition is often referred to as mixed, since neither the temperature

nor the flux is known, but their combination is a known function.

Generally speaking, ℎ and 𝑇𝑟 are not independent. The convection coefficient, which is usually a
function of position, time, surface temperature, reference temperature, and possibly other parameters,

is often evaluated using a correlation (e.g. see [21]). The reference temperature, which is sometimes

associated with the free-stream fluid temperature, or the boundary layer temperature, etc., may be a

function of time or other variables. Usually it is a known quantity, because the fluid with which it is

associated is modeled as an infinite reservoir. However, if the size of this reservoir is finite, then its

temperature can be affected by the energy transfer across the surface in question. This situation is

discussed in Section 4.2.6.

4.2.4. Surface Radiation

A surface may exchange energy with its surroundings through thermal radiation. Any incident surface

radiation will be either transmitted, reflected or absorbed. Letting 𝜏 , 𝜌 and 𝛼 represent the fractions of

the incident flux in each category then

1 = 𝜏 + 𝜌+ 𝛼 (4.9)

and for no transmission

1 = 𝜌+ 𝛼 o𝑟 𝜌 = 1− 𝛼 . (4.10)
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Using the Kirchhoff identity

𝛼 = 𝜖 (4.11)

then the reflectance is

𝜌 = 1− 𝜖 (4.12)

where 𝜖 is the emissivity.

In order to understand the radiative energy balance at a surface one considers the rate at which energy

streams away from the surface, the radiosity, defined as

𝐽 = 𝐸𝑏 + 𝜌𝐺 (4.13)

where𝐸𝑏 is the blackbody emissive power and𝐺 is the irradiation. Substituting for the reflectance (4.12)

then

𝐽 = 𝜖𝐸𝑏 + (1− 𝜖)𝐺 .

The surface flux 𝑞 is the difference between the energy that radiates away and the incident energy

𝑞 = 𝐽 −𝐺 (4.14)

and substitution for the radiosity we find that

𝑞 = 𝜖(𝜎𝑇 4 −𝐺) . (4.15)

When𝐺 is derived from an external temperature interaction this boundary condition is often called

far-field radiation, since it usually models the radiative transfer of energy between a surface and the

external environment. However, the boundary condition is found to have more general utility when

one considers its role in modeling radiative transfer between two surfaces, 1& 2, as shown in
Figure 4.2-1, where𝐴1 is analogous to 𝜕Ω𝑖.

A

T

1

1

n
1

2

2

2

n

T

A

Figure 4.2-1.. Surface Radiative Exchange

For the case in which the temperature 𝑇2 is known and independent of temperature 𝑇1 then using the
emissive power 𝜎𝑇 4

the normal flux per unit area across𝐴1 may be written as

𝑞 = 𝜎𝜖𝐹
(︀
𝑇 4
1 − 𝑇 4

2

)︀
, (4.16)

where 𝜎 denotes the Stefan-Boltzmann constant, 𝜖 is the emissivity of the surface𝐴1 and 𝐹 is the form

factor. We remark that (4.16) is a nonlinear boundary condition, since the unknown temperature, 𝑇1 is
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raised to the fourth power and furthermore the emissivity may be a function of temperature. It is

important to note that the form factor 𝐹 may differ from the more familiar view factor 𝐹12 encountered

in enclosure radiation problems. The question often asked is how does one determine the appropriate

value of form factor 𝐹 .

The form factor 𝐹 can be best described using a network analogy of radiative transfer between two

surfaces as shown below. Using the emitted energy𝐸 and radiosity 𝐽 the network the heat flux can be

1−ε2

ε2

1−ε1

ε1 F12

E1 J1 J2 E2

A1

A2

q

1

Figure 4.2-2.. Radiative Transfer Circuit Model

written in terms of a thermal resistance𝑅 as

𝑞 = 𝜎
𝑇 4
1 − 𝑇 4

2

𝑅
(4.17)

and from the network model

𝑅 =
1− 𝜖1
𝜖1

+
1

𝐹12

+
1− 𝜖2
𝜖2

𝐴1

𝐴2

=

(︂
1

𝜖1
− 1

)︂
+

1

𝐹12

+

(︂
1

𝜖2
− 1

)︂
𝐴1

𝐴2

. (4.18)

For𝐴2 ≫ 𝐴1 the third term of𝑅 can be neglected and 𝐹12 = 1. Comparing expressions (4.16) and
(4.17) then

𝑅 =
1

𝜖1
and 𝐹 = 1 . (4.19)

so estimation of 𝐹12 is not required.

For 𝜖2 = 1 (black receiving surface) but𝐴2 not ≫ 𝐴1 and once again the third term of𝑅 can be

neglected so that

𝑅 =
1− 𝜖1
𝜖1

+
1

𝐹12

=
(1− 𝜖1)𝐹12 + 𝜖1

𝜖1𝐹12

and 𝐹 =
𝐹12

(1− 𝜖1)𝐹12 + 𝜖1
. (4.20)

If both surfaces are black 𝜖1 = 𝜖2 = 1 then from the previous expression (4.20) we find that

𝐹 = 𝐹12.

During a simulation the surface heat flux is integrated over the spatial discretization of surface𝐴1. Here

we note that defining the flux on a per unit area basis enables us to apply the radiative flux (4.16)

consistently with 𝐹 evaluated for the entire surface𝐴1 even when the surface is discretized.

4.2.5. Enclosure Radiation

When energy radiates from one portion of a surface to another, and the intermediate medium is

transparent(i.e., it does not absorb any energy), then enclosure radiation may be used to model the heat
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flux on the surface. Using the net radiation method [25], the normal flux at a particular location on the

surface may be written as the difference between the emitted radiative heat flux leaving the surface, and

the absorbed incident radiative flux due to the rest of the enclosure, namely

𝑞𝑛 = 𝜎𝜖𝑇 4 − 𝛼𝐺, (4.21)

where 𝛼 denotes the absorptivity of the surface, and𝐺 represents the surface irradiation. Under the

additional assumption that the emissivity, absorptivity, and reflectivity are independent of direction and

wavelength, we may write

𝜖 = 𝛼 = 1− 𝜌, (4.22)

where we have used the conventional symbol 𝜌 for reflectivity. In this section, 𝜌 always refers to
reflectivity and not density.

Without loss of generality, we can regard the enclosure, Γℰ , as a union of𝐸 surfaces,

Γℰ = Γ1 ∪ Γ2, . . .Γ𝐸−1 ∪ Γ𝐸

This situation is illustrated in Figure 4.2-3, where the the radiosity for surface 𝑖 in the enclosure is
defined to be

𝐽𝑖 = 𝜎𝜖𝑖𝑇
4
𝑖 + 𝜌𝑖𝐺𝑖, (4.23)

where 𝑢𝑖 is the spatially constant temperature on Γ𝑖. The surface irradiation for surface 𝑖 is determined
by the radiosity of all the other surfaces in the enclosure through the relation

𝐺𝑖 =
𝐸∑︁

𝑗=1

𝐹𝑖𝑗𝐽𝑗, (4.24)

where 𝐹𝑖𝑗 denotes the geometric viewfactor of surface 𝑖with respect to surface 𝑗. The viewfactor may be
considered the fraction of energy that leaves surface 𝑖 and arrives at surface 𝑗.

Upon substitution of equations (4.24) and (4.22) into (4.23), the radiosity may be written as

𝐽𝑖 − (1− 𝜖𝑖)
𝑁∑︁
𝑗=1

𝐹𝑖𝑗𝐽𝑗 = 𝜎𝜖𝑖𝑇
4
𝑖 , (4.25)

Finally, the first 𝐽𝑖 term in (4.25) may be moved inside the summation to yield

𝑁∑︁
𝑗=1

[𝛿𝑖𝑗 − (1− 𝜖𝑖)𝐹𝑖𝑗] 𝐽𝑗 = 𝜎𝜖𝑖𝑇
4
𝑖 , (4.26)

where

𝛿𝑖𝑗 =

{︂
1 if 𝑖 = 𝑗
0 if 𝑖 ̸= 𝑗

(4.27)

(4.26) is a nonlinear system of equations for the radiosities that must be solved simultaneously with

either (2.9) or (2.12). Finally, we may rewrite (4.21) to express the normal flux boundary condition on

surface 𝑖 as
𝑞𝑛 = 𝜎𝜖𝑇 4 − 𝜖𝐺𝑖, (4.28)

where𝐺𝑖 is given by (4.24).
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Figure 4.2-3.. Two arbitrary facets radiating energy to one another in a radiation enclosure. The energy exchanged depends

on: the shape, orientation, distance, area𝐴𝑖,𝐴𝑗 , temperatures 𝑇𝑖, 𝑇𝑗 , and radiative properties of the facets 𝜖𝑖, 𝜖𝑗 .

4.2.6. Bulk Fluid

The bulk fluid model is used in conjunction with the convective flux boundary condition given by (4.8).

The idea is that the fluid reservoir to which the surface is attached is not infinite, so that the surface flux

affects the reservoir temperature. In this case, the flux normal to the surface of the finite element mesh is

given by

𝑞𝑛 = ℎ (𝑇𝑏 − 𝑇 ) , (4.29)

where 𝑇𝑏 represents the temperature of the bulk fluid, and 𝑇 is again the local temperature of the

surface. Note that this flux is equal in magnitude and opposite in sign to that in (4.8), since it is written

with respect to the bulk fluid volume, instead of the finite element mesh. The bulk fluid temperature is

an average temperature throughout the reservoir, which is obtained by solving the integral conservation

equation

𝑑

𝑑𝑡
(𝑉 𝜌𝑐𝑇𝑏) = −

∫︁
𝜕𝑉

𝑞𝑛 𝑑𝐴, (4.30)

where 𝜌 and 𝑐 denote the density and the specific heat of the bulk fluid, respectively, and 𝑉 indicates the

bulk fluid volume. (4.30) states that the time rate of change of the bulk fluid energy is equal to the sum

of the energy crossing the boundary. Note that we have implicitly made the flowing assumptions: there

is no work due to pressure; there are no internal energy sources; there is no mass flow across 𝜕𝑉 . Upon
substitution of (4.29), we obtain

𝑑

𝑑𝑡
(𝑉 𝜌𝑐𝑇𝑏) +

∫︁
𝜕𝑉

ℎ (𝑇𝑏 − 𝑇 ) 𝑑Γ = 0 (4.31)

We remark that, although 𝑇𝑏 is constant in space, 𝑇 is allowed to vary across the interface separating the

bulk fluid from the domainΩ. In summary, the flux boundary condition is defined by (4.29), which,
since it involves 𝑇𝑏, must be solved simultaneously with (4.31).
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For the stationary problem given by (2.12), (4.31) reduces to∫︁
𝜕𝑉

ℎ (𝑇𝑏 − 𝑇 ) 𝑑Γ = 0. (4.32)
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5. DISCRETIZATION

In this chapter, we discretize the governing equations and their boundary conditions in space and time
1
.

There are several approaches that can be used to accomplish this. Aria currently first semi-discretizes in

space using the Galerkin method, and then discretizes in time using finite differences. Alternative

approaches include first semi-discretizing in time using finite differences, then discretizing in space.

Another possibility would be to discretize in space and time simultaneously using a space-time finite

element formulation.

In Section 5.1, we use the method of weighted residuals
2
to obtain a weak statement for the stationary

problem given by (2.12); we then use this weak statement to form the associated Galerkin

approximations in Section 5.3. In Section 5.4, we form a similar weak statement for the transient

problem given by (2.9); in Section 5.5, we discretize the resulting weak statement in space using

Galerkin’s method and use finite differences to discretize in time. We continue the analysis in chapter 6,

where we introduce the finite element approximations.

Although the stationary and transient problem statements include separate partial differential

equations for the fluid and solid subdomains, in this chapter, we consider only the energy equation for

fluid subdomains since the equation for solid subdomains may be obtained by setting 𝑇𝑖 = 0. The
development in this chapter closely follows that of Becker, et al. [2]. The interested reader should

consult this reference for a more detailed presentation.

5.1. WEAK STATEMENT OF THE STATIONARY
PROBLEM

We begin with (2.11), which we rewrite as

𝜌𝐶𝑃v · ∇𝑇 −∇ · (k∇𝑇 )− 𝑞 = 0 (5.1)

We emphasize that (5.1) is part of the problem statement given by (2.12), and is therefore defined over

each subdomainΩ𝜄. In fact, because of the possibility of discontinuities in the material properties at the

interface between two subdomains, the second derivatives of 𝑢may not exist on such interfaces. This
means that it is not possible to simply integrate (5.1) over the entire domainΩ. In fact, the lack of
well–defined second derivatives is precisely the reason why this equation was written in each subdomain

in the problem statement given by (2.12) in the first place. Accordingly, we begin by multiplying (5.1) by

1
The development in this chapter closely follows that in Finite Elements: An Introduction, by Becker, et al. [2].

2
This classical method is treated in depth in TheMethod ofWeightedResiduals and Variational Principles, by Finlayson [9]
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an arbitrary, admissible test function,𝑤, and integrating the result over a single subdomainΩ𝜄. This

integral may be written as ∫︁
Ω𝜄

𝑤 [𝜌𝐶𝑃v · ∇𝑇 −∇ · (k∇𝑇 )− 𝑞] 𝑑𝑉 = 0 (5.2)

Next, in order to integrate the second term in (5.2) by parts, we introduce the following identity:∫︁
Ω𝜄

∇ · (𝑤k∇𝑇 ) 𝑑Ω =

∫︁
Ω𝜄

∇𝑤 · k∇𝑇 𝑑Ω +

∫︁
Ω𝜄

𝑤∇ · (k∇𝑇 ) 𝑑Ω (5.3)

Upon substitution of (5.3) into (5.2), we obtain∫︁
Ω𝜄

(𝑤𝜌𝐶𝑃v · ∇𝑇 +∇𝑤 · k∇𝑇 − 𝑤𝑞) 𝑑Ω−
∫︁
Ω𝜄

∇ · (𝑤k∇𝑇 ) 𝑑Ω = 0 (5.4)

Next, we introduce the Gauss Divergence Theorem, which converts a volume integral to a surface

integral, and may be written as∫︁
Ω𝜄

∇ · (𝑤k∇𝑇 ) 𝑑Ω =

∫︁
𝜕Ω𝜄

𝑤k∇𝑇 · n̂ 𝑑Γ (5.5)

Upon substitution of (5.5) into (5.4) and rearranging terms, we obtain∫︁
Ω𝜄

(𝑤𝜌𝐶𝑃v · ∇𝑇 +∇𝑤 · k∇𝑇 − 𝑤𝑞) 𝑑Ω = −
∫︁
𝜕Ω𝜄

𝑤𝑞𝑛 𝑑Γ, (5.6)

where we have substituted 𝑞𝑛 = −k∇𝑇 · n̂.

The next step in obtaining the weak statement is to sum the contributions from (5.6) over each

subdomainΩ𝜄 to obtain the integral over the entire domain,Ω. This is now valid, because no second

derivatives appear in (5.6). Hence, we may write

𝑁∑︁
𝜄=1

∫︁
Ω𝜄

(𝑤𝜌𝐶𝑃v · ∇𝑇 +∇𝑤 · k∇𝑇 − 𝑤𝑞) 𝑑Ω = −
𝑁∑︁
𝜄=1

∫︁
𝜕Ω𝜄

𝑤𝑞𝑛 𝑑Γ (5.7)

The sum of the volume integrals on the left hand side of (5.7) may be readily combined into a single

integral, namely

𝑁∑︁
𝜄=1

∫︁
Ω𝜄

(𝑤𝜌𝐶𝑃v · ∇𝑇 +∇𝑤 · k∇𝑇 − 𝑤𝑞) 𝑑Ω

=

∫︁
Ω

(𝑤𝜌𝐶𝑃v · ∇𝑇 +∇𝑤 · k∇𝑇 − 𝑤𝑞) 𝑑Ω (5.8)

The sum of the surface integrals on the right hand side of (5.7) requires more care. Consider that the

surface integral associated with each subdomainΩ𝜄 consists of two parts. The first part is over the

portion of 𝜕Ω𝜄 which intersects the exterior surface 𝜕Ω, which we denote 𝜕Ω𝜄 ∩ 𝜕Ω. The second part is
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what is left over, and consists of internal surfaces that divide one subdomain from another, which we

denote 𝜕Ω𝜄 ∖ 𝜕Ω. The sum of surface integrals on the right hand side of (5.7) is therefore

𝑁∑︁
𝜄=1

∫︁
𝜕Ω𝜄

𝑤𝑞𝑛 𝑑Γ =
𝑁∑︁
𝜄=1

∫︁
𝜕Ω𝜄∩𝜕Ω

𝑤𝑞𝑛 𝑑Γ +
𝑁∑︁
𝜄=1

∫︁
𝜕Ω𝜄∖𝜕Ω

𝑤𝑞𝑛 𝑑Γ (5.9)

Now, the sum of the integrals over the exterior surfaces 𝜕Ω𝜄 ∩ 𝜕Ω is simply the integral over the entire

boundary surface 𝜕Ω. The second sum in (5.9) reduces to the sum of the integrals of the flux jumps [[𝑞𝑛]]
over each interior interface

3
. Since the problem statement given in (2.12) specifies that these jumps are

zero, (5.9) reduces to

𝑁∑︁
𝜄=1

∫︁
𝜕Ω𝜄

𝑤𝑞𝑛 𝑑Γ =

∫︁
𝜕Ω

𝑤𝑞𝑛 𝑑Γ (5.10)

Upon substitution of equations (5.10) and (5.8) into (5.7), we have∫︁
Ω

(𝑤𝜌𝐶𝑃v · ∇𝑇 +∇𝑤 · k∇𝑇 ) 𝑑Ω = −
∫︁
𝜕Ω

𝑤𝑞𝑛 𝑑Γ +

∫︁
Ω

𝑤𝑞 𝑑Ω (5.11)

Finally, we describe the class of admissible test functions𝑤, which appear in (5.11). Clearly, the values of
𝑤 and its first derivatives must exist so that the integrals in (5.11) are well–defined. Furthermore, the

value of𝑤 should vanish on Γ𝑇 , which we previously defined in Section 2.1.1 to be that portion of 𝜕Ω
on which the temperature is specified.

Now, we can completely replace the set of differential equations and interface conditions given in (2.12)

with the following alternative problem: Find the function 𝑇 (x), such that 𝑇 = 𝑇𝑏 on Γ𝑇 ,𝑤 = 0 on
Γ𝑇 , and ∫︁

Ω

(𝑤𝜌𝐶𝑃v · ∇𝑇 +∇𝑤 · k∇𝑇 ) 𝑑Ω = −
∫︁
𝜕Ω∖Γ𝑇

𝑤𝑞𝑛 𝑑Γ +

∫︁
Ω

𝑤𝑞 𝑑Ω (5.12)

for all admissible𝑤.

(5.12) is often called a weak statement of the problem given by (2.12) because the second derivatives of

the temperature do not appear. More specifically, the original differential equation (5.1) requires that the

solution 𝑢(x) have second derivatives that exist in each subdomainΩ𝜄, whereas (5.12) only requires that

the first derivatives of 𝑇 (x) be integrable over the entire domainΩ. We remark that a solution to the

original problem (2.12) is also a solution to the weak statement (5.12). However, the converse is not

necessarily true: a solution to the weak statement is only a solution to the original problem if it is

sufficiently smooth.

5.2. WELL-POSED PROBLEMS

In order that a unique solution exists and behaves itself, for both the stationary and transient problems,

there are many requirements on the input data that must be satisfied. By input data we mean the

supplied domain geometry, initial conditions, boundary conditions, and material coefficients. A fully

3
The details on how the sumof theweighted fluxes on the subdomain boundaries reduces to the jumps is in Becker, et al. [2].
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detailed enumeration of the requirements on the input data is beyond the scope of this manual, and

some requirements fall in the realm of research. We have, however, hinted at some of the known

requirements at various points in the text, and below in this Section we mention a couple other issues.

This is an important topic, and we hope in a future edition to be able to cover it more fully.

As an aside, consider the meaning of the term well-posed problem. We say that a problem is well-posed

if there exists a solution, it is unique, and it depends continuously on the data—otherwise the problem

is said to be ill-posed. A well-posed problem is not always more physically realistic than an ill-posed one,

and many times a well-posed problemmay be unrealistic. As for the term stability, it is most often used

to mean that the problem is “continuous with respect to the data”. That is, if we change the problem

slightly, the solution changes only slightly.

Regarding specific requirements on the heat source 𝑞—for the stationary problem, in order that the

solution exist, a compatibility condition between 𝑞 and the applied boundary data must be satisfied.
The compatibility condition is a statement of the global conservation principle forΩ. Its exact form
depends upon the individual terms which appear in the differential conservation equations in (2.12), as

well as the applied boundary data
4
. For the transient problem, any function 𝑞 that is sufficiently smooth

over each subdomainΩ𝑖 is admissible, as long as it is finite and integrable in space and time.

When using a set of boundary conditions that do not specify temperature at any point, the solution

(temperature field) is only defined up to an arbitrary constant, i.e., the solution is not unique. Aria may

or may not be able to automatically check for this requirement.

Regarding the smoothness of input functions, we must assume that the necessary derivatives of input

quantities exist in order that the solution, 𝑇 (x, 𝑡), exists. In other words, there are restrictions that must
be imposed on the smoothness of the various input data, including material properties and boundary

conditions. The smoothness restrictions are stronger in the strong form of the equations (in chapter 2),

and correspondingly weaker in the weak form of the equations discussed in this chapter. It is the weak

form of the equations to which the Aria program actually tries to provide an approximate solution. No

matter what the smoothness restrictions, Aria cannot reliably enforce them—especially inside user

subroutines.

To summarize, it is primarily up to the user to provide valid admissible input data. Exercise caution to

ensure a proper problem formulation.

5.3. GALERKIN APPROXIMATION FOR THE
STATIONARY PROBLEM

Solutions to the weak statement given by (5.12) lie in a certain infinite-dimensional space of functions

that have derivatives; we denote this space𝐻 . Galerkin’s method seeks approximate solutions to the

weak statement represented by a linear combination of a finite set of basis functions {𝜓1, 𝜓2, . . . , 𝜓𝑁}

4
Again, more details on the compatibility condition may be found in Becker, et al. [2].
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that defines a finite-dimensional subspace𝐻ℎ ⊂ 𝐻 . We then seek a function 𝑇ℎ ∈ 𝐻ℎ
of the form

𝑇ℎ =
𝑁∑︁
𝑖=1

𝛼𝑖𝜓𝑖, (5.13)

which satisfies the weak form in𝐻ℎ
and where the 𝛼𝑖 are unknown constants. If the 𝜓𝑖 are Lagrange

basis functions, then the constants 𝛼𝑖 = 𝑇𝑖: the constants correspond to the evaluation of the
approximation at a node.

Upon substitution of (5.13) into (5.12), and allowing the test function𝑤 to be each element of𝐻ℎ
, we

arrive at the discrete form of our weak statement: Find the function 𝑇ℎ(x) ∈ 𝐻ℎ
, such that 𝑇ℎ = 𝑇𝑏 on

Γ𝑇 and

𝑁∑︁
𝑗=1

[︂∫︁
Ω

(𝜓𝑖𝜌𝐶𝑃u · ∇𝜓𝑗 +∇𝜓𝑖 · k∇𝜓𝑗) 𝑑Ω

]︂
𝛼𝑗

= −
∫︁
𝜕Ω∖Γ𝑇

𝜓𝑖𝑞𝑛 𝑑Γ +

∫︁
Ω

𝜓𝑖𝑞𝑑Ω (5.14)

for all 𝜓𝑖, 𝑖 = 1, . . . , 𝑁 .

Here, (5.14) represents𝑁 fully discrete equations for the unknown constants 𝑇𝑗 . For known flux
functions 𝑞𝑛 ̸= 𝑞𝑛(𝑢), we may write this system of equations as the matrix system

𝑁∑︀
𝑗=1

(𝑈𝑖𝑗 +𝐾𝑖𝑗)𝛼𝑗 = 𝑓𝑖, 𝑖 = 1, . . . , 𝑁 (5.15)

where

𝑈𝑖𝑗 =

∫︁
Ω

𝜓𝑖𝜌𝐶𝑃u · ∇𝜓𝑗 𝑑Ω (5.16a)

𝐾𝑖𝑗 =

∫︁
Ω

∇𝜓𝑖 · k∇𝜓𝑗 𝑑Ω (5.16b)

𝑓𝑖 = −
∫︁
𝜕Ω∖Γ𝑇

𝜓𝑖𝑞𝑛 𝑑Γ +

∫︁
Ω

𝜓𝑖𝑞 𝑑Ω (5.16c)

The matrix 𝑈𝑖𝑗 represents the convection matrix,𝐾𝑖𝑗 the diffusion matrix, and 𝐹𝑖 is the forcing vector.

Note that if v ̸= 0, then the matrix system in (5.15) is non-symmetric.

The finite element method provides a convenient, systematic way to construct the basis functions 𝜓𝑖.

We address this important issue in chapter 6, in which we also discuss the case where 𝑞𝑛 is a function of
the temperature, wherein the essential difference is that the associated boundary integral has

contributions to the matrix entries𝐾𝑖𝑗 as well as the forcing function 𝑓𝑖.
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5.4. WEAK STATEMENT OF THE TRANSIENT
PROBLEM

The development of the weak statement for the time-dependent case closely follows that for the

stationary case, which we developed in Section 5.1. We begin with the time-dependent energy

conservation equation, which we rewrite here as

𝜌𝐶𝑃

(︂
𝜕𝑇

𝜕𝑡
+ v · ∇𝑇

)︂
−∇ · (k∇𝑇 )− 𝑞 = 0 (5.17)

The key difference between (5.17) and (5.1) is the introduction of the new independent variable, 𝑡, and
the associated time derivative term. All of the discussion in Section 5.1 regarding subdomain interfaces,

flux jumps, and solution smoothness is relevant for the present case. If the method of weighted residuals

is applied to (5.17), for the problem statement given as (2.9), then the following weak statement is

obtained: Find the function 𝑇 (x, 𝑡), such that 𝑇 (x, 𝑡0) = 𝑇0, 𝑇 (x, 𝑡) = 𝑇𝑏 on Γ𝑇 , and𝑤 = 0 on Γ𝑇 ,

which satisfies∫︁
Ω

(︂
𝑤𝜌𝐶𝑃

𝜕𝑇

𝜕𝑡
+ 𝑤𝜌𝐶𝑃v · ∇𝑇 +∇𝑤 · k∇𝑇

)︂
𝑑Ω

= −
∫︁
𝜕Ω∖Γ𝑇

𝑤𝑞𝑛 𝑑Γ +

∫︁
Ω

𝑤𝑞 𝑑Ω (5.18)

for all admissible𝑤.

5.5. GALERKIN APPROXIMATION FOR TRANSIENT
PROBLEM

As in Section 5.3, let the infinite-dimensional space of solution functions be denoted𝐻 . We again

introduce a finite set of basis functions {𝜓1, 𝜓2, . . . , 𝜓𝑁}, which defines a finite-dimensional subspace
𝐻ℎ ⊂ 𝐻 . Given a value of 𝑡, we then seek a function 𝑇ℎ(x, 𝑡) ∈ 𝐻ℎ

of the form

𝑇ℎ(x, 𝑡) =
𝑁∑︁
𝑖=1

𝛼𝑖(𝑡)𝜓𝑖(x) (5.19)

which satisfies the weak form in𝐻ℎ
, and where the 𝛼𝑖(𝑡) are unknown, time-dependent coefficients. If

the 𝜓𝑖 are Lagrange basis functions, then the parameters 𝛼𝑖(𝑡) = 𝑇𝑖(𝑡): the interpolation parameters
correspond to the evaluation of the interpolation function at a given node. We assume that 𝑡 is
bounded,

𝑡0 ≤ 𝑡 ≤ 𝑡1 <∞ (5.20)
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Upon substitution of (5.19) into (5.18), and setting𝑤 = 𝜓𝑖, we arrive at the semi-discrete form of our

weak statement: Find the function 𝑇ℎ(x, 𝑡) ∈ 𝐻ℎ
, where 𝑡0 ≤ 𝑡 ≤ 𝑡1, such that 𝑇 (x, 𝑡0) = 𝑇0,

𝑇ℎ(x, 𝑡) = 𝑇𝑏 on Γ𝑇 , and

𝑁∑︁
𝑗=1

[︂∫︁
Ω

𝜌𝐶𝑃𝜓𝑖𝜓𝑗𝑑Ω

]︂
𝛼̇𝑗(𝑡)

+
𝑁∑︁
𝑗=1

[︂∫︁
Ω

(𝜓𝑖𝜌𝐶𝑃u · ∇𝜓𝑗 +∇𝜓𝑖 · k∇𝜓𝑗) 𝑑Ω

]︂
𝛼𝑗(𝑡)

= −
∫︁
𝜕Ω∖Γ𝑇

𝜓𝑖𝑞𝑛 𝑑Γ +

∫︁
Ω

𝜓𝑖𝑞 𝑑Ω

(5.21)

for each 𝜓𝑖, 𝑖 = 1, . . . , 𝑁 , and where 𝛼̇(𝑡) indicates the time derivative of 𝛼(𝑡).

Here, (5.21), represents𝑁 ordinary differential equations for the𝑁 unknown functions 𝛼𝑗(𝑡). For
known flux functions 𝑞𝑛 ̸= 𝑞𝑛(𝑢), we may write this system of equations as the matrix system

𝑁∑︀
𝑗=1

𝑀𝑖𝑗𝛼̇𝑗(𝑡) +
𝑁∑︀
𝑗=1

(𝑈𝑖𝑗 +𝐾𝑖𝑗)𝛼𝑗(𝑡) = 𝑓𝑖, 𝑖 = 1, . . . , 𝑁 (5.22)

where

𝑀𝑖𝑗 =

∫︁
Ω

𝜌𝐶𝑃𝜓𝑖𝜓𝑗𝑑Ω (5.23a)

𝑈𝑖𝑗 =

∫︁
Ω

𝜓𝑖𝜌𝐶𝑃v · ∇𝜓𝑗 𝑑Ω (5.23b)

𝐾𝑖𝑗 =

∫︁
Ω

∇𝜓𝑖 · k∇𝜓𝑗 𝑑Ω (5.23c)

𝑓𝑖 = −
∫︁
𝜕Ω∖Γ𝑇

𝜓𝑖𝑞𝑛 𝑑Γ +

∫︁
Ω

𝜓𝑖𝑞 𝑑Ω (5.23d)

The matrix𝑀𝑖𝑗 is often referred to as the mass or capacitance matrix. Note that if v ̸= 0, then the
matrix system in (5.22) is non-symmetric. Also, if any of the parameters in (5.23a-b), such as the material

properties, applied fluxes, or volumetric heating are time dependent, then the corresponding matrices

or vectors will also be time dependent. The system of ordinary differential equations given in (5.22)

must be numerically integrated in time. We discuss this issue in Section 5.6.

5.6. TIME DISCRETIZATION

There are many ways to integrate the system of ordinary differential equations given in (5.22). The

method employed by Aria uses is usually referred to as the variable-implicit method or theta-method.

Aria has the ability to adaptively step the ODE to reduce local error with respect to time, but we

emphasize that this says nothing about the global error in the ODE, i.e., the tolerance on the local error

is not a tolerance on the total accuracy of the ODE solution. More significantly, we should point out
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that a small error in the temporal discretization does not necessarily imply that there is a small error in

the spatial discretization.

We begin the description of Aria’s time integration strategy by rewriting (5.22) as

M(𝑡)Ṫ(𝑡) + K̂(𝑡)T(𝑡)− f(𝑡) = 0, (5.24)

where Ṫ(𝑡) andT(𝑡) are the vectors of entries 𝛼̇𝑗(𝑡) and 𝛼𝑗(𝑡), respectively, and whereM is the matrix

with entries given by (5.23a), K̂ is the matrix with entries 𝐾̂𝑖𝑗 = 𝑈𝑖𝑗 +𝐾𝑖𝑗 , and f is the vector with
entries given by (5.23d).

Numerical time integration of a partial differential equation requires both a discretized form of the

governing equation and a time integrator. The discrete form of (5.24) for time level 𝑛 can be written
as

M𝑛Ṫ𝑛 + K̂𝑛T𝑛 − f𝑛 = 0. (5.25)

A time integrator requires that the discrete approximation ofT(𝑡) be expressed as a function of
calculated data and one choice of this approximation is

T𝑛+1 = 𝑓(T𝑛+1, 𝑡𝑛+1,T𝑛, 𝑡𝑛,T𝑛−1, 𝑡𝑛−1, ...) (5.26)

where 𝑓 is often a function of computed derivatives ofT.

One form of (5.26) used in Aria is an implicit method which employs

T𝑛+1 = T𝑛 +Δ𝑡(1− 𝜃)Ṫ𝑛 + 𝜃Δ𝑡Ṫ𝑛+1
(5.27)

whereΔ𝑡 is the time step size and 𝜃 denotes the evaluation level within the time step, 𝜃 = 0 ⇒ 𝑡(𝑛)
and 𝜃 = 1 ⇒ 𝑡(𝑛+ 1).

The degree of implicitness of a given time discretization of (5.24) is determined by the time level at

which K̂(𝑡)T(𝑡) is evaluated—if at the old time level, then the scheme is said to be explicit, if at the new

time level, then fully implicit, and if at some average of the two, then semi-implicit. Combining (5.27)

with (5.25) at time levels 𝑛 and 𝑛+ 1 one obtains a variable implicit method

(︂
1

Δ𝑡𝑛
M+ 𝜃K̂𝑛+1

)︂
T𝑛+1 = 𝜃f𝑛+1 + (1− 𝜃)MṪ𝑛 +

1

Δ𝑡𝑛
MT𝑛

(5.28)

The case of 𝜃 = 1 corresponds to Euler implicit, 𝜃 = 1/2 corresponds to the trapezoid rule, and
𝜃 = 2/3 corresponds to Galerkin implicit. In general, this method is accurate only to first order in time,
but the special case of 𝜃 = 1/2 can be shown to be to be second-order accurate. It is important to note

that if K̂ or f depend uponT, then (5.28) is nonlinear.

The time derivative Ṫ𝑛
can be calculated using (5.27) as

Ṫ𝑛 =
T𝑛 −T𝑛−1

𝜃Δ𝑡𝑛−1
− 1− 𝜃

𝜃
Ṫ𝑛−1 . (5.29)
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Note that for 𝜃 = 1, Ṫ𝑛
is not needed for evaluation of (5.28). If 𝜃 ̸= 1, then the recursive nature of

(5.29) introduces some difficulty to the solution scheme since Ṫ𝑛−1
is not initially known. To

circumvent this potential issue, Aria uses the fully-implicit case (𝜃 = 1) and (5.28) becomes(︂
1

Δ𝑡𝑛
M+ K̂𝑛+1

)︂
T𝑛+1 = f𝑛+1 +

1

Δ𝑡𝑛
MT𝑛

(5.30)

or as one might expect

1

Δ𝑡𝑛
MṪ𝑛+1 + K̂𝑛+1T𝑛+1 − f𝑛+1 . (5.31)

Thus in the fully-implicit formulation one solves the discretized set of equation using information from

the current time plane with a selected representation of the time derivative.

In the simplest case one begins with an initial guess forT𝑛
and uses the first-order accurate time

derivative known as BDF1 (Backward Finite Difference 1).

Ṫ𝑛+1 =
T𝑛+1 −T𝑛

Δ𝑡𝑛
(5.32)

Another choice for the time derivative Ṫ𝑛
is the second-order approximation known as BDF2

(Backward Finite Difference 2)

Ṫ𝑛+1 =
3T𝑛+1 − 4T𝑛 +T𝑛−1

2Δ𝑡
. (5.33)

Obviously utilization of the above requires that the first two solution steps of (5.30) be obtained using

the first-order derivative (5.32). Theoretical time step bounds are available for the BDF2 time integrator

and the scheme is often used in time accurate simulations.

While it is possible to use a fixed, constantΔ𝑡while iterating (5.30), it is often preferable to allow the

timestep size to vary. Aria uses an automatic timestep size selection algorithm that allowsΔ𝑡 to vary
while satisfying several constraints

5
. The approach first calculates a candidate timestep size, using local

time truncation error estimates, then adjusts this value using several heuristic rules.

To calculate the candidate timestep size, assume that two time integrators of comparable accuracy are

available. If we compare local truncation error estimates for each scheme, and if we have a target value of

a truncation error norm in mind, then we can estimateΔ𝑡. The implicit scheme given by (5.28) is one
such integrator, but a second is needed. Since this second scheme is only required for the time step

selection algorithm, computational speed is important, and therefore we consider only explicit schemes.

If 𝜃 is chosen so that the implicit scheme is first-order accurate in time, then we use forward Euler
differencing, which may be written as

T𝑛+1
𝑝 = T𝑛 +Δ𝑡𝑛Ṫ𝑛

(5.34)

5
This algorithm is based on the approached described by Gresho, et al. [14], and is similar to that which is implemented in

COYOTE [10, 11].
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whereT𝑝 indicates the temperature that is predicted as a result of applying (5.34), and the acceleration

vector Ṫ𝑛
is calculated using (5.29). For 𝜃 = 1/2, a second-order accurate explicit scheme is required,

and the Adams–Bashforth difference formula is used, namely

T𝑛+1
𝑝 = T𝑛 +

Δ𝑡𝑛

2

[︂(︂
2 +

Δ𝑡𝑛

Δ𝑡𝑛−1

)︂
Ṫ𝑛 − Δ𝑡𝑛

Δ𝑡𝑛−1
Ṫ𝑛−1

]︂
(5.35)

where the acceleration vectors are calculated using 𝜃 = 1/2 in (5.29).

For 𝜃 > 1/2, the candidate time step size, (Δ𝑡)𝑐, is estimated according to

(Δ𝑡)𝑛+1
𝑐 = Δ𝑡𝑛

√︃
𝜃𝜀

(𝜃 − 1/2)‖T𝑛+1 −T𝑛+1
𝑝 ‖

(5.36)

where 𝜀 is the given, allowable value of the truncation error norm6
. A typical value of the truncation

error norm would be 0.0001. Here, the norm ‖ · ‖ indicates the non-dimensional root mean square
norm of a vector,

‖v‖ =
1

𝑣max

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

𝑣2𝑖 (5.37)

where

𝑣max = max
1≤𝑖≤𝑁

|𝑣𝑖| (5.38)

Note that in (5.36), the timestep grows as the square root of 𝜀. For 𝜃 = 1/2, the candidate timestep size
is calculated according to the second-order formula

(Δ𝑡)𝑛+1
𝑐 = Δ𝑡𝑛 3

√︃
3

(︂
1 +

Δ𝑡𝑛−1

Δ𝑡𝑛

)︂
𝜀

‖T𝑛+1 −T𝑛+1
𝑝 ‖

(5.39)

Note that in (5.39), the timestep grows with the cube root of 𝜀. We emphasize that the initialization

problem caused by the recursive nature of (5.35) is circumvented by using the initialΔ𝑡with 𝜃 = 1 for
the first two timesteps, then switching to 𝜃 = 1/2 and using (5.39) to calculateΔ𝑡 thereafter.

In practice, it is useful to limit the candidate timestep size calculated by the above procedure. Aria

imposes three limits on the timestep. The first limit is enforced only when there is volumetric heating

due to chemical reactions, as their effect is not directly included in either (5.36) or (5.39). Aria uses the

CHEMEQ library [26] to integrate (8.3) over the time interval. CHEMEQ uses a stiff ordinary

differential equation integrator, which adaptively subcycles species equations according to their

stiffness. Usually, the chemical time scales are much shorter than that of conduction. Hence, if (𝛿𝑡)𝑛𝑠
represents the minimum timestep size used to integrate the chemical species at timestep 𝑛, then we limit
(Δ𝑡)𝑛+1

𝑐 according to

(Δ𝑡)𝑛+1
𝑐 = min

(︀
(Δ𝑡)𝑛+1

𝑐 , 𝜒(𝛿𝑡)𝑛𝑠
)︀

(5.40)

where 𝜒 is a multiplication factor, typically on the order of 100.

6
We do not derive the local truncation error estimates here, since the method of using Taylor series analysis for this purpose

is well established, for example see [14].
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The second limit on the timestep allows control of how fast the solution changes from one timestep to

the next. Let |Δ𝑢|𝑚 denote the maximum change in temperature at a single mesh node from timestep 𝑛
to 𝑛+ 1, and |Δ𝑇 |𝑎 denote the allowable value of this difference. Then we enforce

if

(︂
|Δ𝑇 |𝑚

(Δ𝑡)𝑛+1
𝑐

Δ𝑡𝑛
> |Δ𝑇 |𝑎

)︂
then (Δ𝑡)𝑛+1

𝑐 =
0.95|Δ𝑇 |𝑎Δ𝑡𝑛

|Δ𝑇 |𝑚
(5.41)

(5.41) states that if the estimated maximum change in temperature exceeds the allowable change, then

the candidate timestep size is set to 5% less than the value required to prevent this condition.

Finally, the user is allowed to specify minimum and maximum values of the timestep size,Δ𝑡min and
Δ𝑡max, respectively. For the BDF2 method a theoretical limit ofΔ𝑡max = (1 +

√
2)Δ𝑡𝑛 is also imposed.

Therefore, we also restrict the candidate timestep size so that

Δ𝑡min ≤ (Δ𝑡)𝑛+1
𝑐 ≤ Δ𝑡max (5.42)

In summary, the candidate timestep size is first estimated using (5.36) for 𝜃 > 1/2 and (5.39) for
𝜃 = 1/2. Next, each of the applicable limits given in (5.40)- (5.42) are enforced to determine the
timestep size for the next iteration of (5.28),Δ𝑡𝑛+1

.
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6. FINITE ELEMENT APPROXIMATIONS

In chapter 5, we discretized the governing equations in space using Galerkin’s method. In this chapter,

we discuss two important, unresolved issues. The first issue is the method for constructing the basis

functions 𝜓𝑖, which appear in the weak statements given by Equations (5.14) and (5.21). The second

issue is the calculation of the associated integrals over the domain and its boundary. The finite element

method solves both of these issues, and is concisely described by Becker, et al [2]:

The finite element method provides a general and systematic technique for constructing

basis functions for Galerkin approximations of boundary value problems. The main idea is

that the basis functions [...] can be defined piecewise over subregions of the domain called

finite elements and that over any subdomain the [basis functions] can be chosen to be very

simple functions such as polynomials of low degree.

If the finite elements are also chosen to have convenient shapes (like triangles and quadrilaterals) for

calculating integrals, then the integration over the entire domain is also facilitated.

To fix ideas, consider Figure 6.0-1, which shows a one-dimensional domain partitioned into four finite

elements. In Figure 6.0-1(a), the global, piecewise linear basis function for node 3, 𝜓3, is shown as the

standard “hat” function. This function has a value of unity at node 3 and zero in elements not
connected to node 3. The finite element approach to constructing 𝜓3 is shown in Figure 6.0-1(b). On

each element, two linear functions 𝜓𝑒
𝑖 are defined, 𝑒 ∈ {1, 2, 3, 4}, 𝑖 ∈ {1, 2}. If we add 𝜓2

2 from the

left element to𝜓3
1 from the right element, then we see that the global basis function𝜓3 is constructed.

Now, consider the global stiffness matrixK, with row 𝑖 and column 𝑗 defined by (5.23c). We now

rewrite this integral as the sum over each finite element, namely

𝐾𝑖𝑗 =
𝐸∑︁

𝑒=1

∫︁
Ω𝑒

∇𝜓𝑖 · k∇𝜓𝑗 𝑑Ω (6.1)

In (5.23c), the global basis function 𝜓𝑖 is nonzero only on those elements which support node 𝑖. Hence

we can consider the contributions to the global stiffness matrix from element 𝑒, and define

𝐾𝑒
𝑖𝑗 =

∫︁
Ω𝑒

∇𝜓𝑒
𝑖 · k∇𝜓𝑒

𝑗 𝑑Ω (6.2)

There is a subtle difference in the interpretation of the indices in (6.1) as opposed to (6.2). In (6.1), the

indices 𝑖 and 𝑗 are global, and span all nodes in the finite element mesh. In (6.2), the indices 𝑖 and 𝑗 are
local, and only span the number of element shape functions. Aria calculates the element stiffness matrix

contributions defined in (6.2) and assembles the results into the correct locations in the global stiffness

matrix using a mapping from the local node numbers of a given element to the associated global node
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(a)

(b)

Figure 6.0-1.. A linear finite element global basis function at a node is formed from the nodal shape functions of two neigh-

boring elements. (a) The global basis function for node 𝑖 has support over the two elements 𝑒 and 𝑒+ 1 that share the node,
and takes on the value of zero everywhere else. (b) The associated element shape functions,𝜓𝑒

2 (on local node 2 of element 𝑒),
and 𝜓𝑒+1

1 (on local node 1 of element 𝑒+ 1), are combined to define the global basis function for node 𝑖.

numbers. In fact, each of the integrals in the weak statements derived in Chapter 5 involves a basis

function and is calculated in the same way.

In Section 6.1, we discuss how the integrals are computed on a master element. Next, in Section 6.2, we

discuss the master element interpolation functions for the elements used in Aria.

6.1. ELEMENT INTEGRATION

Element integrals of the form given by (6.2) are defined on the element coordinates in physical space.

When calculating these quantities numerically, it is convenient to transform these integrals from

physical space to a reference element, also called a master element, in computational space. This

transformation is performed locally, for each finite element in the mesh. In this section we discuss the

details of this process for two-dimensional physical space in Cartesian coordinates. The approach is

completely general, and extensible to three-dimensional space and other coordinate systems. This

situation is illustrated in Figure 6.1-1, showing such a transformation from the quadrilateral element,

which spans the region [−1, 1]× [−1, 1], in master coordinates (𝜉, 𝜂) to an arbitrary region in physical
coordinates (𝑥, 𝑦).

Returning to (6.2), given some function 𝑓(𝑥, 𝑦), we wish to calculate the integral

𝐼 =

∫︁
Ω𝑒

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (6.3)
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Figure 6.1-1.. The quadrilateral master element in (𝜉, 𝜂) on the region [−1, 1] × [−1, 1] is mapped to its image in physical
coordinates (𝑥, 𝑦).

on the master element in (𝜉, 𝜂) space. The change of variables theorem [20] from vector calculus states

that (6.3) is equivalent to

𝐼 =

∫︁
Ω̂𝑒

𝑓(𝜉, 𝜂)|J| 𝑑𝜉 𝑑𝜂 (6.4)

where Ω̂𝑒
is the master element and |J| is the determinant of the non-singular Jacobian matrix of the

transformation (︂
𝑥
𝑦

)︂
=

(︂
𝑥(𝜉, 𝜂)
𝑦(𝜉, 𝜂)

)︂
(6.5)

Recall the Jacobian matrix of (6.5)

J =

⎛⎜⎜⎝
𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂

⎞⎟⎟⎠ (6.6)

and its determinant

|J| = 𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜂
− 𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜉
(6.7)

Using the local finite element shape functions to construct isoparametric transformations for (6.5), we

have

𝑥(𝜉, 𝜂) =
𝑛∑︁

𝑖=1

𝑥𝑖𝜓
𝑒
𝑖 (6.8)

𝑦(𝜉, 𝜂) =
𝑛∑︁

𝑖=1

𝑦𝑖𝜓
𝑒
𝑖 , (6.9)

where 𝑛 is the number of shape functions on element 𝑒, and the coordinates of each node of the
element is given by the pair (𝑥𝑖, 𝑦𝑖).

Since we seek a numerical solution, it is convenient to compute the integrals numerically; we use

Gaussian quadrature rules of the form

𝐼 =

∫︁
Ω̂𝑒

𝑓(𝜉, 𝜂)|J| 𝑑𝜉 𝑑𝜂 ≈
𝐺∑︁

𝑔=1

𝑤𝑔𝑓(𝜉𝑔, 𝜂𝑔)|J|(𝜉𝑔 ,𝜂𝑔), (6.10)
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where the number of Gauss points is denoted𝐺, (𝜉𝑔, 𝜂𝑔) are the Gauss point coordinates (abscissas),
|J|(𝜉𝑔 ,𝜂𝑔) indicates that the Jacobian determinant is to be evaluated at the Gauss point coordinates, and
𝑤𝑔 is the associated weight. For master element shapes in common use, such as triangles, hexahedra,

quadrilaterals, etc., the quadrature points and weights are well-known and tabulated, e.g., see [2].

Table 6.1-1.. Weights and coordinates for the Gauss quadrature rules on elements with linear shape functions.

degree weights coordinates

element topology 𝐺 𝑤𝑔 𝜉𝑔

1D Edge 2 1, 1 − 1√
3
, 1√

3

2D Triangle 3 1
6 ,

1
6 ,

1
6 (12 ,

1
2), (0,

1
2), (

1
2 , 0)

2DQuadrilateral 4 1
4 ,

1
4 ,

1
4 ,

1
4 (−𝛾,−𝛾), (𝛾,−𝛾),

(𝛾, 𝛾), (−𝛾, 𝛾) †

3D Tetrahedron 4 1
24 ,

1
24 ,

1
24 ,

1
24 (𝛼, 𝛽, 𝛽), (𝛽, 𝛼, 𝛽),

(𝛽, 𝛽, 𝛼), (𝛽, 𝛽, 𝛽) ‡

3DHexahedron 8 1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 (−𝛾,−𝛾,−𝛾), (𝛾,−𝛾,−𝛾),

(𝛾, 𝛾,−𝛾), (−𝛾, 𝛾,−𝛾),
(−𝛾,−𝛾, 𝛾), (𝛾,−𝛾, 𝛾),
(𝛾, 𝛾, 𝛾), (−𝛾, 𝛾, 𝛾) †

† 𝛾 =
√
3/6

‡ 𝛼 = 0.58541020, 𝛽 = 0.13819660

For linear elements, Aria uses the rules shown in Table 6.1-1, which correspond to the master element

topologies given in Section 6.2. Because the order of quadrature is fixed for a given element (and the

associated polynomial degree of element shape functions), the user of Aria should not forget to account

for possible errors in the quadrature. Error in quadrature could be significant when user subroutines for

boundary conditions, source terms, etc., attempt to represent highly oscillatory, or unsmooth data.

6.2. LINEAR MASTER ELEMENTS

In this section, we present the shape functions 𝜓𝑒
𝑖 for the linear master elements currently supported in

Aria. Presently, all elements use the Lagrange basis functions. For the sake of brevity, we drop the

superscript 𝑒 on the element shape function. Hence, the notation 𝜓𝑖 is equivalent to 𝜓
𝑒
𝑖 .

6.2.1. 2D Triangular Element

The master element for the two-dimensional triangle with nodes numbered locally as shown. The

Gauss quadrature rule given in Table 6.1-1 for the 2D Triangle is used to integrate this element. The
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shape functions are

𝜓1 = 1− 𝜉 − 𝜂

𝜓2 = 𝜉

𝜓3 = 𝜂

(6.11)

6.2.2. 2D Quadrilateral Element

The master element for the two-dimensional quadrilateral is shown in Figure 6.1-1. The Gauss

quadrature rule for the 2DQuadrilateral given in Table 6.1-1 is used to integrate this element. The shape

functions are

𝜓1 = 1
4
(1− 𝜉)(1− 𝜂)

𝜓2 = 1
4
(1 + 𝜉)(1− 𝜂)

𝜓3 = 1
4
(1 + 𝜉)(1 + 𝜂)

𝜓4 = 1
4
(1− 𝜉)(1 + 𝜂)

(6.12)

6.2.3. 2D Face Element

When applying flux boundary conditions, it is often necessary to integrate on the surfaces of the

two-dimensional elements presented in Sections 6.2.1 and 6.2.2. In both cases, the surface is

topologically a one-dimensional edge. The two shape functions that define this element are

𝜓1 = 1
2
(1− 𝜉)

𝜓2 = 1
2
(1 + 𝜉)

(6.13)

The Gauss quadrature rule for the 1D Edge topology that is given in Table 6.1-1 is used to integrate this

element.

Note that the location along this edge is given by the single parametric coordinate, 𝜉, although there is a
pair of physical Cartesian coordinates, (𝑥, 𝑦) associated with each value of 𝜉. This fact makes the
construction of the transformation given as (6.5) a little less obvious. In this case, the determinant of the

Jacobian matrix is the ratio of the edge length in physical coordinates to the edge length in

computational coordinates,

|J| =

√︃(︂
𝜕𝑥

𝜕𝜉

)︂2

+

(︂
𝜕𝑦

𝜕𝜉

)︂2

Since we are using isoparametric mappings, it is easy to show that, using the linear shape functions given

as (6.13), this determinant is given by

|J| = 1

2

√︁
(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2
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6.2.4. 3D Tetrahedron Element

The topology of the four-node, linear tetrahedron element is shown in Figure 6.2-1. The Gauss

quadrature rule for the 3D Tetrahedron given in Table 6.1-1 is used to integrate this element. The shape

functions are

𝜓1 = 1− 𝜉 − 𝜂 − 𝜁

𝜓2 = 𝜉

𝜓3 = 𝜂

𝜓4 = 𝜁

(6.14)

Figure 6.2-1.. The master tetrahedron element is mapped to its image in physical coordinates (𝑥, 𝑦, 𝑧).

6.2.5. 3D Triangular Face Element

The tetrahedral element presented in Section 6.2.4 has three-node, triangular faces, which are

topologically equivalent to the two-dimensional triangular element that was presented in Section 6.2.1.

Accordingly, the shape shape functions are identical, and, for convenience, we repeat them here:

𝜓1 = 1− 𝜉 − 𝜂

𝜓2 = 𝜉

𝜓3 = 𝜂

(6.15)

The Gauss quadrature rule for the 2D Triangle that is given in Table 6.1-1 is used to integrate this

element.

Since the physical coordinates are three-dimensional, but there are only two parameters on the surface,

(𝜉, 𝜂), the transformation from computational coordinates to physical coordinates requires a little

elaboration. Vector calculus provides a formula for the integral of a scalar function over a parameterized

surface [20]. We are interested in the surface integral

𝐼 =

∫︁
Γ𝑒

𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 (6.16)
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where Γ𝑒
is the three dimensional surface of our face element, and is given by the isoparametric

mapping

⎛⎝ 𝑥(𝜉, 𝜂)
𝑦(𝜉, 𝜂)
𝑧(𝜉, 𝜂)

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

3∑︀
𝑖=1

𝑥𝑖𝜓𝑖(𝜉, 𝜂)

3∑︀
𝑖=1

𝑦𝑖𝜓𝑖(𝜉, 𝜂)

3∑︀
𝑖=1

𝑧𝑖𝜓𝑖(𝜉, 𝜂)

⎞⎟⎟⎟⎟⎟⎟⎠ (6.17)

It can be shown that (6.16) may be computed as

𝐼 =

∫︁
Γ̂𝑒

𝑓(𝜉, 𝜂)|J| 𝑑𝜉 𝑑𝜂, (6.18)

where Γ̂𝑒
is the master element, 𝑓(𝜉, 𝜂) = 𝑓(𝑥(𝜉, 𝜂), 𝑦(𝜉, 𝜂), 𝑧(𝜉, 𝜂)), and the determinant of the

Jacobian matrix may be written as

|J| =

√︃⃒⃒⃒⃒
𝜕(𝑥, 𝑦)

𝜕(𝜉, 𝜂)

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜕(𝑦, 𝑧)

𝜕(𝜉, 𝜂)

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜕(𝑥, 𝑧)

𝜕(𝜉, 𝜂)

⃒⃒⃒⃒2
(6.19)

(6.19) involves the calculation of the determinants of three sub-matrices. For example,⃒⃒⃒⃒
𝜕(𝑥, 𝑦)

𝜕(𝜉, 𝜂)

⃒⃒⃒⃒
=
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜂
− 𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜉

6.2.6. 3D Hexahedron Element

Figure 6.2-2 shows the topology of the eight-node, linear hexahedral master element. The Gauss

quadrature rule for the 3DHexahedron that is given in Table 6.1-1 is used to integrate this element.

Figure 6.2-2.. The master hexahedron element in (𝜉, 𝜂, 𝜁) on the region [−1, 1] × [−1, 1] × [−1, 1] is mapped to its image
in physical coordinates (𝑥, 𝑦, 𝑧).
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The shape functions are

𝜓1 =
1

8
(1− 𝜉)(1− 𝜂)(1− 𝜁) (6.20)

𝜓2 =
1

8
(1 + 𝜉)(1− 𝜂)(1− 𝜁) (6.21)

𝜓3 =
1

8
(1 + 𝜉)(1 + 𝜂)(1− 𝜁) (6.22)

𝜓4 =
1

8
(1− 𝜉)(1 + 𝜂)(1− 𝜁) (6.23)

𝜓5 =
1

8
(1− 𝜉)(1− 𝜂)(1 + 𝜁) (6.24)

𝜓6 =
1

8
(1 + 𝜉)(1− 𝜂)(1 + 𝜁) (6.25)

𝜓7 =
1

8
(1 + 𝜉)(1 + 𝜂)(1 + 𝜁) (6.26)

𝜓8 =
1

8
(1− 𝜉)(1 + 𝜂)(1 + 𝜁) (6.27)

6.2.7. 3D Quadrilateral Face Element

The hexahedron element described in Section 6.2.6 has quadrilateral faces. The shape functions that are

used for interpolating on one of these faces are identical to the shape functions used for the

two-dimensional quadrilateral element that was discussed in Section 6.2.2. We repeat them here for

convenience:

𝜓1 = 1
4
(1− 𝜉)(1− 𝜂)

𝜓2 = 1
4
(1 + 𝜉)(1− 𝜂)

𝜓3 = 1
4
(1 + 𝜉)(1 + 𝜂)

𝜓4 = 1
4
(1− 𝜉)(1 + 𝜂)

(6.28)

As discussed in Section 6.2.5, integrals on this surface master element may be computed according to

(6.18), with the determinant given by (6.19). The Gauss quadrature rule for the 2DQuadrilateral that is

given in Table 6.1-1 is used to integrate this element.

6.2.8. 3D Triangular Shell Element

Sometimes, a subdomainΩ𝑖 ⊂ Ωmay be very thin, and may also possibly consist of a highly conductive

material like aluminum. In this case, it is reasonable to neglect the thermal gradient through the

thickness ofΩ𝑖. Shell elements are specialized volume elements that are often used to model this

situation. The topology of the linear triangular shell is illustrated in Figure 6.2-3, which has three nodes,

and two faces. Topologically, the shell has no thickness that can be derived solely from its node

coordinates; instead, the thickness is an attribute specified as input data. The shape functions are
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identical to the 3D Triangular Face element given in Section 6.2.5, and we repeat them here for

convenience:

𝜓1 = 1− 𝜉 − 𝜂

𝜓2 = 𝜉

𝜓3 = 𝜂

(6.29)

The transformation from computational coordinates to physical coordinates for the three-dimensional

shell element depends on the thickness attribute. In this case, we wish to calculate the volume integral

𝐼 =

∫︁
Ω𝑒

𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 (6.30)

The parametric mapping from computational coordinates to physical coordinates may be regarded as

the surface mapping, plus a component that comes up out of the shell mid-plane. With reference to

Figure 6.2-3, we may write this mapping as

⎛⎝ 𝑥(𝜉, 𝜂, 𝜁)
𝑦(𝜉, 𝜂, 𝜁)
𝑧(𝜉, 𝜂, 𝜁)

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐼∑︀
𝑖=1

𝑥𝑖𝜓𝑖(𝜉, 𝜂) + 𝜁𝜃𝑥
𝐼∑︀

𝑖=1

𝜏𝑖𝜓𝑖(𝜉, 𝜂)

𝐼∑︀
𝑖=1

𝑦𝑖𝜓𝑖(𝜉, 𝜂) + 𝜁𝜃𝑦
𝐼∑︀

𝑖=1

𝜏𝑖𝜓𝑖(𝜉, 𝜂)

𝐼∑︀
𝑖=1

𝑧𝑖𝜓𝑖(𝜉, 𝜂) + 𝜁𝜃𝑧
𝐼∑︀

𝑖=1

𝜏𝑖𝜓𝑖(𝜉, 𝜂)

⎞⎟⎟⎟⎟⎟⎟⎠ (6.31)

where the shape functions 𝜓𝑖 are given by (6.29), 𝐼 = 3, 𝜏𝑖 denotes the thickness of the shell at node 𝑖,
𝜁 ∈ [−1, 1] is the parametric coordinate in the direction locally orthogonal to the shell mid-plane, and
we have defined the inner products

𝜃𝑥 = n̂𝜁 · î
𝜃𝑦 = n̂𝜁 · ĵ
𝜃𝑧 = n̂𝜁 · k̂

(6.32)

Figure 6.2-3.. Themidplane of themaster triangular shell element is mapped to its image in physical coordinates (𝑥, 𝑦, 𝑧), and
the variation in the shell thickness is represented with the element shape functions.

In (6.32), n̂𝜁 is the unit vector in the direction locally orthogonal to the element mid-plane, and î, ĵ and

k̂ are the unit vectors in the 𝑥, 𝑦 and 𝑧 coordinate directions, respectively.
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The volume integral in (6.30) on the master element is

𝐼 =

∫︁
Ω̂𝑒

𝑓(𝜉, 𝜂, 𝜁)|J| 𝑑𝜉 𝑑𝜂 𝑑𝜁 (6.33)

where |J| is the determinant of the Jacobian matrix obtained from the transformation given by (6.31).

Aria currently only supports constant thickness shells. In this case, 𝐼 reduces to

𝐼 = 𝜏

∫︁
Γ̂𝑒

𝑓(𝜉, 𝜂, 0)|J| 𝑑𝜉 𝑑𝜂 (6.34)

where 𝜏 is the constant shell thickness, Γ̂𝑒
denotes the triangular surface of the shell mid-plane, |J| is the

determinant of the transformation given by (6.17), and the Gauss quadrature rule for the 2D Triangle

that is given in Table 6.1-1 is used to perform the numerical integration.

6.2.9. 3D Quadrilateral Shell Element

The three-dimensional, linear, quadrilateral shell element is, in principle, no different from the

triangular shell element which we discussed in Section 6.2.8. As illustrated in Figure 6.2-4, the

quadrilateral shell has four nodes, instead of three, with the basis functions given in (6.28). For

convenience, we repeat these basis functions here:

𝜓1 = 1
4
(1− 𝜉)(1− 𝜂)

𝜓2 = 1
4
(1 + 𝜉)(1− 𝜂)

𝜓3 = 1
4
(1 + 𝜉)(1 + 𝜂)

𝜓4 = 1
4
(1− 𝜉)(1 + 𝜂)

(6.35)

The transformation from computational coordinates to physical coordinates is again given by (6.31),

but with 𝐼 = 4, and the 𝜓𝑖 are defined by (6.35).

Figure 6.2-4.. The midplane of the master quadrilateral shell element is mapped to its image in physical coordinates (𝑥, 𝑦, 𝑧),
and the variation in the shell thickness is represented with the element shape functions.
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Currently, Aria only supports constant thickness shells, and the simplifications discussed in

Section 6.2.8 also apply in this case. The volume integral therefore reduces to the product of the shell

thickness and the integral over the mid-plane surface, with the transformation from computational to

physical coordinates identical to that which is described in Section 6.2.7.
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7. ELEMENT CONTRIBUTIONS

In Chapters 3 and 4, we discussed the mathematical models for the physical boundary conditions and

volumetric heating terms that are admissible for the stationary and transient problem statements, which

were presented previously in Chapter 2. Subsequently, in Chapter 5, we developed the associated weak

statements, which introduced integral terms to be calculated using finite elements. In this chapter, we

examine each integral in the weak statements, and present the form of the associated element

contributions to the global system of equations. These contributions are calculated locally on each

element, and accumulated into their correct locations in the global system. We consider the system

represented by (5.22), since it is the most general and contains all the terms of interest.

7.1. CAPACITANCE OPERATOR

The capacitance matrix is also called the mass matrix in the finite element literature. The contribution

to (5.23a) for elementΩ𝑒
may be written as

𝑀 𝑒
𝑖𝑗 =

∫︁
Ω𝑒

𝜌𝐶𝑃𝜓
𝑒
𝑖𝜓

𝑒
𝑗 𝑑Ω (7.1)

It is trivial to show that𝑀 𝑒
𝑖𝑗 =𝑀 𝑒

𝑗𝑖, and therefore the contributions to the global matrix are symmetric.

The element matrix𝑀 𝑒
𝑖𝑗 is a square,𝑁 ×𝑁 matrix, where𝑁 is the number of shape functions, 𝜓𝑒

𝑖 . For

example, for the eight-node linear hexahedral element,𝑀 𝑒
𝑖𝑗 is of size 8× 8.

(7.1) is often referred to as the consistent mass matrix. This nomenclature is to distinguish it from

certain diagonal approximations, which are called lumped mass matrices. If an explicit time integrator,

such as forward Euler time differencing, is used, the above consistent mass matrix leads to a coupled

system of equations. Historically this disadvantage was circumvented by diagonalizing𝑀 𝑒
𝑖𝑗 , or lumping

the mass, thereby permitting numerical solutions to be obtained without solving a coupled system of

equations. Since Aria uses implicit time differencing, the advantages of using a lumped mass matrix are

less apparent. Time integrators using the lumped mass matrix are usually more diffusive than their

consistent counterparts; sometimes, if a numerical solution is plagued by non-physical oscillations, this

is an advantage, but usually it is better to eliminate the cause of the oscillations, rather than mask them

with diffusion. Lumping the mass matrix does make the resulting fully discrete system of equations

more diagonally dominant, but this advantage may be offset by a increase in magnitude and phase error,

e.g., see [7]. Nevertheless, Aria provides both the consistent mass matrix and the lumped mass matrix

approximation, the latter being obtained by using a nodal quadrature rule.
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7.2. DIFFUSION OPERATOR

The diffusion element matrix was presented as (6.2), and we repeat it here for the sake of

completeness:

𝐾𝑒
𝑖𝑗 =

∫︁
Ω𝑒

∇𝜓𝑒
𝑖 · k∇𝜓𝑒

𝑗 𝑑Ω (7.2)

This matrix is a square,𝑁 ×𝑁 matrix, where𝑁 is the number of shape functions, 𝜓𝑒
𝑖 . It is easy to

show that, as long as the thermal conductivity tensor is symmetric, then𝐾𝑒
𝑖𝑗 = 𝐾𝑒

𝑗𝑖. Crandall [6] has

shown that the thermal conductivity tensor is always symmetric for finite, bounded conductors.

7.3. CONVECTION OPERATOR

The element matrix for the convection termmay be written as

𝑈 𝑒
𝑖𝑗 =

∫︁
Ω𝑒

𝜌𝐶𝑃𝜓
𝑒
𝑖v · ∇𝜓𝑒

𝑗 𝑑Ω (7.3)

where the velocity field, v, is known. This matrix is also of size𝑁 ×𝑁 , where𝑁 is the number of shape

functions defined on the master element. However, note that this matrix is not symmetric, since

𝑈 𝑒
𝑗𝑖 =

∫︁
Ω𝑒

𝜌𝐶𝑃𝜓
𝑒
𝑗v · ∇𝜓𝑒

𝑖 𝑑Ω ̸= 𝑈 𝑒
𝑖𝑗

7.4. SOURCE/SINK

A source/sink term contributes only to the forcing vector, and enters the problem as data. The

associated element contribution is

𝐹 𝑒
𝑖 =

∫︁
Ω𝑒

𝑞𝜓𝑒
𝑖 𝑑Ω (7.4)

This vector has a length equal to the number of finite element shape functions on the associated master

element.

7.5. SPECIFIED HEAT FLUX

Let Γ𝐻 denote the surface on which a specified heat flux boundary condition of the form given by (4.6).

Then the contribution to the fully discrete system enters into the forcing vector,

𝐹 𝑒
𝑖 = −

∫︁
Γ𝑒
𝐻

𝑞𝑏𝜓
𝑒
𝑖 𝑑Γ (7.5)

where Γ𝑒
𝐻 is a finite element on the surface Γ𝐻 . This vector has a length equal to the number of finite

element shape functions on the associated face master element.
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Note that for adiabatic boundary conditions, 𝑞𝑏 = 0, and the above integral vanishes. Hence, in the

finite element implementation, the adiabatic boundary condition enters naturally into the problem,

and boundary surfaces that are left unspecified are treated as adiabatic.

7.6. CONVECTION HEAT FLUX

In the absence of the bulk fluid model, the convection heat flux given as (4.8) contributes to both the

coefficient matrix and the forcing vector. Let Γ𝑒
𝑐 be an arbitrary finite element on the surface over which

this boundary condition is to be applied. Recall that, in (5.21), the flux integral is on the right hand side

and has a negative sign. Upon substitution of (4.8) into (5.21), we obtain

−
∫︁
Γ𝑒
𝑐

𝜓𝑒
𝑖 𝑞𝑛 𝑑Γ = −

∫︁
Γ𝑒
𝑐

ℎ𝜓𝑒
𝑖 (𝑇 − 𝑇𝑟) 𝑑Γ (7.6)

If we substitute the finite element interpolant for 𝑇 , the result may be written as

−
∫︁
Γ𝑒
𝑐

𝜓𝑒
𝑖 𝑞𝑛 𝑑Γ = −

𝑁∑︁
𝑗=1

(︂∫︁
Γ𝑒
𝑐

ℎ𝜓𝑒
𝑖𝜓

𝑒
𝑗 𝑑Γ

)︂
𝑇𝑗 +

∫︁
Γ𝑒
𝑐

𝜓𝑒
𝑖𝑇𝑟 𝑑Γ (7.7)

The first term on the right hand side of the above equation contributes to the global matrix; we may

define the element contribution to row 𝑖 and column 𝑗 as

𝐾𝑒
𝑖𝑗 =

∫︁
Γ𝑒
𝑐

ℎ𝜓𝑖𝜓𝑗 𝑑Γ (7.8)

Note that this matrix contribution is symmetric. The known reference temperature, 𝑇𝑟, enters as a
contribution to the forcing function, namely

𝐹 𝑒
𝑖 =

∫︁
Γ𝑒
𝑐

ℎ𝑇𝑟𝜓
𝑒
𝑖 𝑑Γ (7.9)

7.7. BULK FLUID

When the bulk fluid model is used in conjunction with a convective flux boundary condition, the

reference temperature is no longer known data, and must be computed during the solution process. In

this case, (5.22) is augmented by the discretized version of the bulk fluid element conservation

statement. An additional row and column is added to the matrix, since an additional unknown and its

associated equation are present.

From the standpoint of the temperature field solution, the convection heat flux boundary condition

discussed in Section 7.6 is modified, since (7.7) becomes∫︁
Γ𝑒
𝑐

𝜓𝑒
𝑖 𝑞𝑛𝑑Γ =

𝑁∑︁
𝑗=1

(︂∫︁
Γ𝑒
𝑐

ℎ𝜓𝑒
𝑖𝜓

𝑒
𝑗𝑑Γ

)︂
𝑇𝑗 − 𝑇𝑏

∫︁
Γ𝑒
𝑐

ℎ𝜓𝑒
𝑖 𝑑Γ (7.10)
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where we have moved 𝑇𝑏 out of the integral, since it is constant on an element. Furthermore, since both
terms on the right hand side of (7.10) are unknown, they both contribute to the global matrix. We may

write this as the rectangular matrix contribution

[︀
𝐾𝑒

𝑖𝑗 𝐵𝑒
𝑖

]︀(︂ 𝑇𝑗
𝑇𝑏

)︂
(7.11)

where

𝐵𝑒
𝑖 = −

∫︁
Γ𝑒
𝑐

ℎ𝜓𝑒
𝑖 𝑑Γ (7.12)

and𝐾𝑒
𝑖𝑗 is given by (7.8).

The implication of (7.10) is that each node on the surface Γ𝑐 is coupled to the bulk fluid temperature.

The additional equation for the unknown 𝑇𝑏 is provided by the bulk fluid conservation statement given
by (4.31), which we repeat here:

𝑑

𝑑𝑡
(𝜌𝐶𝑃𝑉 𝑇𝑏) +

∫︁
Γ𝑐

ℎ (𝑇𝑏 − 𝑇 ) 𝑑Γ = 0 (7.13)

Assuming a constant volume 𝑉 , and substituting the finite element interpolant for 𝑇 , the
semidiscretized version of (7.13) is

𝜌𝐶𝑃𝑉
𝑑𝑇𝑏
𝑑𝑡

+
𝐸∑︁

𝑒=1

[︂∫︁
Γ𝑒
𝑐

ℎ 𝑑Γ

]︂
𝑇𝑏 −

𝐸∑︁
𝑒=1

𝑁∑︁
𝑗=1

[︂∫︁
Γ𝑒
𝑐

ℎ𝜓𝑒
𝑗 𝑑Γ

]︂
𝑇𝑗 = 0 (7.14)

Consideration of the first term in (7.14) reveals that each off-diagonal entry in the new row in the mass

matrix which appears in (5.22) is zero, and that the diagonal entry is exactly 𝜌𝐶𝑃𝑉 . The second and
third terms contribute to the new row in the stiffness matrix. The rectangular element contribution is

[︀
𝐵𝑒

𝑗 𝐻𝑒
]︀(︂ 𝑇𝑗

𝑇𝑏

)︂
(7.15)

where𝐵𝑒
𝑗 is given by (7.12), and

𝐻𝑒 =

∫︁
Γ𝑒
𝑐

ℎ 𝑑Γ

Therefore, a single face on the surface Γ𝑒
𝑐 has the square, symmetric contribution to the global stiffness

matrix [︂
𝐾𝑒

𝑖𝑗 𝐵𝑒
𝑖

𝐵𝑒
𝑗 𝐻𝑒

]︂(︂
𝑇𝑗
𝑇𝑏

)︂
(7.16)

Finally, we remark that if the bulk fluid volume is completely enclosed by a surface of the finite element

mesh, then it is possible to compute the enclosed volume according to the Gauss Divergence Theorem.

For the case of three-dimensional Cartesian coordinates, let

x =

⎛⎝ 𝑥
𝑦
𝑧

⎞⎠ (7.17)
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then we may write

1

3

∫︁
𝑉

∇ · x 𝑑Ω =

∫︁
𝑉

1

3

(︂
𝜕𝑥

𝜕𝑥
+
𝜕𝑦

𝜕𝑦
+
𝜕𝑧

𝜕𝑧

)︂
𝑑Ω =

∫︁
𝑉

𝑑Ω ≡ 𝑉 . (7.18)

Using the Gauss divergence theorem, it is easy to show that the enclosed volume is given by

𝑉 =
1

3

∫︁
Γ

x · n̂ 𝑑Γ . (7.19)

Similarly for two-dimensions

𝑉 =
1

2

∫︁
Γ

x · n̂ 𝑑Γ (7.20)

and for the special case of axisymmetric coordinates,

𝑉 =
1

2

∫︁
Γ

r · n̂ 𝑑Γ (7.21)

where

r =

⎛⎝ 𝑟
2

0
𝑧

⎞⎠ .

The calculation of enclosed volume is implemented independently for a volume void bounded by a

collection of surfaces and as a specialization for the bulk fluid element.

7.8. SURFACE RADIATION FLUX

The surface radiation flux boundary condition given in (4.16) must be linearized prior to its

implementation, since it depends on the fourth power of the unknown temperature. For convenience,

we repeat this flux here:

𝑞𝑛(𝑇 ) = 𝜎𝜖𝐹
(︀
𝑇 4 − 𝑇 4

𝑟

)︀
(7.22)

We discuss the details of the nonlinear solution strategy in Chapter 8, and restrict our discussion in this

section to the linearization of the radiation flux. Let 𝑇* indicate the temperature state about which we
are linearizing. Currently, the linearization implemented in Aria is to lag the flux by one nonlinear

iteration level, so that 𝑞𝑛 is known. Then the boundary condition only contributes to the forcing vector.
The element contribution is equivalent to a specified heat flux

𝐹 𝑒
𝑖 = −

∫︁
Γ𝑒
𝑅

𝜎𝜖𝐹𝜓𝑒
𝑖

(︀
𝑇 4
* − 𝑇 4

𝑟

)︀
𝑑Γ (7.23)

where Γ𝑒
𝑅 is an arbitrary finite element on the surface over which this boundary condition is to be

applied.
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Instead of lagging the surface radiation as indicated in (7.23), it is preferable to linearize it via a Taylor

series so that it contributes to both the coefficient matrix and the forcing function. If we expand (7.22)

in a Taylor series about 𝑇*, we obtain

𝑞𝑛 (𝑇* + 𝛿𝑇 ) = 𝜎𝜖𝐹
[︀
𝑇 4
* − 𝑇 4

𝑟 + 4𝑇 3
* 𝛿𝑇

]︀
(7.24)

where 𝛿𝑇 = 𝑇 − 𝑇*. Then we may write∫︁
Γ𝑒
𝑅

𝜓𝑒
𝑖 𝑞𝑛(𝑇 ) 𝑑Γ =

∫︁
Γ𝑒
𝑅

𝜎𝜖𝐹𝜓𝑒
𝑖

[︀
𝑇 4
* − 𝑇 4

𝑟 + 4𝑇 3
* (𝑇 − 𝑇*)

]︀
𝑑Γ (7.25)

After grouping terms involving the known 𝑇* and unknown 𝑇 , we obtain the linearized form of the

surface radiation boundary condition element, which are expressed as the matrix contribution

𝐾𝑒
𝑖𝑗 =

∫︁
Γ𝑒
𝑅

4𝜎𝜖𝑇 3
*𝜓

𝑒
𝑖𝜓

𝑒
𝑗 𝑑Γ (7.26)

and the forcing vector contribution

𝐹 𝑒
𝑖 =

∫︁
Γ𝑒
𝑅

𝜎𝜖𝐹
(︀
3𝑇 4

* + 𝑇 4
𝑟

)︀
𝜓𝑒
𝑖 𝑑Γ (7.27)

We plan to implement the linearization described by Equations (7.26) and (7.27) in a forthcoming

version of Aria.

7.9. ENCLOSURE RADIATION SURFACE FLUX

The enclosure radiation boundary condition given by (4.21) enters our weak statement in a manner

similar to that of the surface radiation flux described in Section 7.8. The enclosure radiation flux was

written as (4.21), which we repeat here for convenience:

𝑞𝑛(𝑇 ) = 𝜎𝜖𝑇 4 − 𝜖𝐺, (7.28)

This flux and the surface radiation flux are both nonlinear, and vary as the fourth power of the

temperature, but there are important differences. First, instead of a known reference temperature 𝑇𝑟,
the surface irradiation,𝐺, appears in (7.28), and must be calculated as part of the solution process. To
begin, let Γ𝑒

ℰ be an arbitrary finite element on the enclosure. We call Γ𝑒
ℰ a facet, and let Γℰ consist of a

total of𝐸 facets. Furthermore, the flux (7.28) is constant on a facet; to emphasize this, let us rewrite it

as

𝑞𝑒𝑛(𝑇 ) = 𝜎𝜖 [𝑇 𝑒]4 − 𝜖𝐺𝑒(𝑇
𝑒), (7.29)

where 𝑇 𝑒
is some average facet temperature, and𝐺𝑒(𝑇

𝑒) is the irradiation on facet 𝑒, which is
determined by the combined effects of all the other facets in the enclosure. Recall that this was expressed

in Section 4.2.5 as

𝐺𝑒(𝑇
𝑒) =

𝐸∑︁
𝑓=1

𝐹𝑒𝑓𝐽𝑓 (𝑇
𝑒). (7.30)
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We defer the discussion of the details of our nonlinear solution strategy until Chapter 8, but it is

important to note here that the unknown radiosities, 𝐽𝑓 , depend upon the solution of the temperature.
We use a decoupled approach, and calculate the viewfactors, 𝐹𝑒𝑓 , and radiosities, 𝐽𝑓 , via the Chaparral
library [12]. Recall that the radiosities are obtained by solving the system of equations

𝑁∑︁
𝑓=1

[𝛿𝑒𝑓 − (1− 𝜖𝑒)𝐹𝑒𝑓 ] 𝐽𝑓 = 𝜎𝜖𝑒 [𝑇
𝑒]4 (7.31)

In (7.31), it is important to realize that the 𝐽𝑓 and 𝑇
𝑒
are constant values associated with a given facet.

But in our finite element approximation, the temperatures are associated with the nodes. Therefore, the

facet temperature should be considered a projection, or averaging of the temperature found at the nodes

of a given facet. Hence, we define the facet temperature as

𝑇 𝑒 =

𝑁∑︀
𝑖=1

∫︀
Γ𝑒
ℰ
𝜓𝑒
𝑖 𝑑Γ𝑇𝑖∫︀

Γ𝑒
ℰ
𝑑Γ

(7.32)

It is now convenient to define the projection vectorP𝑒
, where row 𝑖 is defined by

𝑃 𝑒
𝑖 =

1

𝐴𝑒

∫︁
Γ𝑒
ℰ

𝜓𝑒
𝑖 𝑑Γ, (7.33)

and𝐴𝑒
is the area of facet 𝑒. Thus, (7.32) may be written as

𝑇 𝑒 =
𝑁∑︁
𝑖=1

𝑃 𝑒
𝑖 𝑇𝑖 (7.34)

Now that we have appropriately defined the facet temperature, we may linearize the flux given in (7.29).

Expanding 𝑞𝑛(𝑇 ) in a Taylor series about a known state 𝑇
𝑒
* , we obtain

𝑞𝑛 (𝑇* + 𝛿𝑇 ) = 𝜎𝜖 [𝑇 𝑒
* ]

4 − 𝜖𝐺𝑒(𝑇
𝑒
* ) + 4𝜎𝜖 [𝑇 𝑒

* ]
3 𝛿𝑇 (7.35)

where 𝛿𝑇 = 𝑇 𝑒 − 𝑇 𝑒
* , and we have chosen to evaluate the irradiation at the known state, 𝑇

𝑒
* . If we

collect terms involving the known 𝑇 𝑒
* and unknown 𝑇

𝑒
, (7.35) may be rearranged and written as

𝑞𝑛 (𝑇* + 𝛿𝑇 ) = 4𝜎𝜖 [𝑇 𝑒
* ]

3 𝑇 𝑒 − 3𝜎𝜖 [𝑇 𝑒
* ]

4 − 𝜖𝐺𝑒(𝑇
𝑒
* ) (7.36)

In order to apply this flux in our weak statement, we must integrate it against the test function, 𝜓𝑒
𝑖 .

Therefore, we have∫︁
Γ𝑒
ℰ

𝜓𝑒
𝑖 𝑞𝑛(𝑇 ) 𝑑Γ =

∫︁
Γ𝑒
ℰ

𝜓𝑒
𝑖

{︀
4𝜎𝜖 [𝑇 𝑒

* ]
3 𝑇 𝑒 − 3𝜎𝜖 [𝑇 𝑒

* ]
4 − 𝜖𝐺𝑒(𝑇

𝑒
* )
}︀
𝑑Γ (7.37)

Exploiting the fact that all quantities on a given facet are constant, except for the shape functions, (7.37)

becomes ∫︁
Γ𝑒
ℰ

𝜓𝑒
𝑖 𝑞𝑛(𝑇 ) 𝑑Γ =

∫︁
Γ𝑒
ℰ

𝜓𝑒
𝑖 𝑑Γ

{︀
4𝜎𝜖 [𝑇 𝑒

* ]
3 𝑇 𝑒

}︀
−
∫︁
Γ𝑒
ℰ

𝜓𝑒
𝑖 𝑑Γ

{︀
3𝜎𝜖 [𝑇 𝑒

* ]
4 + 𝜖𝐺𝑒(𝑇

𝑒
* )
}︀ (7.38)
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If we introduce the definitions (7.34) and (7.33) into (7.38), we see that the linearized form of the

element matrix contribution is

𝐾𝑒
𝑖𝑗 = 4𝜎𝜖 [𝑇 𝑒

* ]
3𝐴𝑒𝑃 𝑒

𝑖 𝑃
𝑒
𝑗 (7.39)

and the contribution to the source vector is

𝐹 𝑒
𝑖 = 𝐴𝑒𝜖

{︀
3𝜎 [𝑇 𝑒

* ]
4 +𝐺𝑒(𝑇

𝑒
* )
}︀
𝑃 𝑒
𝑖 (7.40)

We remark that, when calculating terms in Equations (7.39) and (7.40), experience has shown that it is

important to project the exponential power of the temperature, as opposed to projecting the

temperature, then raising it to some exponential power. In other words, spurious oscillations are less

likely to occur if

[𝑇 𝑒]4 =
𝑁∑︁
𝑖=1

𝑃 𝑒
𝑖 𝑇

4
𝑖

is used instead of

[𝑇 𝑒]4 =

[︃
𝑁∑︁
𝑖=1

𝑃 𝑒
𝑖 𝑇𝑖

]︃4

7.10. THERMAL CONTACT

The thermal contact algorithm is implemented as a Discontinuous Galerkin (DG)-like method that

most closely follows the "Generalized Algorithm" discussed in [4] and references therein, and users are

encouraged to read that report for more details regarding the nuances associated with the various types

of contact enforcement.

Thermal contact is often enforced across an interface with a noncontiguous mesh, as seen in

Figure 7.10-1. The surfaces between two subdomains may be meshed independently, so that there may

be a physical gap between them, or the nodes on the two surfaces may not align. Moreover, in parallel

computations, these surfaces will in general have different processor decompositions so that all of the

required information may not be available locally on a given processor. This nonlocality of information

complicates the implementation, because this information must be constructed in a consistent way on

all processors. Aria uses the stk::search and Dash packages to detect when facets that lie on separate

surfaces are close enough to be in contact in a parallel consistent manner.

Even in cases of collocated nodes, the DG-nature of the method means that the temperature is double

defined along the contact interface, which is shown as Γ𝑖𝑗 in Figure 7.10-2. The preferred contact

enforcement strategy for the case with no contact resistance, i.e., physically a continuous temperature

field, is TIED_TEMPERATURE, which is derived similarly to Discontinuous Galerkin (DG) and

Interior Penalty (IP) methods ([1, 4]). In practice, the continuity in the temperature is only enforced

weakly; however, the jump is convergent with mesh refinement. TIED_TEMPERATURE is useful for

analyzing systems whose geometry is so complex that a contiguous mesh is difficult or impossible to

obtain. Also available as an enforcement strategy is GAP_CONDUCTANCE, which allows a

discontinuous temperature across the interface, and specifies a flux according to a contact resistance.
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Figure 7.10-1.. In a Discontinuous Galerkin-based contact enforcement strategy, the elements involved on the right side Γ𝑅,

are those whose sides intersect the quadrature points of the element on the left side Γ𝐿. In general, the sides of elements on

the right side, Γ𝑖
𝑅, and Γ

𝑗
𝑅, may not be contiguous.

Gij
W j

n i

n j

iW

Figure 7.10-2.. Contact interface between subdomainsΩ𝑖 andΩ𝑗

Contact resistance is generally used when the system being analyzed consists of at least two parts that

touch, and it is important to model their imperfect fit with a finite thermal resistance.

In Aria TIED_TEMPERATURE and GAP_CONDUCTANCE are implemented in a variational

form. Consider a 2D or 3D domainΩ that consists of a set of subdomainsΩ𝑖 with interfaces Γ𝑖𝑗 at the

intersection of each pairΩ𝑖 andΩ𝑗 , 𝑖 ̸= 𝑗 where 𝑛𝑖,𝑗 denote the unit outward normal vector on each

subdomain boundary 𝜕Ω𝑖,𝑗 , as shown in Figure 7.10-2. On each subdomainΩ𝑖, we pose a standard heat

conduction problem of the form

∇ · 𝑞 = 𝑓, 𝑥 ∈ Ω𝑖, (7.41)

where 𝑞 is the heat flux, and 𝑓 is a volumetric source term, along with appropriate boundary conditions
on 𝜕Ω𝑖/Γ. The heat flux is defined as 𝑞 ≡ −𝑘∇𝑇 , where 𝑇 is the temperature field, and 𝑘 is the
thermal conductivity. The notion of average and jump notations are useful in describing this method.

The average notation is defined as

{𝑇} =
1

2
(𝑇𝑖 + 𝑇𝑗) (7.42)

for both scalar and vector quantities and the jump operator is defined as

J𝑇 K ≡ 𝑇𝑖𝑛𝑖 + 𝑇𝑗𝑛𝑗 (7.43)

and

J𝑞K ≡ 𝑞𝑖 · 𝑛𝑖 + 𝑞𝑗 · 𝑛𝑗 (7.44)

for scalar and vector variables, respectively.

To write (7.41) in a variational statement, let 𝑣 be suitable a test function that is continuous within each
subdomain and possibly discontinuous acrossΓ. We first multiply the differential energy equation (7.41)
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in each subdomainΩ𝑖 by a suitable test function 𝑣 and integrate by parts to get the weak form∫︁
Ω𝑖

∇𝑣 · 𝑞 𝑑Ω +

∫︁
Ω𝑖

𝑣𝑓 𝑑Ω−
∫︁
𝜕Ω𝑖

𝑣 (𝑞𝑖 · 𝑛𝑖) 𝑑𝑆 = 0 (7.45)

Assuming for simplicity Dirichlet boundary conditions for 𝑇 have been specified on 𝜕Ω𝑖∖Γ, we can
assume that 𝑣 = 0 on 𝜕Ω𝑖∖Γ. Summing over domains gives∫︁

Ω𝑖

∇𝑣 · 𝑞 𝑑Ω +

∫︁
Ω𝑖

𝑣𝑓 𝑑Ω−
∑︁
𝐾

∫︁
𝜕Γ𝑖𝑗

𝑣 (𝑞̂𝑘 · 𝑛𝑘) 𝑑𝑆 = 0 (7.46)

where 𝑞̂ is an arbitrary numerical flux to be chosen, and the summation is over all surface elements
along the interface Γ𝑖𝑗 . Using the jump operators and noting that J𝑞̂K = 0 is necessary for conservation,
(7.46) can be written compactly as∫︁

Ω

∇𝑣 · 𝑞 𝑑Ω𝑖 +

∫︁
Ω𝑖

𝑣𝑓 𝑑Ω−
∫︁
𝜕Γ𝑖𝑗

J𝑣K · {𝑞̂} 𝑑𝑆 = 0 (7.47)

As discussed in [1], there are many valid choices for closing the numerical flux. One such method is the

Interior Penalty method, which is the method listed as the "Generalized Algorithm" in [4]. In this case

the numerical flux is chosen as 𝑞̂ ≡ −𝛼ℎ𝑘∇𝑇 + 𝛽ℎJ𝑇 K, and this choice can be shown to be both
consistent and conservative in the weak form of the problem. The resultant weak form of the problem

becomes

Interior Penalty Method

Variational Form

∫︁
Ω

∇𝑣 · 𝑘∇𝑇 𝑑Ω𝑖 −
∫︁
Ω𝑖

𝑣𝑓 𝑑Ω

−
∫︁
𝜕Γ𝑖𝑗

J𝑣K · {𝛼ℎ𝑘∇𝑇} 𝑑𝑆 +

∫︁
𝜕Γ𝑖𝑗

𝛽ℎJ𝑣K · J𝑇 K 𝑑𝑆 = 0
(7.48)

For the TIED_CONTACT case (an Interior PenaltyMethod), coefficient𝛼ℎ ≡ 1 and 𝛽ℎ is defined as

𝛽ℎ ≡ 𝐶𝑘ℎ−1, (7.49)

where the overline denotes an average from both sides of the interface Γ𝑖𝑗 ,𝐶 is an arbitrary positive

number, nominally 1/2, and ℎ is a local mesh length scale.

For the GAP_CONDUCTANCE case, 𝛼ℎ and 𝛽ℎ are chosen as in [4], which is repeated here for
convenience as

(𝛼ℎ, 𝛽ℎ) ≡

{︃(︁
1− 1

𝐻
, 𝐶𝑘ℎ−1

)︁
𝐻 > 1,

(0, 𝑅−1) 𝐻 ≤ 1,
(7.50)

where

𝐻 =
𝑅−1

𝐶𝑘ℎ−1
. (7.51)

As before, the overline notation is used to denote the average from both sides of the interface.

While the above formulation is consistent, i.e. 𝑞̂(𝑇 ) = 𝑞(𝑇 )|Γ, and conservative, i.e., 𝑞̂ is single valued
along Γ, the discrete form of the integrals is only conservative in the case of collocated nodes, which is

generally not the case in practical usage. However, [4] has shown that the error norms do decrease

according to the order of the underlying finite-element scheme, as expected.
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8. SOLUTION STRATEGY

In previous chapters, we have discussed how to generate linearized, fully discrete approximations to the

weak statements for the transient and stationary problems that were presented in Sections 5.1 and 5.4. In

both cases, the linearized system of equations may be written as

A(T*)T = f̂(T*,b(T*),n(T*)), (8.1)

whereT is the vector of unknown temperatures,T* is the known temperature state about which we

have linearized,A(T*) is a matrix and f is the forcing vector.

Recall that in the stationary case, we must solve a system of the form (8.1) with

A(T*) = K̂(T*)

and

f̂(T*,b(T*),n(T*)) = f ,

with each component of f given by (5.16c). For the transient case, we must solve (8.1) with

A(T*) =
1

Δ𝑡𝑛
M+ 𝜃K̂(T*)

and

f̂(T*,b(T*),n(T*)) = 𝜃f + (1− 𝜃)MṪ* +
1

Δ𝑡𝑛
MT*

at each timestep.

As indicated, the forcing vector f̂ is, in the most general case, a function of the radiosities, b(T*) and
the chemical species concentrations n(T*). The radiosities satisfy (7.31), which we rewrite here in vector
form as

Fb = g(T*), (8.2)

whereF is the viewfactor matrix, and g(T*) is the vector of emitted radiative heat fluxes. Finally, the
chemical concentrations satisfy the system of ordinary differential equations given by (3.6), which we

rewrite here in vector form as

𝑑n

𝑑𝑡
= p(T*,n) (8.3)

with appropriate initial conditions.

The linearization (8.1) is equivalent to a fixed point iteration known as successive substitution applied to

the nonlinear system (5.15) for the steady case and (5.22) for the transient case. This method is also

known as functional iteration (see [10]). The method requires no Jacobian calculation and the
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convergence is asymptotically linear. Since boundary conditions, volumetric heating sources and

thermal conductivities are often given as tabulated values or user subroutines, formation of a full,

analytic Jacobian is not practical. In fact, (8.1) includes linearizations of these these quantities. The

simplicity of implementation of this method accounts for its popularity for the solution of a wide

variety of problems. The rate of convergence of the basic iterative procedure of (8.1) can often be

improved by the use of an acceleration or relaxation parameter.

We solve the coupled system represented by Equations (8.1)-(8.3) via a decoupled approach. In

Section 8.1 we discuss the details of this strategy for the stationary case, then in Section 8.2 we discuss the

minor differences that arise in the transient case. Generally speaking, the matrixAwill be symmetric

and positive definite, with the following important exceptions:

1. If the convection operator given in (7.3) is used, thenAwill be nonsymmetric.

2. If either the tied contact or resistance contact resistance enforcement schemes described in

Section 4.1 are used, thenAwill be nonsymmetric.

3. If the ℎ–adaptive, hanging node constraint enforcement scheme is used, thenAwill be

symmetric, but indefinite.

If none of the above exceptions apply, then the method of conjugate gradients (CG) is always

recommended to solve (8.1). Usually in this case, Jacobi preconditioning is also adequate; however, if the

number of iterations is excessive, then incomplete Cholesky decomposition preconditioning, ILU or

ILU-T, are recommended. If exception 3 applies, then the Finite Element Interface (FEI) [5, 24] library

preprocesses the linear system before passing it to the underlying linear solver. The purpose of this

preprocessing is to eliminate algebraically the slave equations from the augmented system. After this

process, if the original augmented system was symmetric, then the reduced system is symmetric and

positive definite, and CG is again recommended. IfA is nonsymmetric, then an iterative method such

as the generalized minimum residual method (GMRES) or the biconjugate gradient stabilized method

(BI-CGSTAB) is recommended.

8.1. STATIONARY PROBLEMS

For the stationary case, the linearized thermal problem given by (8.1) is implied by (5.15). The solution

strategy for this case is shown in Algorithm 8.1. In the input, it is assumed that a starting iterateT* is

available. Furthermore, a convergence tolerance, 𝜖, a maximum number of iterations, 𝐼 , and a relaxation
parameter, 𝛼, are also required. The Chaparral library is used to compute the viewfactors required in
Step 2, as well as the radiosities in Step 5. Of course, if no enclosure radiation boundary conditions have

been applied, then Steps 2 and 5 are skipped. Recall that the ACME library is used to perform the

contact search of Step 1. Of course, if no contact enforcement conditions have been specified, this step is

also skipped. For this stationary case, we do not consider the time evolution of the chemical species, and

so Step 6 is omitted. The solution in Step 13, the newly computed solution is modified via the usual

relaxation formula. If 𝛼 = 1, then no relaxation is applied. If 𝛼 < 1, then the solution is
under–relaxed, which is sometimes helpful if Algorithm 8.1 is divergent. Occasionally, over–relaxation,

or 𝛼 > 1, will accelerate convergence. In Step 17, element death is omitted for stationary problems.

60



Algorithm 8.1 Strategy for solving the coupled nonlinear system.

Input: T*, 𝜖, 𝐼, 𝛼
Output: T
1: Perform contact search

2: FormF
3: 𝑖 = 0
4: while not finished do

5: Solve (8.2) for b
6: Integrate (8.3) to obtain new n

7: FormA(T*), f̂(T*,b(T*),n(T*))
8: r = f̂ −AT*
9: if (‖r‖ < 𝜖) or (𝑖 > 𝐼) then
10: finished = true

11: end if

12: Solve (8.1) forT
13: T = T* + 𝛼 (T−T*)
14: T* = T
15: end while

16: Perform dynamic load rebalance

17: Compute element death

8.2. TRANSIENT PROBLEMS

The solution strategy for the transient case, presented as Algorithm 8.2, adds additional steps to the

stationary case discussed in Section 8.1. Essentially, Algorithm 8.1 is enclosed in an outer loop that

performs the time integration. In this case, the linearized system given by (8.1) is implied by (5.22). Note

that the viewfactor calculations and the contact searches are expensive operations, requiring significant

communication across parallel processors. Accordingly, this work is only performed during a given

timestep if the mesh topology changes. For example, the mesh topology might change due to element

death, or ℎ–adaptivity. Furthermore, the viewfactors for a given enclosure are recomputed only if that
particular enclosure requires updating.

The time loop in Step 1 iterates from the initial time value, 𝑡0, at which the initial conditions are known,
up through the final time specified by the user, 𝑡1. The predicted temperature is computed in Step 2
according to the methodology described in Section 5.6. As indicated in Step 3, this predicted

temperature is subsequently used for the starting iterate of the nonlinear solution. Recall that, as

discussed in Section 5.6, if the adaptive timestep option is used, the predicted temperature is also used to

calculate the new timestep in Step 5. Given an initial condition for the chemical species, in Step 4, we

use the CHEMEQ library [26] to integrate (8.3) over the time interval. CHEMEQ uses a stiff ordinary

differential equation integrator, which adaptively subcycles species equations according to their

stiffness.
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Algorithm 8.2 Nonlinear solution strategy for transient problem.

Input: T0,Δ𝑡,n0, 𝑡0, 𝑡1, 𝜖, 𝐼, 𝛼
Output: T
1: for 𝑡 = 𝑡0 to 𝑡1 do
2: Calculate the predicted temperature,T𝑝

3: T* = T𝑝

4: Use Algorithm 8.1 to solveT
5: Calculate newΔ𝑡
6: end for
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9. GENERAL SCHEME OF NOTATION

Table 9.0-1.. General notation.

Expression Meaning

∘

ℛ interior ofℛ
𝜕ℛ boundary ofℛ
ℛ∪ ℱ union ofℛ andℱ
ℛ ∩ ℱ intersection ofℛ andℱ
ℛ ⊂ ℱ ℛ is a subset ofℱ
ℛ ∖ ℱ set complement

𝑥 ∈ ℛ 𝑥 is an element of the setℛ
𝑓 : ℛ → ℱ 𝑓 maps the setℛ into the setℱ ;

ℛ is the domain,ℱ the codomain

𝑥 ↦→ 𝑓(𝑥) mapping that carries 𝑥 into 𝑓(𝑥);
e.g., 𝑥 ↦→ 𝑥2 is the mapping that carries every
real number 𝑥 into its square

𝑓 ∘ 𝑔 composition of the mappings 𝑓 and 𝑔;
i.e., (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥))

{𝑥 |𝑅(𝑥) holds} the set of all 𝑥 such that𝑅(𝑥) holds;
e.g., {𝑥 | 0 ≤ 𝑥 ≤ 1} is the interval [0, 1]

𝛿(x− x0) Dirac delta function centered at x0

[[·]] measure of jump in a quantity across an interface

R real numbers

N natural numbers
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Table 9.0-2.. Index of frequently used symbols.

First

Symbol Name occurrence

𝐶𝑃 constant pressure specific heat 11

𝐶𝑣 constant volume specific heat 12

ℱ set of fluid subdomains 12

𝑓𝑅𝐺 reacted gas fraction of a chemical species 17

𝑞𝑛 flux normal to a surface 13

K conductivity tensor 11

n̂ outward unit normal vector 13

𝑞 volumetric heating 11

𝑞 magnitude of point heat source (or sink) 18

q flux vector 11

𝑟 reaction rate in a chemical reaction 16

𝒮 set of solid subdomains 12

𝑡 time 11

𝑡0 initial time 13

𝑇 temperature 11

𝑇0 initial temperature at 𝑡0 13

v velocity vector 12

x position vector 10

R endo- or exothermic energy release in chemical reaction 16

𝜌 density 11

Ω domain 10

𝜕Ω boundary of the domain 10

𝜕Ω𝑖−𝑗 interface of two subdomains 10

Γ subset of (sub)domain boundary 10

Γ𝑎 subset of boundary that is adiabatic 10

Γℎ subset of boundary with convective flux applied 10

Γ𝑞 subset of boundary with flux applied 10

Γ𝑟 subset of boundary with radiative flux applied 10

Γ𝑇 subset of boundary with temperature applied 10

𝜇 concentration exponent in chemical reaction 17

𝜈 stoichiometric coefficient of reactant species 16

∇ gradient 11
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INDEX

A

ACME, 60

Adams–Bashforth, 36

B

BI-CGSTAB, see biconjugate gradient stabilized method

biconjugate gradient stabilized method, 60

C

capacitance matrix, 49

CG, see conjugate gradient method

Chaparral, 60

CHEMEQ, 36, 61

conjugate gradient method, 60

consistent mass matrix, see mass matrix

contact

resistance, 19

tied, 19

COYOTE, 9

D

density, 11

Divergence Theorem, 28

E

Euler implicit, 34

F

facet, 54

FEI, see finite element interface

finite element interface, 60

Fourier’s Law, 11

functional iteration, 59

G

Galerkin implicit, 34

Gaussian quadrature, 40

generalized minimum residual method, 60

GMRES, see generalized minimum residual method

I

incomplete Cholesky preconditioning, 60

J

Jacobi preconditioning, 60

Jacobian matrix, 40

L

lumped mass matrix, see mass matrix

M

mass matrix, 49

consistent, 49

lumped, 49

master element, 39

R

reference element, 39

relaxation parameter, 60

S

specific heat, 11

stability, 30

stiffness matrix, 38

successive substitution, 59

T

thermal conductivity, 11

trapezoid rule, 34

V

variable implicit method, 34

volumetric heating, 16

W

well-defined, 29

well-posed, 30
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