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Background & Motivation

 Bolted  joints  are  used  in  simple  and  complex 

structures  due  to  their  short  assembly  time  and 

simplicity 

 Many complex structures have high consequences if 

failure occurs

• Automobiles

• Airplanes 

• Steel building frames

 Considering  joint  effects  to  accurately  predict 

dynamics  of  structures  is  necessary  due  to  their 

inherent nonlinearities
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Energy Dissipative behavior and associated nonlinearities:
• Energy dissipation is not well understood
• No model for how energy is dissipated

 Factors of Energy Dissipation from friction:
• Surface Roughness
• Geometry
• Material properties
• Preload
• Propagating Stress waves
• Slippage
• Multiple Asperity Contact
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Assumptions:

1. Negligible coupling between modes

• Joints typically have linear responses

2. Modes shapes do not change significantly with the 

excitation amplitude

Models modes of the entire system with 1-DOF spring-

mass-Iwan model system
Iwan Model are composed of Jenkins elements in 
parallel
•  Model Individual Joint 

Jenkins Elements:
1. Frictional slider with strength φ
2. Linear spring

Discrete Iwan Model Modal Iwan Model
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Background & Motivation

 Iwan model used to model nonlinear 

characteristics of Brake Rueβ beam

• Iwan parameters tuned to first mode

• Produces acceptable agreement for first 

two modes

 High variation between simulated and 

experimental results of mode 3
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 Joints cause nonlinearities and are a major source of damping in a structure

 Joint interface can have major impacts on the dynamics of entire structure

 Linear damping joint models are insufficient for modeling friction/energy 

dissipation and nonlinearities

 Current models are difficult to use and define linear and nonlinear 

characteristics implicitly

• Iwan parameters are difficult to determine

• Desire to quantify value of nonlinear changes in frequency and damping

6

Background & Motivation



7

Reduced order model

GOAL: Simulate dynamic response of bolted beam with lap joint and free-free and cantilever BCs by explicitly 

defining the linear and nonlinear characteristics of the joint interface

“Ahmadian, H., & Jalali, H. (2007). Identification of bolted lap joints parameters in assembled structures. Mechanical Systems and Signal Processing, 21(2), 1041-1050.”



System’s modeling
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8Nonlinear Stiffness

Linear Joint stiffness

Tip Mass Kinetic Energies
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Nonlinear damping

Linear damping

Hamilton’s principle
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Continuity Relationships
Boundary Conditions

System’s modeling



Reduced-Order Model Equation
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Left Beam Right Beam

� �
� � (orthogonality condition)



Frequency Effects Modes 1&2 (free-free)
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 Kθ  has  a  lesser  impact  on  the 
natural frequency than KL

 Certain  configurations  are 
more  sensitive  to  stiffness 
changes  if  joint  is  located  at 
node



Frequency Effects Modes 1&2 (Cantilever)
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 Kθ  has  a  lesser  impact  on  the 
natural frequency than KL

 ⍵1  decreases  as  joint  moves 
closer to fixed end
 Increase  in  bending 

moment and slippage



(Free-Free) Varying Linear Stiffness And Joint Location

13

 High values of Kl & Kθ  ≥ 10e10 

simulate continuous beam

 Lower joint stiffness values 

effect the dynamics of the 

structure

 Greater effects at node

 Minimal effects at 

antinode

 Kl & Kθ  ≤ 1e3 generate 

unreasonable mode shapes and 

resemble joint failure 



(Cantilever) Varying Linear Stiffness And Joint Location
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 High values of Kl & Kθ  ≥ 10e10 

simulate continuous beam

 Lower joint stiffness values 

effect the dynamics of the 

structure

 Greater effects at node

 Minimal effects at 

antinode

 Kl & Kθ  ≤ 1e3 generate 

unreasonable mode shapes and 

resemble joint failure 



  NL regime requires more 

modes for accuracy

  Lesser modes required for 

linear regime

  Predicted convergence within 

4-5 modes

•  Considering accuracy and 

computation time
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Convergence Analysis

- Increase number of modes of ROM until 

convergence of FRFs is reached   



Phase Angle Instantaneous Damping Frequency

-HT defines the relationship between real and imaginary parts of analytical signals

Hilbert Transform-vibrations

Amplitude Envelope
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Backbone Curve: Hilbert Transform

  H-T used to determine instantaneous damped frequency

 Approximates backbone curve

 Backbone curve relates nonlinear resonance frequency to various 

amplitudes 

Parameters Values Units

KL 8.089e8 N/m

Kθ 3264 N/rad

K3θ 3.277e8�� N/rad3

K3 0 N/m3

Cl 0 Ns/m

Cθ 0.281 Ns/rad
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Backbone Curve: Hilbert Transform

Onset of 
Nonlinear 

Regime 

Increasing Kθ:

 Rate of nonlinear frequency 

decreases

 Higher excitation needed to 

activate nonlinear regime

• Weaker nonlinearities

• Stronger linear 

characteristics

Nonlinear Stiffness:
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 +/- 10% uncertainty in joint location:

 Drastic changes in linear natural frequency and damping are examined

  Nonlinear damping is not significantly affected by varying joint location

  Nonlinear softening effects weaken as s/L increases

Uncertainty of Nonlinearities
- In the manufacturing process there are many uncertainties in the dimensions that can affect the linear and nonlinear  characteristics



Conclusion & Future Work
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Conclusion:

 Torsional springs and dampers are effective in simulating 

nonlinear effects of joint interfaces

  Linear and nonlinear characteristics are affected by joint location

 Hilbert Transform can accurately approximate nonlinear trends 

(backbone curve)

Future Work:

 Implement torsional and out-of-plane bending modes

  Developed nonlocalized forces dependent on slip-stick areas of joint 

interface

• Determine usefulness of probability density function shape

  Develop sub-routine for ROM into ABAQUS CAE

  Model beam structure with multiple bolts and joints
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Questions?
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Extra Slides
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LINEAR PROPERTY IDENTIFICATION

Parameters Values Units

KL 8.089e8 N/m

Kθ 3264 N/rad

K3θ 3.277e8�� N/rad3

K3 0 N/m3

Cl 0 Ns/m

Cθ 0.281 Ns/rad

Transverse Bending Modes 1 2 3 

⍵n�(Hz) 86.445 256.37 501.18

- ROM validation with: “Ahmadian, H., & Jalali, H. (2007). Identification of bolted lap joints parameters in assembled 
structures. Mechanical Systems and Signal Processing, 21(2), 1041-1050.”
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Uncertainty of Nonlinearities

- In the manufacturing process there are many uncertainties in the dimensions therefore, in the joint location.
• +/- 10% uncertainty in joint location is evaluated

  Drastic changes in linear natural 

frequency and damping are 

examined

  Nonlinear damping has decreased 

effect as as s/L increases

  Nonlinear softening effects 

increase as s/L increases


