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Background & Motivation

d Bolted joints are used in simple and complex
structures due to their short assembly time and
simplicity

d Many complex structures have high consequences if

failure occurs
* Automobiles
* Airplanes
e Steel building frames
1 Considering joint effects to accurately predict

dynamics of structures is necessary due to their

inherent nonlinearities



Background & Motivation

Energy Dissipative behavior and associated nonlinearities: Relative motio S
* Energy dissipation is not well understood > e
* No model for how energy is dissipated . < .

[ Factors of Energy Dissipation from friction:

* Surface Roughness

* Geometry _ L
* Material properties kL d PP =y
: P : : Pressure
* Preload . Contact
Damping
* Propagating Stress waves . | :
* Slippage
pp g 2 Slide E ‘r' ‘1‘§ Stick é';' 1.1.‘ Slide
* Multiple Asperity Contact PN T N
L) ___T#* Mic : E‘.. ‘.': Mi ‘l“:"'--—
)f s
3

Segalman, D., Lacayo, R., Allen, M.S., Schwingshackl, C., Barber, J. (2018). Mechanics of Jointed Structures, 15-16, 26-27, 255-264



Background & Motivation

Discrete lwan Model Modal Iwan Model
| v Four Parameters:
}_> 1. Macro-slip: Fy
. Tangential Joint Stiffness: Kr V=1
F

2
3. Energy Dissipation Slope: x
4. Related to shape of energy

— dissipation curve: 8 Models modes of the entire system with 1-DOF spring-

, . mass-lwan model system
Iwan Model are composed of Jenkins elements in

parallel Assumptions:
* Model Individual Joint

1. Negligible coupling between modes

Jenkins Elements: * Joints typically have linear responses

1. Frictional slider with strength ¢
2. Linear spring

2. Modes shapes do not change significantly with the

excitation amplitude

. . ) Segalman, D., Allen, M. S., Deaner, B. J., Starr, M. J., (2013) Investigation of Modal lwan Models
Segalman, D., Lacayo, R., Allen, M.S., Schwingshackl, C., Barber, J. (2018). Mechanics of Jointed Structures, 15-16, 26-27, 255-264 for Structure with Bolted Joints, 5-7



Background & Motivation

U Iwan model used to model nonlinear

characteristics of Brake Ruep beam
* |lwan parameters tuned to first mode
* Produces acceptable agreement for first

two modes

 High variation between simulated and

experimental results of mode 3

Bolt Beam
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Background & Motivation

[ Joints cause nonlinearities and are a major source of damping in a structure

1 Joint interface can have major impacts on the dynamics of entire structure (T TW
N
[ Linear damping joint models are insufficient for modeling friction/energy \
dissipation and nonlinearities
 Current models are difficult to use and define linear and nonlinear /
characteristics implicitly A W
i
* |lwan parameters are difficult to determine L ]
* Desire to quantify value of nonlinear changes in frequency and damping -
| S E—




Reduced order model

GOAL: Simulate dynamic response of bolted beam with lap joint and free-free and cantilever BCs by explicitly

defining the linear and nonlinear characteristics of the joint interface

5 mm
¢ wi (xl' t) i — Wy (x.l t) i t

. : . [ T
t — L | v
S —
30 mm
500 mm
(1 Interface Components

E E h@ K5g , K3: nonlinear stiffness effects at joint (torsional &

translational)

LI:I_J Ky, K;: Linear stiffness parameters at joint (torsional & translational)

C,Co, Ky, K;, K39, K3 Cp, C;: Linear damping effects at joint (torsional & translational)

“Ahmadian, H., & Jalali, H. (2007). Identification of bolted lap joints parameters in assembled structures. Mechanical Systems and Signal Processing, 21(2), 1041-1050.”



System’s modeling
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System’s modeling

5 mm
| I wix,t) 1 — wet) b |
# . I 32 mm
| S "
30 mm
i= 500 mm

?;(x) = Asin(kx) + Bcos(kx) + Csinh(kx) + Dcosh(kx)

Continuity Relationships

@, (s) = 0y (s)
2" (s) = 07" (s)

EI8]'(s) + Ko(8}(s) — 97.(s)) = 0

~E10}"(s) + K,(8,(s) — 8,(s)) = 0

@,.(x) = Esin(kx) + Fcos(kx) + Gsinh(kx) + Hcosh(kx)

Boundary Conditions

Free-Free Beam
9;'(0) =0 EI 97 (L) — w?] 07.(L)
@;'(0) =0 EI®! (L) — w?M,0,(L)
Cantilever Beam
?;(0) =0 EI 0; (L) — w?*] @;(L)
8;(0) = 0 EI®) (L) — w?M,8,(L)




Reduced-Order Model Equation

Left Beam Right Beam
n n
.s . 2 . —
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Frequency Effects Modes 1&2 (free-free)

«+. varvina K and Joint Location w, varvina K and Joint | ocation
1 TTTT ST Tl T T SRR RRAEEIE =R ReEEEIRSES 1 -’ ~ ﬂ .

O Ky has a lesser impact on the

— o - natural frequency than K|

100 100
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Frequency Effects Modes 1&2 (Cantilever)

wq varying KL and Joint Location

15
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w_ warving K
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siL

O Ky has a lesser impact on the
natural frequency than K|

O w, decreases as joint moves
closer to fixed end

O Increase in  bending
moment and slippage

P and Joint Lacation
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(Free-Free) Varying Linear Stiffness And Joint Location

—— K, =1x10"" {N/m)

U High values of K| & Kg 21010 |k =1x10" (mj
——K_=1x10° (N/mi
simulate continuous beam = 1x10° (Nim)

—— K =5x10" (N/m)

U Lower joint stiffness values
effect the dynamics of the
structure

] Greater effects at node

O Minimal effects at —— K, = 1x10™ prag
— K, =1x1 o* (N/rad)
—— K, =5x10% (Nfrad)

K, = 1x1 0% (N/rad)
—— K, =5x10% (Nfrad)

antinode

O K &K, < 1e3 generate

unreasonable mode shapes and

resemble joint failure

$,(x)

P4(x)

Mode 1 Varying K

4,(x)

0.25 .-\\‘\ ____\__.--—"'__"-___-__ ..U_a

(slL) N o4 0.6
0.2 '

Mode 2 Varying K
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(Cantilever) Varying Linear Stiffness And Joint Location

Mode 1 Varying K Mode 2 Varying K

T

—— K, =1x10"" {N/m) ~

U High values of K| & Kg 21010 |k =1x10" (mj
——K_=1x10° (N/mi
simulate continuous beam = 1x10° (Nim)

—— K =5x10" (N/m)

U Lower joint stiffness values

effect the dynamics of the

structure

] Greater effects at node

O Minimal effects at —— K, = 1x10™ prag
— K, =1x1 o* (N/rad)
—— K, =5x10% (Nfrad)

K, = 1x1 0% (N/rad)
—— K, =5x10% (Nfrad)

antinode

O K &K, < 1e3 generate

unreasonable mode shapes and

resemble joint failure




Convergence Analysis

. Galerkin Mode Convergence
- Increase number of modes of ROM until

. _><10'5 Mode 1: 0.05N 7 X 1074 Mode 1: 0.5N
H n=1
convergence of FRFs is reached 6 ,l ——n=z 5
—_ * n=4 —_
§, 5 * §, 5 L
5 5
O NL regime requires more £ 4 ¥ . £ 4
ks ks
Q. Q.
modes for accuracy 253 s - 237
* N\
2 o * . 2
1 Lesser modes required for 1 | | | | | | 1 | | | | |
858 86 862 84 866 88 &7 858 86 862 864 866 86.8
linear regime Frequency (Hz) Frequency (Hz)
A %x10° Mode 2: 0.05N o’ <10 Mode 2: 1.5N
 Predicted convergence within p —
35 — — n=2 — — n=2
' n=3 10 n=3
4-5 modes * n=4 * n-4

* Considering accuracy and

Displacement (m)
N
(&)}
Displacement (m)

computation time

256.1 256.2 256.3 256.4 256.5 256.6 256.1 256.2 256.3 256.4 256.5 256.6 15
Frequency (Hz) Frequency (Hz)



Hilbert Transform-vibrations

-HT defines the relationship between real and imaginary parts of analytical signals

u, (t) =u(t)+ if(t)

us(t) = A()eV®

Instantaneous Damping Frequency

Phase Angle

P(e) = tan™? (Egg) wyt) = O b w0a®) = () —Pyma (0)

(a)
107 ¢

Amplitude Envelope

| uy () |= At) = [Vu(t)? + 4(t)?]

Modal Velocity

[kg"ms"]

—

]
(%]
T
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Backbone Curve: Hilbert Transform

Parameters Values Units
d H-T used to determine instantaneous damped frequency K, 8.089¢8 N/m
) K 3264 N/rad
O Approximates backbone curve ?
Kse 3.277€8 N/rad3
1 Backbone curve relates nonlinear resonance frequency to various K, 0 N/m?
. C 0 Ns/m
amplitudes
Co 0.281 Ns/rad
<107 Backbone Curves o <104 FRFs Mode 1
r = Hilb Backbone Curve 1 | | | | I Baokblone Curve
—- Exact Backbone Curve g — 005N
6 _ - ——0.10 N i
025 M
7+ 050N s
5F . \
— ,—....6 - -
3 £
T4+ . =
© 55+ 4
; :
23t . S4r 1
5 8
8,0 l
2r |
2r |
1r |
1 L -
0 1 1 1 1 1 1
85.8 85.9 86 86.1 86.2 86.3 86.4 86.5 0 : : : ' : : 17
85.8 86 86.2 86.4 86.6 86.8 87

Frequen Hz
q ¢y (Hz) Fredauency (H=2)



Backbone Curve: Hilbert Transform

n 3 Increasing Kg:
: H . r _ r . . I . — r .
Nonlinear Stiffness:  Ksg Z(G ri(8) = 8(s) )q‘(t) (0 ri(8) = 07, (SJ) O Rate of nonlinear frequency
i=1
decreases
Backbone Curves: Torsional stiffness O Higher excitation needed to
activate nonlinear regime
—= 107 L
* Weaker nonlinearities
K,, =-1e7 3.
—-—-K,,=-5e7 * Stronger linear
2.5 4 -
-0--K,,=-1e8 3 characteristics
P — K3H =-1e9 :é’ 2
Ksy =1e7 GEJ
- ()]
R p— Ksy = 5e7 S
-o-K,,=1e8 e
—+—K,, =169 &

100

90

Onset of
Nonlinear

85

Regime K@ (N/m) 1e3 80 Frequency (Hz) 18




Uncertainty of Nonlinearities

- In the manufacturing process there are many uncertainties in the dimensions that can affect the linear and nonlinear characteristics

10 Backbone curves

14 - —al=04
B

+/- 10% uncertainty in joint location:

O Drastic changes in linear natural frequency and damping are examined

L Nonlinear damping is not significantly affected by varying joint location

Dizplacement (m)

L Nonlinear softening effects weaken as s/L increases

075 -0.8 -0.25 0
Freguency shift (Hz)

10¢ Mode 1: 0.25N (siL = 0.5)
45 1 Mode 1: 0.25N (sIL=0.4) . 1o Meode 1: 0.25N (s/L = 0.6) "
e | 34 =0 3k
_ 24 b
e | ap =
I::__..|=I:,_:=:25 22r

— . =0 2610
Ip L]

— . =15 e 10
Ip T

ha
T

[}
T

Displacement {m)

Displacemert (m)

Displacement (m)
[u}

15 L L L L ' % L L L L L | 1 1 1 1 | | | |
869 a7 a7 a7.2 a7.3 ar.4 a7 s B5.2 %3 86.4 B86.5 866 a57 a5 5 a5 861 a86.2 863 864 a86.5 866 867 6.8
Frequency (Hz) Frequency (Hz) Frequency (Hz)
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Conclusion & Future Work

Conclusion:

O Torsional springs and dampers are effective in simulating
nonlinear effects of joint interfaces

 Linear and nonlinear characteristics are affected by joint location

[ Hilbert Transform can accurately approximate nonlinear trends

(backbone curve)

Future Work:

1 Implement torsional and out-of-plane bending modes

Micro-Slip Macro-Slip
(d Developed nonlocalized forces dependent on slip-stick areas of joint A A

interface

* Determine usefulness of probability density function shape
d Develop sub-routine for ROM into ABAQUS CAE
" 20

d Model beam structure with multiple bolts and joints

Increasing force excitation level
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LINEAR PROPERTY IDENTIFICATION

- ROM validation with: “Ahmadian, H., & Jalali, H. (2007). Identification of bolted lap joints parameters in assembled
structures. Mechanical Systems and Signal Processing, 21(2), 1041-1050.”

[ | | 08 Mode Shape Functions

—c;-:=1(><]1
Ci, Co, Ko, Ky K30, K3 0.6 — 220
a5

5y \

= I /

Parameters Values Units ol

K, 8.089e8 N/m %_0_2 i

K, 3264 N/rad ol

Ksq 3.277e8 N/rad?

K, 0 N/m3 i

C 0 Ns/m r

Cq 0.281 Ns/rad 1o 0.1 02 03 04 05 05 07 08 09 i

x/L
Transverse Bending Modes 1 2 3

w, (Hz) 86.445 256.37 501.18 2



Uncertainty of Nonlinearities

- In the manufacturing process there are many uncertainties in the dimensions therefore, in the joint location.
 +/-10% uncertainty in joint location is evaluated

C =
S
d Drastic changes in linear natural — Lm0y Mode 1: Joint location uncertainty
C,,=C, %25
_ ——C,,=C, x50
frequency and damping are C. =C,x10
examined
%107
d Nonlinear damping has decreased T4~
£
0E> 3
effect as as s/L increases 3
S2-
§2)
. . o
[ Nonlinear softening effects 14
86

increase as s/L increases

87
Frequency (Hz) 87.5
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