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Abstract

Spray combustion involves many processes, including phase change, heat and mass transfer, and chemical reaction.
Accurate modeling of these systems requires computational methods capable of providing low dissipation and
bounded transport of scalars, including species mass fractions and temperature. Methods appropriate for use in
engineering applications typically fail to provide low dissipation, bounded transport near phase interfaces, where
fluid properties are discontinuous. In this work, we present a scalar transport method based upon the Eulerian-
Lagrangian point mass particle – a framework previously applied to immiscible phase transport. Concepts from
smooth particle hydrodynamics are leveraged to compute diffusion rates, while the point mass particle motion
accounts for scalar advection. The formulation is presented in the context of heat transfer, and verification is
performed for interfacial diffusion and single phase advection-diffusion. The paper concludes by demonstrating
multiphase heat transfer between a rising gas bubble in liquid, and a high Reynolds number temporal mixing layer.
The results demonstrate the method to provide low dissipation, bounded, and conservative scalar transport.
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1. Introduction

Liquid fuel combustion involves numerous interde-
pendent processes, including atomization, interfacial
heat transfer and phase change, mass diffusion, chem-
ical reaction, and particle nucleation and growth.
These processes generate large gradients in important
scalar fields, including temperature and species mass
fraction. Discontinuous fluid properties at phase in-
terfaces introduce the additional complication of dis-
continuous gradients. Heat and mass transfer near
phase interfaces controls the rate of phase change,
which strongly influences combustion efficiency and
exhaust gas composition [1, 2]. An understanding of
the near-interface heat and mass transfer is therefore
required to inform engineering designs.

Modeling and simulation of the spray combus-
tion environment involves many unsolved or under-
developed problems: performing consistent transport
of advected quantities (that is, using the same nu-
merical operators to transport conserved quantities)
[3, 4]; maintaining boundedness of scalar quantities
[5]; minimizing numerical dissipation at low numer-
ical resolutions, and resolving or modeling all rele-
vant spatio-temporal scales. These challenges are am-
plified for spray combustion, as an immiscible mul-
tiphase process, because a phase capturing method-
ology is required to inform the local phase, which
may or may not be conservative, affordable, amenable
to consistent transport, or applicable to unstructured
meshes. Engineering efforts to improve combustion
systems therefore require improved methods to ad-
dress the current shortcomings [5].

The coupled Eulerian-Lagrangian point mass par-
ticle (ELPMP) method is a newly proposed simula-
tion paradigm for simulating multiphase flows. The
approach is characterized by simultaneous discretiza-
tions of the flow system by an Eulerian mesh and
Lagrangian point mass particles (PMPs) [6, 7]. The
ELPMP has been verified in the context of phase
tracking [6], and has been proposed as a consistent
and conservative framework for performing multi-
phase Direct Numerical Simulation and Large Eddy
Simulation [7]. The ELPMP is novel in that a con-
sistency constraint on the spatial distribution of the
PMPs eliminates the need to re-mesh or re-seed the
Lagrangian domain. The approach provides a num-
ber of advantages in the context of spray combustion:
(1) advection via the PMP is consistent and conserva-
tive; (2) advected quantities remain bounded and suf-
fer little diffusive error, even for poorly-resolved flow
features (3) if desired, the PMPs can discretize the
system at a finer resolution than the Eulerian mesh,
and their behavior is independent of the mesh type.

This paper presents an approach for simulat-
ing multiphase heat transport in the context of the
ELPMP. Although the discussion is limited to heat
transfer, extension to any advection-diffusion equa-
tion is straight forward. Verification of the method is
performed by assessing multiphase diffusion, and sin-
gle phase advection-diffusion. Following the verifica-

tion, multiphase capability is demonstrated via simu-
lation of a hot bubble rising in liquid. Lastly, robust-
ness in the context of turbulent flows is demonstrated
by means of a high Reynolds number temporal mix-
ing layer.

2. Formulation

The presented computational method directly ex-
tends the PMP-based phase tracking methodology of
Wenzel and Garrick [6]. A complete description of
this underlying method is beyond the present scope,
and the curious reader is directed to [6]. Instead, this
section begins with a sufficiently detailed summary of
the ELPMP discretization to allow for the heat trans-
fer extension to be presented in the later portion of the
section.

2.1. Coupled Eulerian-Lagrangian point mass
particle discretization

Consider a dynamic fluid system occupying region
Ω at time t = tn. Eulerian methods integrate the sys-
tem in time to tn+1 = tn + ∆t by: (1) discretizing
the system mass, momentum, and energy with an Eu-
lerian mesh; (2) evaluating fluxes as a function of the
Eulerian discretization; and (3) evaluating the time
integration as a function of the Eulerian fluxes. In
the ELPMP paradigm, the Eulerian discretization is
retained, but is supplemented by a simultaneous La-
grangian discretization of the same fluid system by
Np point mass particles (PMPs). The PMPs can pro-
vide a discretization for all conserved quantities or a
subset of the conserved quantities, but must always
discretize the system mass.

A discretization of the system mass by Np PMPs
at time t = tn is defined by applying two constraints.
First, global mass conservation is enforced by assign-
ing each PMP a mass Mn

i , such that

∫
Ω

ρndΩ =

Np∑
i=1

Mn
i , (1)

where ρn is the local fluid density at time tn. Sec-
ond, the spatial distribution of PMPs is constrained to
be representative of the fluid density at all locations
x. The fluid density at point x is approximated by
the Smoothed Particle Hydrodynamics (SPH) convo-
lution expression,

ρn(x) =

Np∑
i=1

W (x−Xn
i , h)Mn

i , (2)

where Xn
i is the position of particle i at time tn, and h

is the non-zero extent of the compact weight function
W [8, 9]. Identifying particle masses Mn

i and posi-
tions Xn

i that satisfy Eq. (1) and Eq. (2) establishes
the PMP discretization of mass at time tn.
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Advancement from time level n to n+1 is achieved
by integrating the Eulerian solution, and by moving
the PMPs according to

dXn
i = Un

i ∆t, (3)

where Un
i is the PMP velocity. Because the Eule-

rian solution and the PMPs constitute simultaneous
discretizations of the same fluid system, the PMP ve-
locity Un

i is constrained such that Eq. (1) and Eq. (2)
are satisfied at time level n + 1. An expression for
the PMP velocity with this property has been derived
through the following logic [6]: (1) express the PMP
velocity as the sum of the interpolated Eulerian veloc-
ity ui and a residual velocity u′i; (2) express the PMP
acceleration as a function of inter-particle forces com-
puted in the SPH framework; (3) Taylor series expand
the PMP velocity in time, substitute the inter-particle
forces, and collapse time derivatives of the interpo-
lated velocity. This procedure results in the following
expression for the PMP velocity,

Un
i = un

i +
(
F′i + P′i

)n
∆t+ u′i

n−1
+O

(
∆t2

)
,

(4)
where F′i and P′i are residual inter-particle forces,
and u′i

n−1 is the residual velocity from the previous
time level. Further details regarding Eq. (4) and the
corresponding closure model are provided by Wenzel
and Garrick [6].

The ELPMP discretization of the system mass, de-
fined by Eqs. (1-4), is extended to a phase tracking
approach by associating each particle with a phase in-
dicator χi. An Eulerian color function can then be
computed from the particles via convolution, and used
to inform the Eulerian properties and surface tension
[6]. With this background, we develop an ELPMP
discretization for the mass, phase, and thermal energy.

2.2. ELPMP discretization for thermal transport

Consider a field ofNp PMP particles that compose
a discretization for the system mass, phase, and inter-
nal energy. The associated discretization constraint is
given by ∫

Ω

ρncnTndΩ =

Np∑
i=1

cni T
n
i M

n
i , (5)

where c is the specific heat and T is the tempera-
ture. Advancing the particle temperature Tn

i forward
in time requires the the Lagrangian form of the energy
equation,

DTi

Dt
=

1

ρici
[∇ · k∇T ]i , (6)

where the right-hand-side is the Lagrangian thermal
diffusion operator evaluated for particle i, and k is
the thermal conductivity. Because the PMP particles
are advected with the PMP velocity, thermal advec-
tion is naturally accounted for, and is consistent with

the transport of mass and phase information. A clo-
sure strategy for thermal diffusion is required to com-
plete the model.

We adopt a thermal diffusion operator proposed by
Cleary and Monaghan [10], which has been demon-
strated in the context of SPH to accurately quan-
tify diffusion across interfaces with discontinuous
changes in fluid properties, including density, thermal
conductivity, and specific heat. The diffusion operator
is given by

1

ρici
[∇ · k∇T ]i =

1

ρici

Np∑
j=1

Mj

ρj

4kikj

ki + kj
(Ti − Tj)

∇W q
ij

Xi −Xj
, (7)

where ρi and ρj are the densities of particles i and j
evaluated with Eq. (2), respectively, and ∇W q

ij is the
gradient of a thermal weight function evaluated be-
tween particles i and j [10]. Heat diffusion occurs in a
pair-wise fashion between particles, ensuring conser-
vation. Equation (7) could be directly implemented
for closure of Eq. (6). However, the present discus-
sion is limited to constant density systems, and this
allows for simplification. Instead of computing the
particle density ρi on every particle for use in Eq.
(7), we assign each particle density (and other fluid
properties) according to the particle phase indicator
value: if χi = 1 corresponding to the liquid phase,
then ρi = ρl, ki = kl, and ci = cl.

The thermal weight function used in this work is a
modified version of the M4 cubic spline [9],

Mq =

1

πh3
q


0, q < 0.1;
1
4

(2− q)3 − (1− q)3 , 0.1 ≤ q < 1;
1
4

(2− q)3 , 1 ≤ q < 2;

0, q ≥ 2,

(8)

where q = |Xi −Xj | /hq , hq = 1.2V
1/3
i , and Vi is

the volume of particle i. The above weight has been
modified in that Mq = 0 for q < 0.1, which prevents
heat exchange between particles that have become too
close in proximity.

A consequence of prescribing the particle densi-
ties, rather than computing them via Eq. (2), is that
the discrete normalization requirement for the weight
function is not satisfied [11]. We therefore introduce a
pre-factor to the weight, cn, resulting in a new weight
function that better satisfies the normalization criteria:

W q (q) = cnM
q (q) . (9)

In this work, we have implemented cn = 1.1.

2.3. Time integration
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An operator-split approach for time integration of
temperature in the context of the ELPMP method is
proposed as follows:

1. The thermal energy of the system is discretized
by the PMPs at time level n−1/2, such that the
distribution of thermal energy is defined by the
particle temperature Tn−1/2

i , the particle mass
Mi, and the particle position X

n−1/2
i .

2. The position of each PMP i is advanced from
time level Xn−1/2

i to time level Xn+1/2
i via the

procedures outlined in Section 4.3.2 of [6]. This
motion of the particles accounts for thermal ad-
vection.

3. The diffusion operator Di is computed for each
particle i using the most up-to-date particle
position X

n+1/2
i and the particle temperature

T
n−1/2
i

Di =
1

ρici

Np∑
j=1

mj

ρj

4kikj

ki + kj
×

(
T

n−1/2
i − Tn−1/2

j

) ∇W q n+1/2
ij

X
n+1/2
i −X

n+1/2
j

.

(10)

4. The temperature at time level n + 1/2 is com-
puted according to

T
n+1/2
i = T

n−1/2
i + ∆tDi. (11)

3. Performance assessment

We assess the performance of the ELPMP ap-
proach via two verification tests and two demonstra-
tion problems. The verification tests examine multi-
phase conduction, and single phase advection & diffu-
sion. After the verification tests, a warm bubble rising
in liquid is presented, followed by a high Reynolds
number temporal mixing layer.

3.1. Verification test 1: Multiphase conduction

We consider a variation of the multiphase pla-
nar diffusion test presented by Cleary and Monaghan
[10]. The domain is a rectangle with dimensions 1.5m
× 0.5m in the x and y directions, respectively. The
left half of the domain is filled with air, and the right
half of the domain is filled with water. The air is ini-
tially cool with a temperature of Tg = 300 K, and
the water is one degree warmer at Tl = 301 K. The
air properties are defined by ρg = 1.275 kg/m3,
kg = 0.02587 W/m ·K, and cg = 718 J/kg ·K,
and the water properties by ρl = 1000 kg/m3, kl =
0.598 W/m ·K, and cl = 4181.3 J/kg ·K. The top
and bottom of the domain are periodic, and the left
and right boundaries are adiabatic. This problem has
an analytical solution for comparison, and is available
for reference in the literature [10].

(a)

(b)

(c)

300 300.5 301

(d)

Fig. 1: Point mass particles colored by temperature (Kelvin)
in the multiphase slab diffusion problem for Nx = 60: (a)
t = 0s; (b) t = 15.9s; (c) t = 175s; (d) t = 637s.

3.1.1. Numerical specification

A uniform cartesian mesh is considered at three
resolutions: Nx = 30 by Ny = 10, Nx = 60
by Ny = 20, and Nx = 120 by Ny = 40.
Each mesh is made three dimensional by including
three control volumes in the z direction, allowing
a three-dimensional implementation to be applied to
this pseudo one-dimensional test problem. Each mesh
is initialized with one PMP particle per Eulerian cell,
Npc = 1. For each test, time step is set to

∆t = 0.144 (∆x)2 /αl, (12)

following prior work [10].
In order to increase the rigor of the test, we intro-

duce a velocity v(x) defined by

v (x) =
2xm − x

2xm

∆x

∆t
, (13)

where xm is the center of the domain in the x direc-
tion. Introducing the velocity v(x) perturbs the rela-
tive particle positions, and prevents them from assum-
ing a steady lattice. Adding this vertical velocity does
not change the analytical solution. For all cases, per-
formance is measured via the maximum percent error,
defined by

L∞(t) = max

[
100× |Ti(t)− T (x, t)|

∆To

]
, (14)

where ∆To = Tr−Tl is the initial temperature differ-
ence, and T (x, t) is the analytical solution, provided
in [10].

3.1.2. Results
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Fig. 2: Comparison of the PMP temperatures (red dots) to the analytical temperature (black line) in the multiphase slab conduc-
tion problem for Nx = 60: (a) t = 0.0s; (b) t = 48s; (c) t = 637s.

Figure 1 shows the time evolution of the PMP tem-
perature corresponding to theNx = 60 case. Initially,
the gas on the left is cool, and the liquid on the right
is warm. As time advances, energy diffuses into the
gas and the thermal boundary layer thickens. The liq-
uid temperature does not change visibly due to the
large thermal capacitance of water relative to air. Fig-
ure 2 shows the analytical solution (black line) and
the PMP temperatures (red dots) at three times for the
Nx = 60 case. The initial temperature in panel (a)
is discontinuous at the interface. At the early time
of t = 48 s shown in panel (b), the PMP tempera-
tures visually coincide with the steep gradient of the
analytical solution. Close agreement continues across
the boundary layer at the later time of t = 637 s in
panel (c). Errors are quantified in Fig. 3 for the three
mesh resolutions considered. Error decreases with in-
creasing mesh resolution, and for each resolution, the
errors decrease with increasing time. Errors are max-
imized at early times because the initial temperature
gradient is large, and small perturbations of the parti-
cle position most strongly influences the error at this
time.

0 100 200 300 400 500

t (s)

10−2

10−1

100

L
∞

Nx = 30

Nx = 60

Nx = 120

Fig. 3: Maximum percent error in the multiphase slab diffu-
sion problem as a function of time for mesh resolutions of
Nx = 30, Nx = 60, and Nx = 120.

3.2. Verification test 2: Advection and diffusion

The second verification considers the advection
and diffusion of a Gaussian temperature profile in
one-dimension. We compare the results to the ana-
lytical solution, and verify boundedness and conser-
vation.

3.2.1. Problem setup

The problem domain is a thin tube of length L =
1 m in the x direction. The domain is filled with
a single fluid with density ρ = 1 kg/m3 and spe-
cific heat of c = 1 J/kg ·K. Thermal conductivity
is considered at values of k = 0.002 W/m ·K and
k = 0.0 W/m ·K, providing high and low diffusiv-
ity cases. The fluid travels from left to right with a
speed of uo = 1 m/s. The temperature is initialized
with a Gaussian distribution defined by

T (x, to) = To+

A× exp

(
− (x/L− xo/L)2

σ2

)
, (15)

where To = 300 K, A = 50 K, xo = 1/8 m, and
σ = 0.04. With periodic boundary conditions, the
analytical solution to this problem is given by

T (x, t) = To +
A√

1 + (4kt/L2) /σ2
×

exp

(
− ((x/L− uot/L)− xo/L)2

σ2 + 4kt/L2

)
. (16)

3.2.2. Numerical parameters

The mesh is defined byNx = 90, andNy = Nz =
3. One PMP particle is initialized in every computa-
tional cell, Npc = 1. For the low diffusivity case
(k = 10−12 W/m ·K), the time step is defined by

∆t =
uo

∆x
, (17)

and for the high diffusivity case (k =
0.002 W/m ·K) the time step is defined by

∆t = 0.144 (∆x)2 /α. (18)
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Fig. 4: Temporal evolution of the PMP temperatures (red dots) and the analytical temperature (black line) for the high diffusivity
Gaussian: (a) t = 0.0; (b) t = 0.267; (c) t = 0.444; (d) t = 0.622.
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Fig. 5: Temperature profile for the low diffusivity Gaussian
at the initial state (blue dots, ncyc = 0) and after ten flow-
through times (red dots, ncyc = 10). Analytical solution
shown by black line.

The y direction velocity applied to the multiphase dif-
fusion tests is applied to the Gaussian tests.

3.2.3. Results

Figure 4 shows the PMP temperatures as a function
of time for the high diffusivity Gaussian. Initially,
the temperature gradient is large near x = 1/8. As
the fluid flows from left to right, the energy diffuses,
smoothing the gradient and decreasing the maximum
temperature. For all times, the PMP temperatures
(red) are in good agreement with the analytical solu-
tion (black). The result is bounded and conservative
to machine precision.

Performance of the low diffusivity Gaussian is as-
sessed by allowing the flow to recirculate through the

domain for ten cycles, ncyc = 10. As there is no dif-
fusion, the Gaussian profile should return to its initial
condition. Results of the low diffusivity Gaussian are
shown in Fig. 5. The initial PMP temperatures, shown
as blue dots, are coincident with the analytical solu-
tion, shown as the black line. The PMP temperatures
after ten flow through times, shown as red dots, are
no longer in perfect agreement with the analytical so-
lution, but show superior performance relative to Eu-
lerian advection schemes. The error is introduced by
the small-scale shifting of the PMP particles. Like
the high diffusivity Gaussian, this result is bounded
and conservative.

3.3. Demonstration problem 1: Rising gas bubble

We consider a hot gas bubble rising in a cool liq-
uid. The initial problem configuration is illustrated
in Fig. 6. The R = 0.61 cm gas bubble is ini-
tially hot at Tg = 500 K, and the liquid is cool
at Tl = 300 K. Liquid and gas properties are de-
fined by ρl = 875.5 kg/m3, ρg = 1 kg/m3, µl =
0.118 Pa · s, µg = 0.001 Pa · · ·, and the surface ten-
sion coefficient is σ = 0.0322 N/m. All boundaries
are periodic, and gravity acts in the−z direction. This
configuration is similar to the experiments conducted
by Hnat and Buckmaster [12], and the numerical sim-
ulation done by Sussman and Smereka [13].

3.3.1. Numerical specification

The simulation is performed on a 128×256×128
mesh with Npc = 2 particles per Eulerian cell. Re-
sults are presented using in the following nondimen-
sional expressions:

T ? =
T − Tg

Tl − Tg
; (19)
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Fig. 6: Flow configuration for rising bubble demonstration
problem.

and
t? = (v∞/L)t, (20)

where v∞ is the steady rise speed of the bubble.

3.3.2. Results

The liquid/gas interface colored by the temperature
is shown as a function of time in Fig. 7. The bubble
slowly deforms from its initially spherical shape as it
rises through the liquid. Significant deformation oc-
curs by t? = 2.4, and a steady geometry is achieved
by time t? = 6. The interface temperature is uni-
formly warm initially, and cools as the bubble rises
through the liquid. Cooling occurs more rapidly on
the bottom of the bubble than the top, and the inter-
face achieves a uniformly cool profile by t? = 8.4.
The steady rise speed of the bubble is 21.9 cm/s,
which agrees with the 21.9 cm/s identified via sim-
ulation by Sussman and Smereka [13], as well as the
experimentally measured speed of 21.5 cm/s by Hnat
and Buckmaster [12].

3.4. Demonstration problem 2: Temporal mixing
layer

The final problem is a temporal mixing layer. The
purpose of this demonstration is to examine the abil-
ity of the method to provide low dissipation, bounded
results for scalar transport in the context of turbu-
lent flows. The mixing layer is defined by Re =
γδωo/ν = 140, 000 and Pr = 0.5, where ν is the
kinematic viscosity, γ is the free-stream velocity dif-
ference, and δωo is the initial vorticity thickness. A
standard hydrodynamic initialization is applied [14]
where the fluid at the top of the domain moves to
the right and the fluid at the bottom of the domain

0 0.1 0.2 0.3 0.4 0.5

t* = 0 1.2 2.4 3.6 4.8 6.0 7.2 8.4

0 0.1 0.2 0.3 0.4 0.5

t* = 0 1.2 2.4 3.6 4.8 6.0 7.2 8.4

0 0.1 0.2 0.3 0.4 0.5

t* = 0 1.2 2.4 3.6 4.8 6.0 7.2 8.4

0 0.1 0.2 0.3 0.4 0.5

t* = 0 1.2 2.4 3.6 4.8 6.0 7.2 8.4

0 0.1 0.2 0.3 0.4 0.5

t* = 0 1.2 2.4 3.6 4.8 6.0 7.2 8.4

Fig. 7: Bubble surface colored by dimensionless temperature
as it rises through cool liquid.

moves to the left. Perturbations are added to the ini-
tial velocity field to expedite the growth of the hydro-
dynamic instabilities and reduce the simulation time
[15]. The temperature is initialized discontinuously,
with the top half set to 300 K and the bottom half to
400 K.

3.4.1. Numerical parameters

The computational domain is discretized by 192×
192 × 3 computational nodes in the x, y, and z di-
rections, respectively, and each cell is initialized with
Npc = 2 particles. The flow field is intentionally
under-resolved. The purpose of this demonstration is
to examine the numerical dissipation of the method,
and to verify boundedness of the temperature.

3.4.2. Results

The mixing layer temperature is shown on the Eu-
lerian mesh in Fig. 8 at four times, increasing from
left to right. The initially thin boundary layer is ap-
parent in panel (a), and remains thin in panel (b).
Significant development and mixing has occurred by
panel (c), and the length scales of the temperature
field have decreased significantly. At the final time
in panel (d), the smallest length scales have contin-
ued to grow smaller. While much of the vortex re-
gion is characterized by the intermediate temperature,
the full spectrum of temperatures remains present in
the vortex cores – this result is made possible by the
low dissipation and bounded transport of the ELPMP
method.

An assessment of the ELPMP performance can be
made by comparison to a widely used method, such
as the BQUICK scheme [5]. This comparison is pre-
sented in Fig. (9), where the BQUICK result appears
in panel (a) and the ELPMP result appears in panel
(b). The ELPMP result presents considerably less
numerical dissipation, while preserving boundedness
without limiters.
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(a) (b) (c) (d)

Fig. 8: Temperature contours in a temporal mixing layer (Kelvin): (a) t = 0.59; (b) t = 4.93; (c) t = 13.97; and (d) t = 20.93.

(a)

(b)

Fig. 9: Comparison of temperature contours in the temporal
mixing layer at t = 16.3 produced by: (a) the BQUICK
scheme, and (b) the ELPMP scheme.

4. Conclusion

We have presented a method for performing scalar
transport in the ELPMP framework. Diffusion is
achieved though a modified smoothed particle hydro-
dynamics diffusion operator [10], while scalar ad-
vection is accounted for by the motion of the point
mass particles. Verification tests for interfacial dif-
fusion and single phase advection-diffusion show the
method to provide low–dissipation, bounded, and
conservative scalar transport. Robustness of the
method has been demonstrated by simulating a gas
bubble rising in liquid, and a high Reynolds number
mixing layer. Coupled with previously demonstrated
phase tracking performance [6], these results suggest
the ELPMP may be a valuable tool for the modeling
and simulation of spray combustion.
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