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Outline

O Background and static emission control using dielectric metasurfaces

o Ultrafast photoluminescence steering

o Control of exciton dynamics in WSe2

o Towards single photon emitters and SPDC




Mie Resonant Dielectric Metasurfaces
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Kuznetsov, Science 2016




Emitters Coupled to Metasurfaces

Simulation of emitter very close (~A)
close to dielectric optical mirror
showed large radiative enhancement.
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Liu, S. et al. Optica 1, 250-7 (2014)




Colloidal QDs + Metasurfaces
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ACS Photonics 2,
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Embedding Emitters in 1l1-V Semiconductor
Metasurfaces
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Advanced Optical Materials 4, 1457 (2016).
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Epitaxial QDs coupled to Quadrupolar Modes
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Opt Express 29, 5567 (2021)




High Q modes Using “Broken Symmetry” Resonators o
(or Bound States in the Continuum - BIC) s
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ACS Photonics 3, 2362 (2016)




Light Emitting Metasurfaces
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Emission with Out of Plane Dipole Modes
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Nano Letters 18, 6906 (2018)




Ultrafast Steering of Photoluminescence




14

Beam Steering with Static Metasurfaces
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Metasurfaces Can Direct Photoluminescence
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Metasurface’s grating momentum translates the LDOS in momentum space
This couples trapped modes within the substrate (k, /ky > 1) to radiate into free space




Designing Metasurface for Active PL Steering
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Dynamic 2m phase coverage in the resonators from free carriers
excited by the 800nm pump



Designing Metasurface for Active PL Steering
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« The PL peak of the metasurface at the right edge of the DBR stack in reflection
« This allows for PL to couple to substrate modes at off-normal angles
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Unidirectional PL steering over 60° Field of View
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Dynamic Steering of Photoluminescence

Photoluminescence Steering at 100fs
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Emission control: Excitons in WSe,




Excitons in WSe, Coupled to TiO2 Metasurface
(Toroidal Resonances)
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ACS Photonics 7, 1699 (2020).




Modification of Exciton Dynamics in WSE2 Using

Toroidal Metasurfaces

Enhanced PL in 1L-WSe2+Metasurface: Purcell

effect
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Reduction of exciton annihilation rate
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Control of Single-Photon Emission and

Spontaneous Parametric Down-Conversion

(SPDC) using Metasurfaces




Single-Photon Emission + MEtasurfaces
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Other approaches for single-photon sources:
« Colloidal QDs

* Color centers in high bandgap materials

« Single dopants in Carbon nanotubes




Single-dopant emitter in Carbon-Nanotube coupled to ==
Si metasurface '

Si metasurface
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The challenge in these approaches is localization of single-photon emitter




Spontaneous Parametric Down-Conversion from GaAs
Metasurfaces
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Bi-photon Spectra
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SPDC from Metasurface: Comparison to Film
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4 orders of magnitude enhancement in biphoton rate!
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