This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2021-13446C

Sandia
National
Laboratories

Lightweight Combined
Application and System
Performance Monitoring

Matt Mosby

©ENERGY NISH
Wamrm Acvmee Brisfy Ambremabue
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

LDMS User’'s Group Conference 2021
October 26 - 28, 2021

Virtual

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

> 1 Acknowledgements

My involvement in creating/using the system | will present is extremely limited, | just got
excited when | learned about it and asked a bunch of questions. The people coming up
with the answers are:

James Brandt Tony Nguyen

Jeanine Cook David Poliakoff |
James Elliott Benjamin Schwaller

Ann Gentile Vanessa Surjadidjaja |

Si Hammond |

Vision: Continuous Monitoring of Application/System
Performance is Archived and Easily Accessible/Analyzed for
Developer/HPC Admin Response

Challenge: Maintaining application performance on HPC systems is difficult

How can we inexpensively and automatically provide developers detailed performance
data when they run tests?

Challenge: HPC system state can strongly influence application performance

How can we help developers track performance over time and understand variations in run-to-
run performance given the state of the HPC system?

How can we help the developer/user/admin community identify system issues?

Challenge: Resolving application performance issues “in the wild” after deployment is expensive

How can we enable developers to identify performance issues “in the wild” and respond |
proactively?

, | Use Case: SIERRA High Performance Multi-physics
Engineering Analysis Apps

General purpose analysis software used
by many government agencies to answer
engineering questions in the national
security problem space

One of the most-executed applications on
SNL HPC resources

Often used as part of acceptance suites
for HPC hardware, tools, etc.

Defining feature is high performance on
variety of commodity and advanced
platforms, e.g., Trinity, Sierra, Crossroads
& El Capitan (future)

5 | How does SIERRA maintain cross-platform performance?

- - - S S

Maintain large performance test suite
(~450 tests)

Run performance tests on important HPC
platforms nightly

Pass/fail on rudimentary criteria
« Total runtime

« Memory high-water

« Output/results comparison

How do developers track variability
and/or trends in the performance
tests?

o
!

How does SIERRA maintain cross-performance?

Memory

Scrape log files and store limited data for Runtime
historical/longitudinal analysis I

|
Historical data can help identify issues ¥

S v o ot® - ®

- Correlation with key events (e.g., "
TPL/system updates) "'\Q*’d’"' |
| | “ b et
* Provide bounds for root-cause analysis
Historical data like this cannot identify root
causes of performance issues
gt Nigagi e

How can we help developers easily
identify root causes of performance loss?

How can we help developers/HPC admins @
identify system issues? 'l? Y ’ *

7 | SIERRA Architecture Provides Common Entry Point for
Performance Data Gathering

SIERRA has standardized on Kokkos as a
performance portability abstraction

Kokkos provides a profiling interface that
enables runtime link of an arbitrary
profiling library

Track events: e.g., regions, kernels, copies

Parallel Mesh

Database
SIERRA Kokkos::Profiling
<Interface>
Kokkos
7
== l <d|open>
: i iINO> '

s | Prototype: LDMS for System and Application Performance m

Prototype capability uses LDMS streams
to transmit/store timestamped
application performance data

Co-location of system data enables
overlay of system state with application
performance

Graphana used to dynamically
guery/generate visualizations of data

Big step towards answering some of
the challenges faced by app devs

Job ID : 12345
(EXPORT PROF_LIB=LDMS

\
Kokkos::Prof. LD M S
<Interface> B Connector
_ ,

L HPC System LDMSJ\

LDMS Data/Analysis

Job ID : 12345 /

K Server / |

System + App |
Data |

Prototype: LDMS for System and Application Performance [Z

default compute internal force 25063756 30.3 min 72.6 ps

define face-face interactions 10084547 1.2259 hour 438 s

define lofted face-face interactions 10084042

Application Kernel Throughput (Functions called per minute)

Kokkos::View:initialization [DualView::... 6401077

Kokkos::View::initialization [] 6398855

LocalSuminteractionMassToMNodes 6387442

ZN6sierrad4Cont23update_predicted_co... 2667511

compute force from interactions 2666501

function_per_minute

Kokkos::View::destruction [] 2135241

Active Memory across Job

232472

12.5 M

zero net contact force

10,0 ME =

EnforceExplicitContact — update contac... 531462

compute energy globals 531058

process central difference operator 530957 §f **“

25MB —

EnforceExplicitContact — update orig pr... 530250

process nodal acceleration 529947

ComputeMassScale 528937

ZN3mtk26ConcatenateThreadLocalDat... 528735 293 ms 554 ns

DashExplicitEnforcement::add_nodal_a... 527624 2.1 min 244 ps

Prototype: LDMS for System and Application Performance

Kernel name Aggregate ¢ Aggregate tim Average time

default compute internal force 25063756 30.3 min 72.6 s Detalled VieW Of execution aCross prOCESSOI’S
define face-face interactions 10084547 1.2259 hour 438 ps and t|me, S|de'by'S|de W|th SyStem infOI’matiOn

define lofted face-face interactions 10084042

Function Timing Information Time / Function Call Per Rank Heatmap (Randomly samples ranks if = 100 ranks)
460 ps BOODD 1,04 ms
1.02 ms
OO0
450 ps
E0000
AR
e SO0000
40000 3
el 30000 =
20000
420 s
10000
410 ps
13:25 13:26 13:27 13:28 13:29 13:30 133 13:32 13:33 13:34 13:35
tima_per_func function_par_s
Active Memory across Job
12.5 MB
g .
J T -
0B
1325 1326 13:27 1328 13:29 1330 1331 3% 143 13:34 1335 §00 e
2021-10-20 13:31:10 13:25 13:28 13:27 13:28 13:29 13:30 13:34 13:32 13:33 13:34
Fran mean Mmax

= mim: 10.26 MB
=mean: 10.26 MB
- A 10.26 MB

1 1 Wrap-up, what's next?

What might be possible if we can easily...
Prototype demonstrates ability to
Memory

inexpensively gather application RUNtim
performance data and overlay with untime I
system state

[} |
- Lightweight profiling g 0o P
C : : : r.u...‘ ‘II L ’J : ~
- Can point to system issues with ¥ ye-
appropriate context M”""'& > . t.’"

Can we associate data to enable
longitudinal monitoring/analysis?

Can we engage app users to enable
monitoring for proactive dev response to
performance issues “in the wild?”

What are some other uses for this kind .-

of application monitoring? L

