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* I'lon Implantation for Defect Creation

|ExB Plates

Aperture

Different materials require different ion species
- Diamond:Si, Ge, Sn, Pb, N, Ga, Ni, ...?
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Example |: Many lon Species

Si, Ge, Sn implantation for creating group-1V defects in
diamond

- High mass-resolution mode

- Resolve all Sn**-isotopes, — > 60 ! ! !
Am

Current (a.u.)

- Spotsize <50 nm @ 56 keV / 28 kV
- High dose implants, enabled by >300 pA current

Mass (amu)



Current (nA)

Mass Spectra of Different LMAIS
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Preamp (mV)

Nitrogen and Carbon as LMAIS FIB Source

- N is relevant for diamond nitrogen-vacancy (NV) centers
- C for creating vacancies in diamond without adding in impurity atoms

- How to create a low melting point N or C containing material?

lon Implantation - New alloys
1. Start with a Aug,Sn,, eutectic 2 :z Sn*| Ayt 1. AuSi eutectics can actas a
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Example 2: Low Energy Implantation

- To date, processed 17 samples S S S S B S S
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Deterministic lon Implantation

)\

- Solid-state defects enable scalable quantum applications

N—Q@ — Color-centers are possible candidate
/ - Single photon emitters require low number of ions
A
Y. Zhou et al., Nat. Comm. 8, 14451 0.35 -
2017
o <1> Event
Typical lon Implantation Experiment: 0397
- Measure Beam Current, then do timed implantation 20251
- No real-time feedback of beam current % 0.20
. : - ¥o!
- Limited by Poisson statistics O 15
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Example 3: lon Counting

- Solid-state defects enable
scalable quantum applications

— Color-centers are
possible candidate

- Single photon emitters
require low number of ions

Typical lon Implantation Experiment:

— Measure Beam Current, then do
timed implantation

- No real-time feedback of
beam current

- Limited by Poisson statistics

1.

Few-ion implants dominated by
Poisson statistics

—> In-situ counting of ions can
beat Poisson statistics

December 7, 2:00 PM - EQ01.09.03
“In Situ lon Counting for Deterministic
Placement of Single Photon Emitters”
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Example 4: Ultra-Low Energy Implantation

- Deterministic targeting of HV Supply (Up to 10kv)
monolayers requires < 100 eV ion

landing energy

- Low acceleration ~10 kV + biased
sample to adjust landing energy VELION

Column

Sitlons @ 10 kV

Grounded Shielding

-
Sample @ >9.9 kV

?\/

Ceramic Standoffs (1mm)

Lin et al., ACS Nano, 14, 4, 3896-3906 (2020)
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Conclusion

7 different LMAIS to date

Current (a.u.)

17 samples implanted to date
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Examples of FIB Implantation
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Implanted Nanowires

Photon Counts (kcps)
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