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In 2014, Linger et al. presented a tan-
dem process for lignin valorization
by integrating chemical and biologi-
cal catalysis. Chemical pretreatment
of corn stover generated mixed
lignocellulose-derived monomers
that were converted to a single
product, polyhydroxyalkanoates,
by Pseudomonas putida. Tandem
processes have since been de-
veloped for diverse feedstocks
to support the bioeconomy.

A sustainable bioeconomy is predicated
on valorizing the three major components
of biomass [1]. Of these components,
cellulose and hemicellulose are industrial
feedstocks for a variety of materials and
chemicals, but the energy-dense and re-
calcitrant aromatic polymer that is lignin
has only been converted to date on a
large scale to heat and power. While the
potential of lignin has long been recog-
nized, only recent developments in chem-
ical and biological engineering have set the
stage for its conversion at scale.

Decades of effort have elucidated many of
the microbial mechanisms for lignin break-
down and mineralization in nature. The
polymer is predominantly broken down
by enzyme systems secreted by wood-
decay fungi, such as white rot [2]. The
resulting assortment of lignin-derived aro-
matic compounds (LDACs) can serve as
growth substrates for a wide variety of
bacteria, including Pseudomonas putida,
now a well-studied metabolic engineering
chassis. Elegant genetic and biochemical
studies have elucidated many of the genes

and pathways involved in the catabolism
of LDAG:s [3]. A key organizing principle in
the aerobic catabolism of aromatic com-
pounds is convergence: a relatively large
number of ‘upper’ pathways initially trans-
form a wide of range compounds to a
small number of shared metabolites, which
are then transformed to central metabolites
by a smaller number of ‘lower’ pathways [4].
This convergent architecture lends itself
to biological funneling, in which mixtures
of aromatic compounds are simultaneously
catabolized to target bioproducts. In
visionary work, Rojo et al. exploited this
convergent architecture to engineer a
pseudomonad to simultaneously degrade
methyl- and chloro-substituted aromatic
pollutants [5].

However, industrial application of biologi-
cal lignin depolymerization is limited by its
rate, extent, and scalability. Conversely,
many catalytic and thermal approaches
to lignin deconstruction have been devel-
oped that rapidly and extensively depoly-
merize and are amenable to scale-up.
Catalytic lignin depolymerization usually
yields heterogeneous mixtures of chemicals
that can be valorized as mixtures for fuel ap-
plications, or separated as pure chemicals;
yet, the cost and complexity of separations
remain key challenges [6].

Linger and colleagues presented two
major innovations to overcome the chal-
lenge of lignin recalcitrance and heteroge-
neity: integrating chemical and biological
catalysis, and introducing the concept of
biological funneling [7]. Their work con-
verted corn stover to medium chain-length
polyhydroxyalkanoates (mcl-PHAS), a bio-
degradable polyester, by combining alka-
line pretreatment for lignin extraction and
partial depolymerization with microbial
cultivations (Figure 1A). First, corn stover
was treated with sodium hydroxide, re-
leasing LDACs, such as p-coumarate,
ferulate, and vanillate, from the lignin poly-
mer into an aqueous liquor (termed ‘APL’).
Polysaccharide-derived compounds, such
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as glucan and xylan, were largely retained
in the solids along with much of the oligo-
meric (longer than trimeric) lignin. A 2-day
treatment of the solids with commercial
enzymes released monomeric sugars,
which were then catalytically upgraded.
To valorize the APL, the authors used a
strain of the soil bacterium P. putida with-
out any genetic engineering. P. putida
catabolizes four of the primary extrac-
tives (p-coumarate, ferulate, acetate, and
glucose) when provided as individual com-
ponents or in a mock mixture. In addition,
P. putida naturally accumulates mcl-PHAs
under nitrogen-limiting conditions. Thus,
the mixed LDACs and other APL-derived
extractives were upgraded to mcl-PHAs
by cultivating P. putida in APL as the sole
carbon source under nitrogen-limiting
conditions. Due to analytical challenges
at the time, the LDACs from APL could
not be quantified during the cultivation
and, thus, incorporation of p-coumarate
into mc/-PHAs was shown using '3C-
labeled p-coumarate. PHA production
was observed at similar yields from
mock mixtures [34-39% cell dry weight
(cdw)] and corn stover APL (32% cdw).
Finally, the authors demonstrated an ap-
plication of mcl-PHAs beyond bioplastics
by thermal depolymerization and deoxy-
genation to fuel-range hydrocarbons.

Since this study was published, similar
tandem processes involving biological
funneling have been applied to various
biomass-derived feedstocks. One impor-
tant innovation was the expansion and
increased sophistication of synthetic biol-
ogy toolsets, enabling rapid development
of improved chassis for biological funneling.
Other key innovations include diversifica-
tion of products beyond PHAs, including
many atom-efficient products from LDACs
[8]; onboarding of additional microbial
chassis with favorable attributes; improved
substrate utilization, including for LDACs,
dimers, and sugars; and increased titers,
rates, and yields for target bioproducts.
Biochemical characterization of diverse
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Figure 1. Process overview for realized and possible adaptations of tandem chemical catalysis and biological funneling. (A) Process described by Linger
and colleagues [7], wherein corn stover is chemically converted to a mixture of lignin-derived aromatic compounds (LDACs) and other extractives, which were then
biologically converted to medium chain-length polyhydroxyalkanoates (mcl-PHASs). (B) Possible and realized adaptions of this workflow for feedstocks, such as plastics,
pyrolysis oils, wastewaters, and environmental contaminants, to products spanning the general categories of diacids, pyridines, aromatics, among others [10,14].
Some but not all feedstocks would require chemical catalysis before biological funneling. In all cases, biological funneling reduces heterogeneity to increase value.
Elements of this figure were created with BioRender (BioRender.com).

enzymatic paradigms and enzyme engi-
neering for key LDAC conversions under-
pins many of these advancements [9].
Weiland, Kohlstedt, and Wittmann'’s excel-
lent 2022 review provides an extensive
analysis of metabolic engineering advances
for lignin valorization [10].

Looking ahead toward producing com-
modity products from lignin, improved
methods will be needed for lignin decon-
struction and process integration between
chemical and biological procedures [11]. A
paramount challenge is lignin processing
to generate higher yields of bioavailable
LDACs because the extent of biologically
accessible carbon from polymeric lignin
determines the economic viability of co-
products from lignin in the lignocellulosic
biorefinery [12]. Additionally, an increased
focus on the integration of chemical
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deconstruction methods with biological
funneling platforms will be necessary to
identify challenges, such as engineering
microbial tolerance to chemical byproducts
or expanding the biological funnel to ac-
commodate additional substrates.

Beyond lignin, particularly intriguing oppor-
tunities lie in: (i) tandem chemobiological
catalysis to valorize other recalcitrant
feedstocks; and (i) biological funneling
of other chemical mixtures (Figure 1B).
Toward (i), chemical deconstruction
methods that generate biologically avail-
able substrates are critical. For example,
mixed plastic wastes were recently chemi-
cally deconstructed to a mixture of bioavail-
able oxygenated intermediates that were
subsequently biologically funneled to a
single product [13]. Toward (i), the possi-
ble substrates for biological funneling are

expansive, including pyrolysis oils, agri-
cultural and industrial wastewaters, and
environmental contaminants, many of
which were recently reviewed [14].
Ultimately, only creativity and the catalog
of engineerable biochemistries limit the
possible products that can be produced
from these varied wastes.
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