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Abstract—In this paper, a composite scheme is proposed for
detecting stealthy data manipulation attacks on distribution
system which is unobservable with standard least squares based
state estimators. This technique has three stages where the
process of data imputation, voltage phasor estimation and the
bad data detection are carried out in a systematic manner. The
proposed approach is then integrated with moving target defense
strategies which perturbs the network parameters to reveal
stealthy false data injection attacks. The proposed approach
is tested is validated on a three-phase, unbalanced 37-node
distribution system and its results are presented. It is shown
that the proposed approach has the ability to accurately detect
the presence of FDI attacks using limited measurements (i.e., the
test system is unobservable).

Index Terms—Bad Data detection, Distribution system, Matrix
completion, Moving Target Defence, State Estimation.

I. INTRODUCTION

Cybersecurity aspects of electric grids have gained tremen-
dous attention over the past decade. Traditionally, bad data
detection schemes were used to detect arbitrary manipulations
of power system measurements but a stealthy approach is pro-
posed in [1] to bypass residual-based detection schemes. Such
stealthy false data injection (FDI) attacks satisfy the power
balance equations of the network and hence can stay hidden.
Stealthy false data can essentially hide an anomaly or persuade
the operator to send inappropriate control signals leading to
catastrophic consequences. Thus, it is necessary to detect the
presence of such stealthy FDI attacks in power systems.A
multitude of detection techniques have been developed for
conventional power transmission systems. On the other hand,
very few attempts have been made to study the effect of FDI
attacks and associated detection techniques in the context of
distribution systems.

Cybersecurity efforts from the perspective of distribution
systems is briefly outlined in [2]. One of the earlier work in the
area of cyberattack in distribution system is presented in [3]
where the the effect of manipulating the status of overcurrent
relay and circuit breaker is studied. A FDI attack methodology
for balanced distribution systems is presented in [4] which
uses a coarse state estimate to develop the attack vectors. A
similar methodology is developed in [5] to execute FDI attacks
on unbalanced three phase distribution systems. To detect
stealthy FDI attacks in an unbalanced distribution system, the
technique given in [6] exploit the transient information in order
distinguish legitimate measurements and manipulated values.

Moving target defence (MTD) strategy is one of the popular
techniques that can aid in the detection of stealthy FDI attacks
on power system measurements [7]. In MTD strategy, the
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parameters of the given system is perturbed such that the
attacker is oblivious to such changes. In the event of an
attack, the manipulated measurements will not be in agreement
to the system model due to the perturbation in parameters
and with such deviations the presence of FDI attack can be
detected with conventional bad data detection schemes. The
technique given in [8] is one of the early attempts to utilize
the MTD strategy for detecting FDI attacks on power system
measurements. Such a strategy is adopted for distribution
systems in [9] where the network configuration is perturbed to
reveal the stealthy FDI attacks and achieve an optimal power
flow. The technique given in [10] proposes a MTD strategy
where the operating points of the bus injections at predefined
nodes are perturbed for the purpose of FDI detection.

Most of the existing studies on the application of MTD in
distribution networks consider a fully observable set of mea-
surements for the detection process. But typical distribution
systems lack full observability and measurements are not as
redundant as compared to its transmission counterparts. As
MTD based strategies utilize the residual based schemes for
identifying FDI attacks, there is a need to develop bad data
detection techniques for unobservable distribution systems
which can work in tandem with MTD strategies.

For recovering missing data in PMU measurements, [11]
proposed a imputation technique where the low rank property
of the measurements is exploited via the matrix completion
problem. In [12] and [13], the low rank matrix completion
technique is adopted to estimate the state values in distribu-
tion systems with low observability. Residual based bad data
detection techniques cannot be directly incorporated with the
low rank matrix completion approach as the variance of the
imputed values would be unavailable. In this paper, a three
stage approach is proposed that can analyse the bad data in the
unobservable distribution system which can be used to detect
FDI attacks using an MTD strategy. This composite scheme
uses the matrix completion technique along with the weighted
least squares estimator to estimate the bus voltage phasor and
its error variance which is later used for detecting bad data
using largest normalised residue (LNR) test.

The rest of the paper is organised as follows: Section
2 briefly introduces the FDI attack model adopted in this
paper. The proposed approach is detailed in section 3 and its
simulation results are presented in section 4. The final section
provides the concluding remarks.

II. ATTACK MODEL

The objective of the proposed detection framework is to
detect any type of data manipulation attack irrespective of



the attacker’s objective. Hence, classical false data injection
attack is considered for developing the proposed detection
methodology. Let Σ be the set of all the node indices whose
cardinally gives the total number of the nodes in a given
distribution network. For the purpose of illustrating the FDI
attack model, in a no-attack scenario, the amount of complex
power injection and complex voltage at phase m ∈ {a, b, c}
of bus j ∈ Σ are denoted as ◦

smj and ◦
vm
j respectively. The

attacker aims to manipulate the complex power injection at
bus j ∈ Σ to a falsified value •

smj . Such a manipulation can
hide an anomaly like:

1) inverter overloading from the operators and obstruct them
from taking any necessary corrective action; or

2) misrepresenting the system state so that operators can
take a wrong control action.

To execute the data manipulation attack in a stealthy manner,
the attacker should manipulate the measurements at a set of
nodes, NΣ(j) ⊂ Σ, which is the neighbourhood of node j.
The set of nodes in which the attacker can manipulate its
measurements is defined as region of attaker’s influence and it
is denoted as A = {j ∪NΣ(j)}. With the premeditated value
of •

smj for node j, the attacker can execute a stealthy attack by
generating the required amount of data manipulations at the
set of nodes, NΣ(j) ⊂ Σ that satisfies the following condition:

◦
smj −

•
smj =

∑
k∈NΣ(j)

(
◦
smk −

•
smk ) (1)

The condition given in (1) can be rearranged as:∑
k∈A

◦
smk =

∑
k∈A

•
smk (2)

The rearranged condition given in (2) implies that the cumula-
tive complex power flows to the region of attacker’s influence
from the remaining nodes in the network stay unchanged
before and after the attack. Therefore, the complex voltage
values outside the region of attacker’s influence, Σ \ A, will
also remain unchanged. Since this attack model satisfies the
power balance constraint in the network, it will bypass the
residual-based bad data detection schemes which typically
verifies the given set of data against the system model. Such
a false data can be transformed to bad data by employing a
hidden MTD strategy which perturbs the network parameters
concealed to the attacker. In the next section, a three step
methodology is developed to detect the presence of bad data
in an unobservable distribution network which can operate in
tandem with an MTD strategy for detecting FDI attacks.

III. PROPOSED APPROACH

This section is divided into four parts where the first three
parts present the three stages of the proposed approach to
detect the presence of bad data in an unobservable distribution
system. The last part of this section deals with how the MTD
strategy can translate FDI attacks into bad data which can be
detected using the proposed approach.

A. Imputation of Unavailable Measurements

The first stage of the proposed bad data detection ap-
proach imputes the unavailable values at the locations where
measurements are not present. To develop the formulation
for the imputation method, let Σ be the set of indices of
all phase nodes in the given distribution network where the
measurements are only available at the nodes given by set
ψ. It is considered that the values of voltage magnitude, |v|j ,
nodal active power injection, pj , and reactive power injection,
qj , are measured at node j ∈ ψ. As the equations that
relate power and voltages are non-linear, pj and qj values are
transformed to equivalent real part, cj , and imaginary part, dj ,
of current injections at node index j with the a approximate
linear formulation as follows:

cj + idj ≈
pj − iqj

|v|j
(3)

c and d can be linearly related to the real part, e, and
imaginary part, f , of the vector of voltage phasors as:[

c
d

]
=

[
G B
−B G

] [
e
f

]
(4)

where G and B are the real and imaginary parts of the bus
admittance matrix for the given distribution system. Similarly,
the nonlinear relation between the real part, ej , and imaginary
part, fj , of voltage phasor at node j with voltage magnitude
value, |v|j , can be written in an approximate linear form as:

e0
j · ej + f0

j · fj ≈ v2
j (5)

where e0
j and f0

j are the real and imaginary parts of voltage
phasor at the previous estimation process. Since the trans-
formed values of c, d, and, v2 has a linear relationship with
e, and, f , the row corresponding to node j in the completed
matrix X ∈ R|Σ|×5 which is to be computed is written as:

Xj =
[
ej fj |v|2j cj dj

]
(6)

The objective of the imputation process is to obtain the
completed matrix X with the values in the partial matrix M ∈
R|Σ|×5 which can be defined as:

Mj∈Σ =


[
0 0 |v|abc

2

j cabcj dabc
j

]
if j ∈ ψ

[
0 0 0 0 0

]
if j /∈ ψ

(7)

It is easy to notice that the available measurements enter
the partial matrix at its respective positions. On the other
hand, the unavailable values are temporarily filled with zeros.
To obtain the completed matrix, X, its low rank property
is exploited by using its nuclear norm as a part of cost
function in the matrix completion problem. Such a formulation
for the matrix completion problem should account for the
system constraints as previously defined in (4) and (5). Due
to the presence of noise in the measurements, these system
constraints are enforced in a relaxed approach so that the



problem is feasible. Such a formulation for matrix completion
problem corresponds to

arg min
X,ε,ζ

‖X‖∗ + wT
1 ε + wT

2 ζ (8a)

such that

Xj,{3,4,5} = Mj,{3,4,5},∀j ∈ ψ (8b)[
ej fj |v|2j cj dj

]
= Xj,∗, ∀j ∈ Σ (8c)∣∣∣∣[ G −B

B G

] [
e
f

]
−
[

c
d

]∣∣∣∣ ≤ ε (8d)∣∣∣∣[ e0
j f0

j

] [ e
f

]
− |v|2

∣∣∣∣ ≤ ζj (8e)[
ε
ζ

]
≥ 0 (8f)

The formulation given in (8) is different from the technique
given in [12] as the values of power injection measurements
are transformed into equivalent current phasors which are used
in the matrix completion process. In this manner, the values of
voltage phasors at the nodes without measurement devices can
be imputed and can be used in the bad data detection process.

B. Voltage Phasor Estimation

The constraint (8b) in the optimization problem for the
imputation process ensures that the values taken at measured
locations remains unchanged while solving the low rank
matrix completion problem. Hence, the noise content in the
measured values are still present along with the pseudo-
measurements imputed for the locations where measurements
are unavailable.

The second stage involves estimating the bus voltage pha-
sors using the noisy measurements and imputed pseudo-
measurements across the network. As (4) and (5) provides
a linear relation with the voltage phasors, the measurement
model used for the voltage phasor estimation corresponds to

z = Hx̃ + η (9)

where

x̃ =
[
ẽT f̃T

]T
(10)

H =


I 0
0 I

diag
(
e0
)

diag
(
f0
)

G B
−B G

 (11)

z =
[
eT fT |v|2

T

cT dT

]T
(12)

η ∼ N
(
0, σ2

)
(13)

In this model, the elements of vector z can be obtained
from the elements of the completed matrix X. To estimate
the error variance of pseudo measurements, M sets of old
historical measurements, zm, m ∈ [1,M], and its respective

state estimates x̃m, m ∈ [1,M] are considered. With such con-
sideration, error variance at measurement i can be estimated
as:

σ2
i =

1

M

M∑
m=1

(zmi −Hm
i x̃m)

2 (14)

Since the noise content in the measurements are assumed to
have gaussian distribution, the weighted least squares formu-
lation will give the maximum likelihood estimate of voltage
phasor which can be written as:

x̃ =
(
HTR−1H

)
HTR−1z (15)

where the co-variance matrix R = diag(σ2). As a consider-
able amount of noise has been filtered out in the estimate of
the state vector, it can be used to analyse the presence of bad
data in the consecutive stage of the detection approach.

C. Identification of Bad Data

To identify the presence of bad data in the measured values
and the imputed values, largest normalised residue (LNR) test
is employed. For LNR test, the residuals are calculated using
the voltage phasors estimated in the previous stage as:

r = z−Hx̃ (16)

To obtain the normalised value of the residuals, the co-variance
matrix for all the residuals for measured and imputed values
can be given as:

Ω = R−H
(
HTR−1H

)
HT (17)

With the residual values and its corresponding elements of
co-variance matrix, the LNR value, rNmax, for a given set of
measurements can be calculated as

rNmax = max
{k}

|rk|√
Ω{k,k}

(18)

Since the measured values are not redundant as compared to
the estimated number of variables corresponding to bus voltage
phasors, the residuals does not follow the same distribution
and hence the thresholds for the LNR test are determined
experimentally.

D. Translation of FDI to Bad Data

As presented in the previous section, stealthy FDI attacks
have the tendency to evade from the residual based bad
data detection techniques like LNR test even if the given
set measurements makes the distribution system observable.
The proposed three stage approach for identifying bad data
enables the detection of stealthy data manipulation attacks in
an unobservable distribution network with the help of MTD
strategies. Here, consider that special apparatus like D-FACTS
devices are placed in the distribution system. These D-FACTS
devices can change the values of line reactance typically from
0.8 to 1.2 times its nominal value. The MTD strategy typically
involves perturbing the system parameters which in this case
are the set points of the D-FACTS devices. These set-points are
perturbed in a hidden manner such that attacker is unaware of



Fig. 1: One-line Diagram of 37-bus test system.

changes and this aids the operator in the detection of stealthy
attacks. It is assumed that the attacker does not know the
perturbed set-point values of such D-FACTS devices and hence
the attacker resorts to using the nominal values of the network
parameters. Let B̂ be the imaginary part of bus admittance
matrix considered by the attacker whereas the actual value
is B. Hence, the system matrix used by the attacker would
be Ĥ as compared to the actual system matrix H. In such
a scenario, when the attacker manipulates the measurement
vector as ẑ such that the state vector stays as x̂ by satisfying
the following condition of stealthy FDI attack which is:

r = ẑ− Ĥx̂ (19)

where r is the residual in a no-attack scenario. On the other
hand, the system matrix that matches with the ground reality
is H and even if the state vector estimated in this condition
stays at x̂, the computed residuals will be:

ẑ−Hx̂ = ẑ− Ĥx̂ +
(
Ĥ−H

)
x̂ (20)

= r +
(
Ĥ−H

)
x̂ (21)

With the MTD strategy, the set-points in D-FACTS devices are
perturbed, and hence, system matrix perceived by the attacker
and the ground reality stays different. In other words, Ĥ 6=
H, and thus the magnitude of the residuals computed during
an attack scenario is higher that that of the residuals in a
no-attack scenario as seen in (21). As the rise of residuals
can direct increase the LNR values during an attack scenario,
the proposed three pronged bad data detection approach with
the MTD strategy will be able to detect stealthy FDI attacks
effectively.

IV. SIMULATION RESULTS

The proposed three stage approach for detecting stealthy
FDI attacks was tested on the IEEE 37-bus unbalanced distri-
bution system [14] whose line diagram is shown in Fig. 1. The
measurements used in the 37-bus test system is injected with

Fig. 2: Estimation error of the proposed approach for different
FAD values.

Fig. 3: LNR values during attack and no-attack scenario with
0.65 FAD.

a noise which has zero mean Gaussian distribution and the
standard deviation is 1%. The performance of this technique
is validated with different values of fraction of available data
(FAD) which is the ratio between the number of observable
nodes with the total number of nodes in a given network. First
the estimation error of the matrix completion-WLS integrated
estimation approach is computed for values of FAD from 0.4
to 1 in no-attack scenario and plotted in Fig. 2. It can be
noticed that the estimation error seems to stay relatively less
and constant for FAD values beyond 0.6 for the given 37-bus
test system.

To demonstrate the functionality of the proposed technique,
measurements with FAD of 0.65 is considered. Two D-FACTS
devices are considered on branches between buses 30 and 31
and between 18 and 19, whose set points are unknown to
the attacker. The setpoints of D-FACTS devices are set such
that the line reactance has values 0.8 times its nominal value.
45 batches of measurements are considered for this analysis
where the attacker executes the FDI attack from the 16th batch
until the 30th batch of measurements. We consider that the
attacker hijacks the measurements at buses 19, 21 and 22
such that any anomaly inside this region of influence can be
concealed in a stealthy manner. Fig. 3 shows the values of
LNR for 45 measurement sets which includes both attack and
no-attack scenario. It is easy to see that the proposed technique
can provide a clear distinction between these two scenarios.

The sensitivity of the LNR values with respect to pertur-
bation of network parameters are analysed by varying the D-



Fig. 4: LNR values with various D-FACTS set-points during
attack scenario with 0.68 FAD.

Fig. 5: False alarm rate for for different FAD values under
no-attack scenario.

FACTS set-points from 0.8 to 1.2 in steps of 0.05 and plotted
in Fig. 4. Since the D-FACTS set-points changes the line
reactance in a linear fashion, the increase in LNR values during
an attack scenario is directly proportional to the absolute value
of the deviation in line parameters relative to its nominal value.
Thus, by keeping the set-points at maximum deviation relative
to the attacker perceived network parameters, the detection of
stealthy FDI attacks becomes effective (as the LNR values
under scenario will be noticeably high).

The detection rate under attack scenario and the false alarm
rate in the no-attack scenario is evaluated for the proposed
technique through 100 Monte Carlo simulations for each bus
as target in 37-bus system. It is observed that the detection
rate is 100% during attack scenario for FAD values from 0.4
to 1 with threshold values of 5 and 6. This is because the
computed LNR values are sensitive to bad data which in this
case is a transformed version of the stealthy false data. The
false alarm rate of the proposed methodology is obtained for
the FAD values from 0.4 to 1 with threshold values of 5 and 6
and plotted in Fig. 5. The false alarm rate tends to decrease as
the FAD increases since the error of the integrated estimation
approach reduces as the value of FAD increases. Thus the
increase in estimation accuracy can eventually reduce the false
alarms in the proposed FDI detection scheme.

V. CONCLUSION

A detection technique is presented in this paper which can
identify stealthy FDI attacks in an unobservable distribution
network. This technique uses the low rank matrix completion

to impute unobserved measurements in the network. The
imputed values are used along with the measured values in the
weighted least squares based voltage phasor estimator whose
results are verified for bad data with LNR test. As the attacker
is unaware about the amount of perturbation introduced by the
D-FACTS devices, FDI attacks are reflected in the form of bad
data. Test results of the proposed approach on the IEEE 37-
bus unbalanced distribution system indicate that, during no-
attack scenario, the proposed approach provides a moderately
accurate estimate of voltage phasors. In the attack case, the
proposed approach approach is very adept at detecting FDI
with a false alarm rate of less than 15% for FAD values greater
than 0.6.
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