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ABSTRACT: Aziridines are readily available C(sp®) precursors that afford valuable B-functionalized amines upon ring-opening. In
this article, we report a Ni/photoredox methodology for C(sp*)—C(sp®) cross-coupling between aziridines and methyl/1%/2° aliphatic
alcohols activated as benzaldehyde dialkyl acetals. Orthogonal activation modes of each alkyl coupling partner facilitate cross-selec-
tivity in the C(sp*)—C(sp’) bond-forming reaction: the benzaldehyde dialkyl acetal is activated via hydrogen atom abstraction and B-
scission via bromine radical (generated in situ from single-electron oxidation of bromide), whereas the aziridine is activated at the Ni
center via reduction. We demonstrate that an Ni(Il) azametallacycle, conventionally proposed in aziridine cross-coupling, is not an
intermediate in the productive cross-coupling. Rather, stoichiometric organometallic and linear free energy relationship (LFER) stud-
ies indicate that aziridine activation proceeds via Ni(I) oxidative addition, a previously unexplored elementary step.

INTRODUCTION

Selective cross-coupling of two different carbon electro-
philes, commonly known as cross-electrophile coupling, has
emerged as an enabling strategy for C-C bond formation.'
These processes often operate on readily available and stable
organic (pseudo)halides under mild conditions. Extensive pro-
gress has been made in developing C(sp®)-C(sp?) cross-electro-
phile coupling reactions, with Ni catalysis offering a particu-
larly general platform.? Mechanistic studies on select Ni-cata-
lyzed reactions have revealed that distinct, hybridization-de-
pendent activation mechanisms give rise to the cross-selectivity
with C(sp?) and C(sp?) electrophiles.>* In contrast, methods for
selective coupling of two C(sp®) electrophiles remain underde-
veloped, owing to the more subtle differences in reactivity be-
tween the two reaction partners (Figure 1A).° Nevertheless,
there has been important recent progress made in this area using
Ni® or Cu catalysis’ with chemical reductants and electrochem-
ical methods.® These approaches typically rely on substrate stoi-
chiometry, differences in (pseudo)halide identities or differ-
ences in substitution at the carbon center to achieve selectivity.
Alternatively, redox-neutral metallaphotoredox catalysis® can
provide a platform for the development of chemoselective
C(sp*)~C(sp?) cross coupling in part by relying on orthogonal
redox-dependent activation mechanisms of the two alkyl cou-
pling partners. This approach offers the opportunity to use non-
traditional reaction partners beyond alkyl (pseudo)halides while
retaining many of the positive attributes of cross-electrophile
coupling. For example, researchers have recently found success
coupling two C(sp*) fragments arising from carboxylic acids,
activated alcohols, alkyl halides, and C—H bonds.!” These ex-
amples highlight how the identification of strategies that engage
distinct classes of C(sp®) coupling partners in C(sp®)-C(sp?)
bond formation can be of broad value from a synthetic and
mechanistic perspective.

A. Prior art: C(sp®-C(sp®) cross-electrophile & redox-neutral metalla-
photoredox coupling
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Figure 1. Cross-electrophile and redox-neutral metallaphotore-
dox coupling with C(sp?) precursors.

Aziridines have been employed successfully as C(sp®)



electrophiles in a number of cross-coupling reactions. Work
from our lab,'! Michael,'? Jamison,'* Takeda/Minakata,'* May'?
and Xiao'® has demonstrated that coupling reactions with aziri-
dines can afford access to substituted ethylamines, important
nitrogen-containing motifs in medicinal chemistry (Fig-
ure1B)."” Organometallic nucleophiles such as organozinc hal-
ides or organoboron reagents, have been employed as coupling
partners to form both C(sp*)~C(sp®) and C(sp*)-C(sp®) bonds
(Figure 1B, top). Recently, our lab demonstrated that aziridines
can also participate in cross-electrophile coupling reactions
with aryl iodides, using either a stoichiometric inorganic reduct-
ant'® or a photo-assisted reductive coupling (PARC) strategy."”
Like other C(sp®)-C(sp?) cross-electrophile coupling reactions,
these methods take advantage of the difference in hybridization
of each coupling partner to impart selectivity (Figure 1A, bot-
tom).”® Unfortunately, direct extension of the methods for cross-
selective C(sp*)-C(sp®) coupling with unactivated alkyl halides
was not possible as both precursors undergo indiscriminate re-
duction at the Ni center. To address this challenge, we ques-
tioned whether we could design a selective redox-neutral
C(sp*)—C(sp?) cross coupling with aziridines by using an alter-
native C(sp®) partner where the activation mode is decoupled
from that of aziridine oxidative addition.

Herein, we report progress toward this goal in the develop-
ment of a redox-neutral Ni/photoredox-catalyzed alkylation of
aziridines to generate 2°-Me, 2°—1°, 2°-2° alkyl bonds (Figure
1C). The method facilitates the synthesis of a range of 3-substi-
tuted sulfonamides that were previously inaccessible by tradi-
tional cross-coupling methods with aziridines. Benzaldehyde
dialkyl acetals serve as the second C(sp®) coupling partner in
the method, functioning to activate unactivated alcohols toward
homolytic C(sp*)-O cleavage in an oxidative process®' that is
orthogonal to aziridine activation via reduction. Differentiation
of the activation modes affords an opportunity to independently
tune the rate of reaction of the two partners to achieve cross-
selectivity using easy to manipulate variables like light inten-
sity. Mechanistic studies suggest that aziridine activation does
not occur via Ni(0) oxidative addition, but rather via Ni(I), an
elementary step that has no prior stoichiometric or catalytic
precedent.?>%

RESULTS AND DISCUSSION

Reaction Optimization

We began reaction optimization using 2-(4-fluorophenyl)-1-
(p-tolylsulfonyl)aziridine (1a) and benzaldehyde dimethyl ace-
tal (2a) as a methyl radical precursor. On the basis of prior stud-
ies, including our own recent work,?! we explored the use of
halide salts as precursors to halogen radicals for HAT. We were
pleased to find that using 2.5 mol% Ni(cod),, 5 mol% NH4Br
(Eiz [Br/Br:] = +0.80 V vs SCE in DCE), and 2 mol%
Ir[dF(Me)ppyJo(dtbbpy)PFs(Ir'/Ir'™* = +0.97V vs SCE in
MeCN)?¢?* with a 427 nm Kessil lamp at 25 °C, the desired
cross-coupled product 3a was formed in 22% yield (Table 1,
entry 1). Because hydrolysis of the acetal 2a was also observed
under these conditions, we next evaluated non-protic bromide
salts, including LiBr, which led to the formation of 3a in 32%
yield (Table 1, entry 2). In both these reactions, numerous un-
desired side products also accompanied product formation, in-
cluding the dimerized aziridine (4), sulfonamide 5,% and the di-
rect product of cross-coupling with the 3° carbon of the acetal
(6). Since 4 and 5 both presumably arise from unproductive
consumption of an azanickellacycle intermediate, we

hypothesized that increasing the rate of methyl radical for-
mation from 2a might lead to better selectivity for the cross-
coupled product 3a.?® Consistent with this hypothesis, we found
that simply adding another lamp and increasing the lamp inten-
sity, variables that should both differentially impact the HAT
cycle, afforded 3a in 70% yield (Table 1, entry 3-4). Increasing
the acetal equivalents from 1.8 to 2.4 also afforded a modest
improvement in the yield of 3a (Table 1, entry 5).

Table 1. Optimization of aziridine alkylation with benzal-
dehyde dialkyl acetals.

Ni] (2.5 mol%), dtbbpy (3 mol%
Ts [
N O,Me Ir[dF(Me)ppy],(dtbbpy)PFg (2 mol%) TsHN Me
+
\ Ph)\OMe LiBr (5 mol%), MeCN:PhH Ar
Ar 427 nm, temp, 20 h
1a 2a 3a
Ar = p-F-Ph
side products
Ar Ph OMe
TsHN >—\ . e NH . THN  Y-OMe
< NHTs i
Ar Ar
homocoupling sulfonamide 2°-3° coupling
4 5 6
Light )
Entry ’:cf“if’,' [Ni] intensity T(‘i'é‘)P Yield (%)
q Ino. of lamps 3(rsm) 4 5 6
1 1.8 Ni(COD), 25%/1 252b  22(59) 3 12 7
2 1.8 Ni(COD), 25%/1 25° 32(50) 2 10 7
3 1.8 Ni(COD), 25%/2 28° 68 4 10 6
4 1.8 Ni(COD), 50%/2 31° 70 4 5 6
5 24 Ni(COD), 50%/2 310 79 4 7 5
6 24 Ni(COD), 50%/1 26° 34 3 22 5
7 2.4 Ni(COD), 50%/1 38¢ 72 5 7 5
8 2.4 NiBryeglyme 50%/1 38¢ 82 6 5 4
9 1.1 NiBryeglyme 50%/1 38¢ 58 10 8 7
10 1.8 NiBryeglyme 50%/1 38¢ 68 8 10 7
11 24 NiBryeglyme 50%/1 38¢ 47 1 12 3
12 24 NiBryeglyme 50%/1 3809 65 7 14 5

Reactions performed on 0.1 mmol scale, with 1-fluoronaphthalene
as the external standard (‘°F NMR yield for 3,4,6, 'H NMR yield
for 5). Entries 1-2 were performed at 0.04M, and entries 3-10 were
performed at 0.057M. For reactions with 25% intensity, vials were
placed 1.5 cm away from Kessil lamp and for 50% intensity, vials
were placed 3cm away. Entries without (rsm) showed full conver-
sion of the aziridine. * NH4Br was used instead of LiBr ® Three fans
were used to cool the reaction. © No fans were used to cool the re-
action. ¢ Reaction was setup on the benchtop under an inert atmos-
phere. Reaction with either no light, no photocatalyst, no nickel, or
no nickel/ligand all gave 0% yield of the desired product.

Although the conditions in entry 5 afforded a high yield of
the desired product, we sought to test the robustness of the re-
action under a more simplified light set-up. Interestingly, while
only one lamp with fan-cooling afforded 34% yield of 3a,
simply removing the fans to increase the reaction temperature
gave a significant increase in the yield of 3a to 72% (Table 1,
Entry 6,7), potentially because higher temperatures facilitate S-
scission and increase the concentration of Me radical in solution.
Finally, evaluation of Ni precatalyst identity showed that
NiBr,-glyme gave a 10% increase in yield over Ni(cod), (Table



1, Entry 8).

With these optimized reaction conditions, we were pleased to
find that 3a can be obtained in useful yield even with reduced
equivalents of the acetal (Table 1, Entries 9 & 10). Moreover,
although NiBr,-glyme can serve as the sole source of bromide
for HAT, control reactions omitting LiBr led to diminished re-
activity, consistent with previous observations that the counter
cation of the additive may facilitate stabilization of the anionic
sulfonamide and product release (Table 1, Entry 11).2° Because
NiBr,-glyme is the optimal Ni source and is air- and moisture
stable, the reaction can be setup and run on the benchtop, as
opposed to the glovebox, and delivers 3a with only a small de-
crease in yield (Table 1, Entry 12).

Substrate scope

Methylation of C(sp®) carbons is a powerful strategy in me-
dicinal chemistry that can lead to an increase in potency, higher
selectivity among bioreceptors, alteration in solubility, and en-
hanced protection against enzyme metabolism.”” Accordingly,
amines and sulfonamides bearing f-methyl groups are a highly
sought structural motif in pharmaceuticals.”®® Nevertheless,

methylation of aziridines has only been accomplished with
highly nucleophilic organometallic reagents, such as Grignard
reagents, organocuprates, and AlMes, and often results in poor
regioselectivity.” Moreover, there have been no reports of suc-
cessful Ni- or Pd-catalyzed cross-coupling of aziridines with
methyl nucleophiles.'!"'"* Therefore, with the optimized reaction
conditions in hand, we investigated the scope of the reaction
with various aziridines using benzaldehyde dimethyl acetal as a
methylating reagent.

We were excited to find that a broad range of styrenyl aziri-
dines were compatible with this Ni/photoredox methylation re-
action (Table 2). Substrates bearing electron-deficient groups
such as p-CF; (3b) or p-CN (3¢) gave the f-methylated sulfon-
amide products in 77% and 50% yield, respectively. An unsub-
stituted styrenyl aziridine (3d) as well as those baring electron-
donating groups such as p-#-Bu (3e) or p-OPh (3f) also afforded
the methylated products in good yield. The reaction showed
minimal sensitivity to steric hindrance on the arene, with 3g
formed in 59% yield.

Table 2. Reaction substrate scope with aziridines and benzaldehyde dialkyl acetals.

NiBryeglyme (2.5 mol%), dtbbpy (3 mol%)

$OR _alkyl Ir[dF(Me)ppylx(dtbbpy)PFg (2 mol%) RO,SHN alkyl
N . o
'L\ Ph)\OR LiBr (5 mol%), MeCN:PhH (1:1) S
blue light, 38 °C, 20 h
1 2 3
A. Aziridine Scope
TsHN Me TsHN Me TsHN Me TsHN Me TsHN Me TsHN Me TsHN Me
Me
CFs CN t-Bu OPh
3a 3b 3c 3d 3e 3f 3g
78% yield 77% yield 50% yield 81% yield 70% yield 40% yield 59% yield
0o
0 0 [e N1 o) o)
N (o] o R
0 OsE_NH  Me SS-NH  Me S-NH ~ Me Os&_NH  Me O8NnH Me 0%
S-NH Me — Ny N SS-NH Me
Ph Me/ \_<
Ph Ph Ph Ph
Ph Ph
od FsC
F F3C Fs 3n
3h 3i 3 3k 31 3m 49% yield
59% yield 65% yield 57% yield 63% yield 65% yield 51% yield (3.5:1 m)
o B. Acetal scope
N TsHN M TsHN -P)
O‘g—NH Me TsHN R S| e TsHN CD3 TsHN Et S| n-Pr
Me Ar Ar Ar
Ph Ar= } F
43"/3;ield 3p, R = Me,75% yield 25"/3;ield 3s 3t Su
o y = y o o . . 0, :
@B.71m) 3q, R = CD;, 76% yield ©:1m2 72% yield 83% yield 75% yield
o}
TsHN t Me M Me TsHN R ks N
S| n-pen e S|
TsHN TsHN TSHNﬂge R or TsHN \_(J
Ar Ar Ar “‘;"‘-/_\_// 0
Ar Ar Ar
3v 3w 3x 3y 3z Jaa
74% yield 529% yield 49% yield 36% yield 51% yield (3:1)° 50% yield
NTs R
OMe SiMes TsHN R
TsHN TsHN TsHN - R
TsHN TSHN TsHN ° — s
‘Ar ar Ar
Ar Ar Ar
3ab 3ac 3ad 3ae, R=H, 41% yieldd 3ag 3ah, R = i-Pror n-Pr, 3ai, R = i-Pror n-Pr,
32% yield 32% yield 40% yield 3af, R = CO,Me, 31% yield 15% yield? 43% yield (1:1.5)%" 47% yield (1:1.2)%

(1:1 dr)%e



Reactions performed on 0.2 mmol scale. 0.48 mmol of the acetal coupling partner was used. “ 48 h instead of 20 h  Ratio of ring-closed to
ring-opened isomers. ¢ Performed on 0.1 mmol scale using 1 mol% photocatalyst and 1.1 equivalent of acetal at 25 °C.95,5’-difluoro-2,2’-
bipyridine was used instead dtbbpy. €1:1 dr at the benzylic stereogenic censer of the #rans cyclobutane. / diisopropyl benzaldehyde acetal

was used as the coupling partner.

As sulfonamides have been frequently employed in medicinal
chemistry, we also investigated aziridines with sulfonyl substit-
uents other than a tosyl group. Aryl (3h-3k), benzyl (31, 3m)
and alkyl sulfonamides,* such as methanesulfonamide (3n)**
and cyclopropanesulfonamide (30)**** were tolerated in the re-
action, albeit the alkyl sulfonamides were formed as mixtures
of regioisomers with methylation favoring the benzylic posi-
tion. Finally, an unsubstituted aziridine was also converted to
the deuteromethyl- and methylated products 3p and 3q in 75%
and 76% yield, respectively. A current limitation of the meth-
odology is that aliphatic aziridines give poor conversion to the
product, even with prolonged reaction times (3r). While
styrenyl aziridines undergo preferential cleavage at the substi-
tuted site governed by the weak benzylic C-N bond strength,**
aliphatic aziridine 1r undergoes methylation to give the linear
product 3r in 9:1 selectivity, likely due to a change in mecha-
nism favoring addition of Ni to the least sterically encumbered
position.'®

We next explored the scope of the acetal partner using 2-(4-
fluorophenyl)-1-(p-tolylsulfonyl)aziridine (1a). Traditionally,
p-aryl f-alkyl-substituted ethylamines have been accessed via
hydride ring-opening of 1,2-disubstituted aziridines;*' hy-
droaminomethylation of styrenes with anilines;* or reduction
of B-aryl B-alkyl nitriles,* nitro alkanes (or alkenes),** and en-
amides.*® However, these methods require prior installation of
the f-substituent whereas the Ni/photoredox aziridine alkyla-
tion would enable introduction of the S-alkyl group late in a
synthetic sequence. In so doing, this method could be more
amenable to SAR studies®® and the preparation of a common
motif in medicinal agents such as venlafaxine (antidepresent)®’
and baclofen (muscle relaxants).® Indeed, we found that deu-
teromethyl (3s) as well as other unactivated linear alkyl groups
such as ethyl (3t), n-propyl (3u), n-pentyl (3v), isoamyl (3w),
and adamantly ethyl (3x) all afforded the desired products in
49-83% yield. Moreover, f—substituted alkyl coupling partners
such as neopentyl (3v) were effective in the reaction. As another
example, a methylene cyclobutyl group could be transferred in
51% yield (3z), wherein both the direct cross-coupling (3z1)
and the radical ring-opened terminal alkene (3z2) were ob-
served in a 4:1 ratio. Alkyl groups bearing nitrogen-derived
functional groups previously reported to be incompatible with
Negishi couplings of aziridines''® were tolerated, such as
phthalimide 3aa and piperidine 3ab. Ether (3ac) and silyl
(3ad)-containing alkyl coupling partners also afforded the
cross-coupled products in synthetically useful yields.

We were also excited to observe reactivity between 2° alkyl
coupling partners and aziridines, given that cross-coupling of 2°
alkyl groups with aziridines is not feasible under reported
Negishi conditions.'"!* Moreover, 2°-2° C—C bond formation
presents a particular challenge in cross-electrophile strategies,
with only a few examples reported to date.®** When testing the
reactivity between 2° alkyl coupling partners and aziridines, we
found that application of 5,5’-difluoro-2,2’-bipyridine rather
than dtbbpy as ligand enabled higher conversion to the desired
product (See supporting information III-E for details). Both cy-
clic and acyclic secondary alkyl groups underwent coupling.
The reaction was most efficient with cyclobutane derivatives
(3ae and 3af). A decrease in yield was observed as the ring size

was expanded to cyclopentylation (3ag). Interestingly, use of
isopropyl acetal as the 2° coupling partner afforded cross-cou-
pled product with a 1:1.5 ratio of branched and linear propyl
groups (3ah). Isomerization was also observed when using an
unsubstituted aziridine as coupling partner (3ai), indicating that
isomerization is not restricted to only congested 2°-2° C-C
bond formation (vide infra).

Scheme 1. Alkylation of aziridine via direct incorporation
of C(sp®)-H substrates

*@@

Ni(COD), / dtbbpy

|r[dF(Me PPyl2(dtbbpy)PFg N \_(—Q
NH4Br (20 mol%)

blue light, 30 °C, 66 h Ar
(solvent) 3aj
50% yield
Ts Ni(COD), / dtbbpy
N o IMdF(Me)ppyly(dtbbpy)PFs Q
. D TsHN
NH,CI (20 mol%), K,COg
E blue light, 35 °C, 66 h Ar
1a (solvent) 3ak
66% yield

(1:1dr)

Reactions were performed on 0.2 mmol scale, with two Kessil
lamps and a fan for cooling.

Interestingly, in cases where the alkyl scaffolds are com-
monly employed laboratory solvents, we found that direct
C(sp*)-H alkylation can take place. For example, rather than
employing benzyl alcohol or tetrahydrofuranol, we found that it
is possible to directly employ toluene and THF as alkylating re-
agents to afford 3aj and 3ak in 50% and 66% yields, respec-
tively (Scheme 1), with slight variation on the reaction condi-
tions.

Possible mechanistic pathways

Oxidative addition of aziridines to Ni(0) has been established
in stoichiometric studies,?? with the resulting Ni(II) azametal-
lacycle proposed as a common catalytic intermediate in cross-
coupling reactions with aziridines.''"'*!>1¢23 Therefore, at the
outset of our reaction design, we initially hypothesized that ox-
idative addition of Ni(0) I to generate an Ni(Il) azametallacycle
I would be operative; subsequent capture of the alkyl radical
to generate Ni(III) III followed by reductive elimination would
furnish the desired product (Scheme 1, eql). Alternatively,
Ni(II) complex IV could instead arise via oxidative addition of
Ni(0) to benzylbromide 7 generated in situ, given the catalytic
presence of bromide in solution (Scheme 1, eq 2).!%*%®

Nevertheless, the generation of linear/branched isomers us-
ing acyclic secondary alkyl reaction partners appeared incon-
sistent with these pathways (Table 2, 3ah, 3ai). In particular, S-
hydride elimination and reinsertion should be more favorable at
a low-valent Ni(I) VI center as opposed to the Ni(III) interme-
diate IIT in eqs 1 and 2 since isomerization necessitates a vacant
coordination site and an intermediate with a relatively long life-
time.* Interestingly, the intermediacy of a Ni(I) alkyl VI would
imply that aziridine activation takes place by Ni(I)-Ni(III)



oxidative addition, an elementary step that does not have prec-
edent in stoichiometric studies for aziridines (Scheme 1, eq3).
Or an analogous Ni(I)-Ni(IIl) pathway could also be proposed
with benzyl bromide 7 (Scheme 1, eq 4). The Ni(I) alkyl VI
intermediate could either be accessed via radical addition to the
Ni(0) I, or via radical addition to Ni(I)Br VII to first generate
Ni(II)(alkyl)(Br) VIII, followed by SET.

Scheme 2. Possible mechanistic pathways for accessing
Ni(III) to enable product formation.
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Mechanistic Investigations

To interrogate the mechanism of aziridine activation, we first
sought to synthesize the Ni(II) IT oxidative adduct and test its
intermediacy in the coupling reaction (Scheme 2, eql). Com-
plex IIa was independently synthesized by reacting Ni(cod),
with 1a in the presence of dtbbpy (Scheme 3A). The stoichio-
metric reaction of Ila under the standard reaction conditions did
not result in the formation of product. Instead, ITa underwent
conversion (30%) to a mixture of aziridine dimer 4a, sulfona-
mide § and reduced aziridine (See supporting information V-A
for details). To determine if ITa accesses a catalytically-relevant
intermediate and if the attached aziridine in the Ni complex can
be directly converted to the desired methylated product, a cross-
over experiment was designed using p-CF; styrenyl aziridine 1b
as a substrate in the presence of 10 mol % azametallacycle Ila
as the sole nickel catalyst source (Scheme 3B). However, less
than 1% of the product originating from Ila (3a) was obtained,
whereas the product from 1b was formed in 32% yield. These
results provide evidence against the pathway shown in Scheme
1, eq 1. Furthermore, when a time-course experiment was per-
formed, I1a was never spectroscopically observed (see support-
ing information V-A for details).

Scheme 3. Crossover experiment and stoichiometric studies
with azametallacycle I1a.

A. Stoichiometric reactivity of azametallacycle lla

t-Bu
Ir[dF(Me)ppy]a(dtbbpy)PFg (2 mol%)
2a (2.4 equiv) TsHN Me
LiBr (5 mol%), MeCN:PhH Ar?
blue light, 20 h
3a
Ar? not observed
Ila
(1 equiv)
B. Crossover experiment
11a (10 mol%)
'Il's Ir[dF(Me)ppg/]z((gt‘l‘)bpy)P;:e (2mol%)  TgHN Me TsHN Me
N a (2.4 equiv, \ < .
) Ar' Ar?
Ar! LiBr (5 mol%), MeCN:PhH
1b blue light, 20 h 3b 3a
32% yield <1% yield

1-fluoronaphthalene was used as the external standard for '°F
NMR yield.

Next, we investigated the intermediacy of benzylbromide 7,
pertinent to Scheme 1, eq2 or eq4, which could be generated by
the 7.5% of bromide (2.5% from NiBr,-glyme and 5% from
LiBr) in the reaction mixture. When benzyl bromide 7a was
subjected to the reaction, only 1% of the product was generated.
Instead, the majority of bromide 7a was converted to dimer 4a
and reduced aziridine 8 (Scheme 4A).

Scheme 4. Reactivity of benzyl bromide 7a.

A. Reactivity of benzylbromide

TsHN  Me Ar
( TsHNng
TeHN  Br OMe Ar' , NHTS
Ar
Ph”" ~OMe 3a 4a
2a 1.0% yield 16% yield
+ (1:1dr)
Std conditions
7a TsHN  H
8 Ar'!
32% yield

B. Reactivity comparison of benzyl bromide and aziridine

TsHN Br ;
TsHN  Me Ar
( TsHN\_g—\
M 1 NHTs
7 OMe Ar
0.1 oquiv) F 3a 4a
(0.1 equiv) Ph” ~OMe 1.6% yield 1.0% yield
2 .
-I|—S . a . (1:1dn)
N Std conditions
TsHN Me
=\ (
/—\CJ\ ‘Ar s
CFs Ar
1b 3a 3b
(0.9 equiv) 1.1% yield 51% yield

(A) Reaction performed 0.1 mmol scale using stoichiometric
amount of benzylbromide 7a vs. (B) catalytic amount of benzylbro-
mide 7a (0.01 mmol) and aziridine (0.09 mmol). Ar! = p-F-benzene
Ar?= p-CFs-benzene. Yields are based on 0.1 mmol 1-fluoronaph-
thalene as the external standard by '°F NMR.

When 7a was used in catalytic quantities in the presence of
aziridine 1b, as a way to simulate the catalytic formation of 7a
under the standard condition, 1.6% of the product originating
from 7a was observed, whereas the product derived from 1b
was formed in 51% yield (Scheme 4B). Based on these



observations, we propose that any in situ generated 7 most
likely leads to off-cycle byproducts, presumably via oxidative
addition of the benzyl bromide or halogen abstraction to gener-
ate the benzylic radical, followed by free-radical recombination,
a common off-cycle pathway in aryl benzylation with benzylic
halides.*’

Oxidative addition of aziridines via Ni(I)-N(III) pathway

Taken together, these data are most consistent with a path-
way wherein Ni(I) undergoes oxidative addition to the aziridine
(Scheme 2, eq 3). Since this step has not been previously ob-
served, we sought direct experimental evidence for the stoichi-
ometric oxidative addition of Ni(I) to aziridine 1a. Unfortu-
nately, an isolable dtbbpyNi(I)(alkyl) complex has not previ-
ously been prepared. However, in their investigation of the re-
activity of CO, at Ni(I), the Martin group reported the synthesis
of a (mesityl-phenanthroline)Ni(I)(CHat-Bu) VII (Scheme 5).*!
Therefore, we sought to test this Ni(I) alkyl complex for oxida-
tive addition reactivity with 1a. Prior to exploring stoichio-
metric studies with VII, we established that mesityl-substituted
phenanthroline (L?) gives similar yield as dtbbpy (L') in the cat-
alytic reaction. Indeed, mesityl-substituted phenanthroline af-
forded 33% yield of 3v, in close agreement with the 36% yield
of 3v seen with dtbbpy (Scheme 5A).

Scheme 5. Stoichiometric studies with Ni(I) complex.
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Having confirmed the catalytic competence of L%, we turned
our attention to the stoichiometric reaction (Scheme 5B). VII
was generated in situ, by adding a solution of neopentylMgBr
to L?Ni(I)Br,** with the resulting complex then subjected to
aziridine 1a. This led to a full consumption of the aziridine, af-
fording 11% of the cross-coupled product 3v and 28% of en-
amide 9, which could result from oxidative addition at the Ni(I)
center, followed by elimination.*? It is possible that enamide 9
serves as a source for sulfonamide formation 5, which is ob-
served under the catalytic conditions with L! and L?. Taken to-
gether, these data support the catalytic relevance of a Ni(I) spe-
cies for aziridine activation.

Scheme 6. Alkylation of enantioenriched aziridine.
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Having established the catalytic relevance of Ni(I), we sought
to gain further insight into the mechanism of oxidative addition
at Ni(I) by subjecting enantioenriched aziridine (R)-1d (99% ee)
to the standard reaction conditions (Scheme 6). We found that
the product 3d is obtained in 0% ee, while the aziridine was
recovered in 99% ee at an early time point (8h instead of 20h).
This is consistent with either (a) an irreversible and stereoabla-
tive oxidative addition via single electron-transfer'!® or (b)a ste-
reospecific oxidative addition followed by racemization at
Ni(III) [Scheme 2, eq1].#

Hammett analysis

To understand the mechanism of aziridine activation via Ni(I),
we evaluated the impact of aziridine substitution (Hammett
analysis) on the relative rate of methylation and on the
branched/linear ratio of product arising from alkylation with i-
Pr acetal 2aa. If isomerization of the Ni(i-Pr) occurs prior to
oxidative addition, aziridines that undergo faster oxidative ad-
dition to Ni(I) should afford higher branched/linear ratios of the
product according to the proposed mechanism (Scheme 7A).*
Moreover, the p value measuring the impact of aziridine substi-
tution on the b/l isomer ratio with i-Pr acetal 2aa should be the
same as the p value measuring the impact of aziridine substitu-
tion on rate of methylation (kx/ky) in this mechanistic scenario.

Two sites of the aziridine were independently evaluated: the
benzene sulfonamide (Scheme 7B) and the benzylic arene
(Scheme 7C). When the substituents on the benzene sulfona-
mide were varied, we observed a high linear correlation be-
tween the log[(b/Di)/[(b/Du] ((b/1)x = branched/linear ratio of
various arene substituents, (b/l)u = branched/linear ratio of Ph)
with a positive p value (R* = 0.98, p = 1.1) (Scheme 7B). The
positive, but relatively low magnitude, slope indicates that elec-
tron-withdrawing groups on the sulfonamide facilitate faster
oxidative addition. Notably, a similar p value was obtained for
the Hammett analysis measuring relative initial rates of methyl-
ation (R? =0.87, p = 1.0) using these same substituted aziridines,
providing support for the proposed mechanism wherein the b/l
ratio is influenced by relative oxidative addition rates (see Sup-
porting Information V-E).** When the electronics of the ben-
zylic aryl group were modified and plotted against Hammett—
Brown constants ¢*,* or with Jiang’s spin-delocalization sub-
stituent constants oy” (indicative of a radical stabilization ef-
fect),* a slightly negative but near 0 value slope was observed
with log [(b/Dk]/[(b/Du] (for 67, R*=0.76, p =—0.15; for 6 i’ R?
=0.87, p =-0.15) (Scheme 7C). This indicates that the identity
of the benzylic arenes has negligible impact on oxidative addi-
tion rates.

The distinct p values obtained when varying the arene on the
sulfonamide versus the arene on the benzylic site, combined



with the results on the stereochemical course of the coupling
reaction, are most consistent with a single electron transfer ox-
idative addition, where Ni(I) reduces the aziridine to generate a
Ni(II)-sulfonamide complex and a benzylic radical, which is
followed by fast recombination of the tethered benzylic radical
to afford Ni(III).!'* The observed LFERs are inconsistent with a
concerted oxidative addition, which would be expected to have
positive p values of similar magnitude for both experiments*® or
an oxidative addition via an Sx2-type process, which has been
shown to result in negative p value of larger magnitude (p <—1)
in prior examples of Ni-catalyzed coupling reactions with
styrenyl aziridines.*’

Scheme 7. Hammett plot analysis.
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It is worth pointing out that the observed p values are also
inconsistent with the participation of benzyl bromide 7a as a
productive intermediate in the catalytic cycle (Scheme 1, eq 2
or 4). Steeper slopes (p > 151) are found in Hammett studies for
Ni(I) oxidative addition to substituted benzyl bromides.* Fur-
thermore, the Hammett analysis precludes the possibility of
S—H elimination and reinsertion occurring at Ni(III), which has
been proposed in prior studies,’' as more electron-deficient
arenes on the benzylic site would also be expected to lead to
faster reductive elimination and reduced isomerization (i.e..
both p values > 0).

Proposed Catalytic Cycle

On the basis of our mechanistic investigations, we propose
the following catalytic cycle (Scheme 8A, black). Upon irradi-
ation with blue light, the excited Ir photocatalyst oxidizes bro-
mide anion. The resulting bromine radical can abstract the 3°
benzylic C—H of the benzaldehyde dialkyl acetal, followed by
B—scission to generate the alkyl radical and ester byproduct.?'®
Concurrently, the NiBr,.glyme precatalyst can be reduced to
Ni(0) I by Ir(II) to enter the Ni catalytic cycle, which can cap-
ture the alkyl radical generated from the B-scission event to af-
ford Ni(I)(alkyl) I. Alternatively, NiBr,.glyme precatalyst can
be reduced to generate Ni(I)Br, which in turn could intercept
the alkyl radical to first generate Ni(I)(Br)(alkyl) followed by
SET to generate the same Ni(I)(alkyl) I intermediate.’>>* Based
on our stoichiometric, catalytic and spectroscopic observations,
we propose that Ni(I)(alkyl) I undergoes oxidative addition to
the aziridine by a single electron transfer mechanism. Reductive
elimination from the resulting Ni(III) ITII complex then affords
the cross-coupled product with regeneration of Ni(I) VIII. Fi-
nally, VIII would be reduced by the Ir(II) species to turnover
the catalytic reaction.™

We also identified off-cycle pathways that lead to undesired
byproducts (Scheme 8A, gray). For instance, if aliphatic radical
generation by HAT/B-scission or trapping by Ni is slow, Ni(0)
I oxidative addition to the aziridine would afford Ni(Il) azamet-
allacycle II and resulting degradation products. Moreover, any
generation of benzylbromide 7 could lead to undesired dimer 4
and reduced aziridine 8. Sulfonamide 5 and styrene formation
may arise from inefficient cross-coupling, on the grounds of ob-
serving enamide 9 formation using Ni(I) oxidative addition in
the stoichiometric studies. This proposed competition of light-
mediated cross-reactivity with off-cycle speciation pathways is
further supported by comparing the relative product and dimer
formation with varying light intensity (Scheme 8B, see support-
ing information V-F for details). For example, when performing
a time-course study comparing the ratio of product 3a to dimer
4a at high versus low light intensity (64 kLux, vs 4.5 kLux), the
lower light intensity conditions result in the formation of nearly
1:1 ratio of the desired product to the dimer. Suppression of oft-
cycle speciation is therefore partially dependent on having suf-
ficient light penetration to favor the productive catalytic path-
way.



Scheme 8. Proposed mechanistic pathway and off-cycle pathways.
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CONCLUSION

In conclusion, we have developed a C(sp®)—C(sp?) cross-cou-
pling methodology between aziridines and benzaldehyde dial-
kyl acetals as latent alkyl radical sources. The transformation
employs a diverse set of styrenyl aziridines with varying substi-
tution on the sulfonamide. Moreover, methyl, 1° and 2° unacti-
vated aliphatic coupling partners can be installed efficiently.
The orthogonal activation of each coupling component and li-
gation at distinct Ni oxidation states imparts cross-selectivity
between two C(sp®) precursors. Specifically, mechanistic stud-
ies support a pathway for activation of aziridines via Ni(I)—
Ni(Ill) oxidative addition, distinct from the commonly pro-
posed oxidative addition of aziridines to Ni(0). These mecha-
nistic studies shed light on the nature of the activation modes
for unconventional C(sp®) precursors, which we anticipate can
lead to the expansion of C(sp*)—C(sp®) cross-coupling method-
ologies in future studies.
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