
Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein

Conditional Generative Adversarial Neural

Networks

Massimiliano Lupo Pasini1* and Junqi Yin2

1*Computational Sciences and Engineering Division, Oak Ridge
National Laboratory, 1 Bethel Valley Road, Oak Ridge, 37831,

TN, USA.
2National Center for Computational Sciences Division, Oak

Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge,
37831, TN, USA.

*Corresponding author(s). E-mail(s): lupopasinim@ornl.gov;
Contributing authors: yinj@ornl.gov;

Abstract

We propose a stable, parallel approach to train Wasserstein Condi-
tional Generative Adversarial Neural Networks (W-CGANs) under the
constraint of a fixed computational budget. Differently from previous
distributed GANs training techniques, our approach avoids inter-process
communications, reduces the risk of mode collapse and enhances scal-
ability by using multiple generators, each one of them concurrently
trained on a single data label. The use of the Wasserstein metric
also reduces the risk of cycling by stabilizing the training of each
generator. We illustrate the approach on the CIFAR10, CIFAR100,
and ImageNet1k datasets, three standard benchmark image datasets,
maintaining the original resolution of the images for each dataset. Per-
formance is assessed in terms of scalability and final accuracy within
a limited fixed computational time and computational resources. To
measure accuracy, we use the inception score, the Fréchet inception
distance, and image quality. An improvement in inception score and
Fréchet inception distance is shown in comparison to previous results
obtained by performing the parallel approach on deep convolutional con-
ditional generative adversarial neural networks (DC-CGANs) as well as
an improvement of image quality of the new images created by the

1



Springer Nature 2021 LATEX template

2 Stable Parallel Training of Wasserstein Conditional GANs

GANs approach. Weak scaling is attained on both datasets using up
to 2,000 NVIDIA V100 GPUs on the OLCF supercomputer Summit.

Keywords: Generative Adversarial Neural Networks; Deep Learning; Parallel
Computing; High-Performance Computing; Supercomputing

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-

00OR22725 with the US Department of Energy (DOE). The US government retains and the

publisher, by accepting the article for publication, acknowledges that the US government retains

a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form

of this manuscript, or allow others to do so, for US government purposes. DOE will provide public

access to these results of federally sponsored research in accordance with the DOE Public Access

Plan (http://energy.gov/downloads/doe-public-access-plan).

1 Introduction

Generative adversarial neural networks (GANs) [1] [2] [3] [4] are deep learn-
ing (DL) models whereby, on the one hand, a dataset is used by an agent,
called the generator, to sample white noise from a latent space and simulate a
data distribution to create new (fake) data that resemble the original data it
has been trained on. Another agent, called the discriminator, has to correctly
discern between the original data (provided by the external environment for
training) and the fake data (produced by the generator). An illustration that
describes a GANs model is shown in Figure 1. The generator prevails over
the discriminator if, at the end of the training, the latter does not succeed in
distinguishing the original from the fake. The discriminator prevails over the
generator if the fake data created by the generator is categorized as fake and
the original data is still categorized as original. The interplay between gener-
ator and discriminator can be interpreted either as a collaborative game, or
a competitive game, according to the specifics of the application. In national
security applications, the generator and the discriminator are truly adversarial
because the generator plays the role of a hacker that tries to breach through a
security barrier and the discriminator aims at correctly distinguishing between
legitimate operations of regular users against harmful illegal attacks operated
by hackers. In other situations, the discriminator collaborates with the gen-
erator by helping it to improve its performance. An example is provided by
data augmentation, where the generator aims at sampling from a given data
distribution by extracting relevant features that can be used to produce new
data samples. Another example occurs in healthcare, where GANs are used
for the design of new drugs. In this case, the goal of the generator is to pro-
pose the composition of new drugs either to improve existing treatments or to
propose treatments to types of diseases that are not curable yet, and the goal
of the discriminator is to help the generator design more effective drugs by

http://energy.gov/downloads/doe-public-access-plan


Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 3

assessing their efficacy. GANs agents collaborate with each other also in ani-
mation applications, where the generator is in charge of creating virtual (but
still realistic) representations of the reality, which are used in video games to
formulate alternative scenarios, and the discriminator provides feedback to the
generator to quantify how realistic the proposed scenario is. One final example
of an application where the GANs training is set as a formally adversarial, but
essentially a collaborative game is provided by photograph editing. In this con-
text, GANs can be used for reconstructing images of faces to identify changes
in features such as hair color, facial expressions, or gender, etc. This can help
authorities identify criminals that might have undergone surgeries to modify
their appearance.

In general, the training of GANs runs into two main numerical issues,
namely cycling [5] and mode collapse [6]. Cycling happens when the genera-
tor alternates between different regions of the data space without necessarily
improving its performance. Mode collapse happens when the generator gets
stuck in a small region of the data space and produces the same image over
time. Avoiding cycling prevents the generator from wasting computational
power by exploring the same region. Avoiding mode collapse allows the gen-
erator to escape local minima and more thoroughly explore the data space to
ensure that the entire data distribution is equally represented in the new gen-
erated data. Cycling is due to large gradients. While large gradients are needed
to escape local minima, thereby avoiding mode collapse, to prevent the cycling
induced by large gradients, one needs stabilization. Existing approaches to
train GANs address separately either cycling or mode collapse, but not both
simultaneously. Performing a parallel independent [7] training of Conditional
GANs (CGANs) [8–13] that assigns different classes to different processes has
been recently showed to reduce the chances of mode collapse, but does not
address cycling. Wasserstein GANs (WGANs) [14] address cycling, but do not
address mode collapse.

To simultaneously address cycling and mode collapse in the parallel
independent training of GANs, we:

1. use the Wasserstein metric to define the cost functions associated with the
discriminator and the generator and

2. adapt WGANs to a conditional variant [7], where the data label is used as
additional input to the generator in conjunction to the white noise. From
now on, we refer to this variant as Wasserstein Conditional GANs (W-
CGANs).

In situations where the data is characterized by a large number of data
classes, our approach fully takes advantage of high performance computing
(HPC) resources because the number of processes engaged in the training
of GANs scales with the number of classes. Our parallel approach differs
from state-of-the-art distributed GAN straining because we force each model
replica to confine the training on data associated with a single label. Since our
approach completely avoids communication until the model replicas need to



Springer Nature 2021 LATEX template

4 Stable Parallel Training of Wasserstein Conditional GANs

Fig. 1 The GAN framework pits two adversaries against each other in a game. Each player
is represented by a differentiable function controlled by a set of parameters. Typically these
functions are implemented as deep neural networks. Training examples are randomly sampled
from the training set and used as input for the first player, the discriminator. The goal of
the discriminator is to output the probability that its input is real rather than fake, under
the assumption that half of the inputs it is ever shown are real and half are fake. Image from
https://sthalles.github.io/intro-to-gans/

be combined at the end of training, the partition of the data according to the
classes facilitates scaling, as confirmed by the weak scaling tests presented at
the end of numerical section. Our method to parallelize the GANs training is
better suited than previous distributed GANs training methods to attain accu-
rate results in situations of fixed and limited computational budget (i.e., time
and/or resources). Numerical results performed on CIFAR10 [15], CIFAR100
[16] and ImageNet1k [17], where we maintained the resolution of the images
fixed to the original resolution for each dataset, show that W-CGANs stabilize
the parallel training and lead to the production of better images with respect
to past results obtained with the parallel training on deep convolutional GANs
(DC-GANs) [7]. The performance of W-CGANs with respect to DC-CGANs
is validated both in quantitative terms using performance metrics as well as
by visual inspection.

2 Background on GANs

In the context of GANs, original data and new generated data are described
by two probability distributions. Given two probability distributions p and q
defined on a metric space X , the Kullback–Leibler divergence (KL) [18]

KL(p, q) =

∫
X
p(x) log

(
p(x)

q(x)

)
dx, (1)

and its symmetrization, the Jensen–Shannon divergence (JS) [19]

JS(p, q) =
1

2
KL(p, q) +

1

2
KL(q, p) (2)



Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 5

measure the distance between the probability distributions p and q by comput-
ing the pointwise discrepancy in the values attained. The Wasserstein distance
between p and q is defined as

W (p, q) = sup
Lip(f)≤1

∫
X
f(x)

[
p(x)− q(x)

]
dx, (3)

where Lip(f) ≤ 1 represents the family of Lipschitz functions defined on X
with Lipschitz constant less or equal to one. The KL divergence and the JS
divergence attain indefinitely large values for any situations where the peaks
of the two distributions do not overlap, and their value abruptly drops to zero
only when the peaks of the distributions are located at the same point. In
comparison, the Wasserstein metric yields a more informative estimate for mea-
suring the distance between two probability distributions than KL divergence
and JS divergence, since it measures the distance between the two expected
values of the probabilities and suggests an update of the two probabilities to
reduce that distance [20].

In order to contextualize the use of the Wasserstein metric for CGANs,
we define the following input and output spaces, each with an associated
probability distribution:

• Z is a noise space used to seed the generative model. Z = RdZ , where dZ
is a hyperparameter. Values z ∈ Z are sampled from a noise distribution
pz(z). In our experiments, pz is a white noise distribution.

• Y is an embedding space used to condition the generative model on addi-
tional external information, drawn from the training data. Y = RdY ,
where dY is a hyperparameter. Using conditional information provided in
the training data, we define a density model py(y).

• X is the data space which represents an image output from the generator
or input to the discriminator. In our application, the data are colored face
images. Values are normalized pixel values: X = [0, 1]W × C, where W
represents the number of pixels in the images, and C is the set of distinct
color channels in the input images. Using the images in the training data
and their associated conditional data, we can define a density model pdata(x)
of face images. This is the density model we wish to replicate.

We now define two functions:

• G : Z × Y → X is the conditional generative model (or generator), which
accepts noise data z ∈ Z and produces an image x ∈ X conditional to the
external information y ∈ Y .

• D : X → [0, 1] is the discriminative model (or discriminator), which accepts
an image x and condition y and predicts the probability under condition
y that x came from the empirical data distribution rather than from the
generative model.

The goal of the discriminator is to maximize the discrepancy between the
data distribution and the probability distribution created by the generator



Springer Nature 2021 LATEX template

6 Stable Parallel Training of Wasserstein Conditional GANs

G. For W-CGANs this means that the discriminator aims at maximizing the
distance between the expected value of the probability distribution associated
with the original data Ex∼pdata

D(x) and the expected value of the probability
distribution associated with fake data EzD(G(z)).

In order to use the Wasserstein metric to define the cost function of the
discriminator, we choose D(x) to play the role of the function f in Equation
(3), and we substitute the two probabilities p and q with pdata : X → [0, 1]
and pmodel : Z → [0, 1]. Using the definition of expected value of D under the
probability distribution pdata and pmodel as follows

Ex∼pdata
D(x) =

∫
X
D(x)pdata(x)dx (4)

Ez∼pmodel
D(G(z)) =

∫
Z
D(G(z))pmodel(z)dz, (5)

we define the cost function for the discriminator as

J
(D)
Wasserstein(θ(D),θ(G)) = sup

θ(D)

[
Ex∼pdata

D(x)− EzD(G(z))

]
. (6)

The generator G is parametrized with θ(G) and we define its cost function
as

J
(G)
Wasserstein(θ(D),θ(G)) = sup

θ(G)

[
EzD(G(z))

]
. (7)

Computing the Wasserstein metric in (6) and (7) is allowed by the fact that
neural networks used to model discriminator and generator are mathematically
represented as Lipschitz functions [21]. Contextualizing the difference between
the Wasserstein metric and the KL divergence and JS divergence in the case
of CGANs, we can explain why the Wasserstein metric reduces the occurrence
of cycling during the training of CGANs with respect to situations where
the training of CGANs is driven by the minimization of the KL divergence.
Indeed, the KL divergence and JS divergence can be reduced by keeping the
expected value of the probability distribution fixed, and just augmenting the
variance. However, by doing so, the characteristics of the points sampled by
the generator (new data) may not necessarily change significantly. On the
other side, the minimization of the Wasserstein metric forces the probability
distribution associated with the new generated data to shift in order to have
the expected value EzD(G(z)) get closer to Ex∼pdata

D(x). Therefore, it is less
likely that new data sampled at later iterations will resemble data generated
at earlier iterations.

3 Related work

Previous research on large-scale GAN training [22, 23] proposed to have
each process compute a local stochastic gradient based on its local data and



Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 7

then send its gradient to a central process, allowing for a distributed large-
batch training where communication across processes is based on a centralized
network topology [24]. The central process aggregates the local stochastic gra-
dients together, updates its model parameters and then sends the parameters
back to each process. The central process is the busiest one since it needs
to communicate with each other process concurrently. When processes are
assigned to multiple compute nodes for large scale training on HPC platforms,
this frequent communication causes severe bottlenecks that may lead to a com-
munication traffic jam when the network bandwidth is low or network latency
is high. To avoid this problem, decentralized algorithms for GANs training
[25] have been proposed, where each worker only communicates with its neigh-
bors and a central process that aggregates the information from the entire
distributed computational framework is not needed. Although decentralized
training of GANs significantly reduces the communication cost, the method
still suffers from the large number of GANs model parameters that need to
be exchanged across processes residing on different compute nodes since the
transmitted gradients are not compressed. Both centralized and decentralized
GANs training described here represent different implementations of ensem-
ble learning, where every process still needs to span the entire dataset in a
round-robin fashion.

Our parallel approach differs from ensemble learning because it confines
each model replica to be trained on data associated with a single label.
Ensemble learning can benefit the W-CGANs training in situations where
interpolating across different classes is warranted. However, image classi-
fication problems addressed in this work do not need interpolation (e.g.,
interpolating an image of a dog with an image of a car produces clearly unreal-
istic images). Therefore, parallel independent training is more appropriate than
ensemble learning as it better accelerates the training by significantly reduc-
ing the amount of data processed by each GANs replica. Since our approach
completely avoids communication instead of just minimizing its cost as done
in [22] and [24], the partition of the data according to classes facilitates scal-
ing, as confirmed by the weak scaling tests presented at the end of numerical
section. Moreover, by forcing each GANs replica to focus only on one class,
each model replica is assigned with an easier computational task which can be
executed effectively within a fixed limited computational budget.

4 Proposed method

Our approach to train W-CGANs relies on the equality

pmodel(x,θ) =

K∑
k=1

pmodel(x,θ|yk)py(yk) (8)

that allows to parallelize the computation of each term pmodel(x,yk) by train-
ing K parallel W-CGANs, each one per class, and then we combine the results



Springer Nature 2021 LATEX template

8 Stable Parallel Training of Wasserstein Conditional GANs

Fig. 2 Illustration of parallel W-CGANs.

at the end of each training to yield pmodel(x). The numerical examples pre-
sented in this paper are characterized by a one-to-one mapping between yk and
the labels in the image dataset. The advantage of our approach consists in the
fact that all the K parallel W-CGANs can be trained concurrently, but inde-
pendently of each other. If the complexity representation of the objects in each
category is comparable, the training time for each parallel W-CGANs model is
approximately the same, which in turn translates into promising performance
in terms of weak scalability. An illustration that describe the distribution of
W-CGANs is provided in Figure 2.

The parameters θ for each replica of the W-CGAN model are updated
independently using Adam. When the trained model is deployed, a random
number generator provides the white noise and the label of the object whose
image has to be generated. The randomly selected label determines which W-
CGAN pair to call, and the white noise is passed to the selected W-CGAN
pair to generate a new fake image for the specific object category associated
with the label.

5 Numerical results

In this section we present numerical results using CIFAR10 [15], CIFAR100
[16] and ImageNet1k [17] benchmark image datasets to compare the perfor-
mance of W-CGANs with DC-CGANs. The benchmark datasets CIFAR10 and
CIFAR100 have the same total number of images, and images of both datasets
have the same resolution, but the number of classes represented in the two
datasets is different. Specifically, CIFAR10 has more images per class than
CIFAR100. Since the GANs training is data intensive, the fact that CIFAR100
has fewer images per class results into a more challenging task for the model



Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 9

Generator
Layer Input dim Output dim Kernel size stride padding
Input 100 8192 / /

LeakyReLU(slope = 0.2, inplace=True)
Resizing

Batch normalization(epsilon = 1e-5 , momentum = 0.1)
Upsample(scale factor = 2)

Conv.1 128 128 3 1 1
Batch normalization(epsilon = 0.8 , momentum = 0.1)

LeakyReLU(slope = 0.2, inplace=True)
Upsample(scale factor = 2)

Conv.2 128 64 3 1 1
Batch normalization(epsilon = 0.8 , momentum = 0.1)

leakyReLU(slope = 0.2, inplace=True)
Conv.3 64 1 or 3 3 1 1

Tanh
Table 1 Architecture of the generator.

to produce good quality images. The specifics of the neural networks used to
model generator and discriminator are provided in Tables 1 and 2. Although
the architectures of generator and discriminator can be tuned using hyperpa-
rameter optimization, this goes beyond the scope of this work since we aim at
improving the performance of GANs for a fixed architecture.

The training is performed using the optimizer Adam and a learning rate of
2e− 4, and a total number of 1,000 epochs. The comparison between parallel
DC-CGANs and parallel W-CGANs is performed on a quantitative level by
measuring the Inception Score (IS) [26] and the Fréchet Inception Distance
(FID) [14]. The IS takes a list of images and returns a single floating point
number, the score, which is a measure of how realistic a GAN’s output is. IS is
an automatic alternative to having humans grade the quality of images. The
score measures two things simultaneously: the image variety (e.g., each image
is a different breed of dog), and whether each image distinctly looks like a real
object. If both things are true, the score will be high. If either or both are false,
the score will be low. The lowest score possible is zero. Mathematically the
highest possible score is infinity, although in practice a finite ceiling is imposed
[26]. Unlike IS, which evaluates only the distribution of generated images, the
FID compares the distribution of generated images with the distribution of real
images that were used to train the generator. Lower values of FID correspond
to the distribution of generated images approaching the distribution of real
images, and this is interpreted as an improvement of the generator in creating
more realistic images.

5.1 Hardware description

The numerical experiments are performed using Summit [27], a supercom-
puter at the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge
National Laboratory. Summit has a hybrid architecture, and each node con-
tains two IBM POWER9 CPUs and six NVIDIA Volta GPUs all connected



Springer Nature 2021 LATEX template

10 Stable Parallel Training of Wasserstein Conditional GANs

Discriminator
Layer In. dim Out. dim Kernel size stride padding

Conv.1 1 or 3 16 3 2 1
leakyReLU(slope = 0.2, inplace=True)

Dropout(0.25)
Conv.2 16 32 3 2 1

LeakyReLU(slope = 0.2, inplace=True)
Dropout(0.25)

Batch normalization(epsilon = 0.8 , momentum = 0.1)
Conv.3 32 64 3 2 1

leakyReLU(slope = 0.2, inplace=True)
Dropout(0.25)

Batch normalization(epsilon = 0.8 , momentum = 0.1)
Conv.4 64 128 3 2 1

leakyReLU(slope = 0.2, inplace=True)
Dropout(0.25)

Batch normalization(epsilon = 0.8 , momentum = 0.1)
output 2048 1 / / /
Sigmoid(for DC-CGANs), no activation function for W-CGANs

Table 2 Architecture of the discriminator.

together with NVIDIA’s high-speed NVLink. Each node has over half a ter-
abyte of coherent memory (high bandwidth memory + DDR4) addressable
by all CPUs and GPUs plus 1.6 TB of non-volatile memory (NVMe) stor-
age that can be used as a burst buffer or as extended memory. To provide a
high rate of communication and I/O throughput, the nodes are connected in a
non-blocking fat-tree using a dual-rail Mellanox EDR InfiniBand interconnect.

5.2 Software description

The numerical experiments are performed using Python3.7 with PyTorch

v1.3.1 package [28] for autodifferentiation to train the DL models with the
use of GPUs, and the torch.nn.parallel.DistributedDataParallel tool
is used for parallel computing to coordinate the different W-CGAN model
replicas.

5.3 CIFAR10

The training portion of the CIFAR10 dataset [15] consists of 50,000 32x32
color images in 10 classes, with 5,000 images per class. The classes represented
in the dataset are airplanes, automobiles, birds, cats, deers, fogs, frogs, horses,
ships, and trucks.

A comparison in quantitative terms between parallel DC-CGANs and the
parallel W-CGANs is shown in Table 3 where the performance of the models
is measured in terms of IS and FID, and W-CGANs outperform DC-CGANs
with respect to both indices. A visual comparison between the images pro-
duced by DC-CGANs in Figure 3 and the images produced by W-CGANs
in Figure 4 shows that W-CGANs produces objects with more refined con-
tours, and the objects are much easier to recognize with respect to the object



Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 11

IS FID

Parallel DC-CGANs 6.43 9.41

Parallel W-CGANs 7.43 8.53

Table 3 Inception score (IS) and Fréchet Inception Distance (FID) for the training of
parallel DC-CGANs and parallel W-CGANs on CIFAR10.

IS FID

Parallel DC-CGANs 6.61 9.23

Parallel W-CGANs 6.93 8.92

Table 4 Inception score (IS) and Fréchet Inception Distance (FID) for the training of
parallel DC-CGANs and parallel W-CGANs on the CIFAR100 dataset.

class they attempt at sampling. Weak scaling plot for DC-CGANs and W-
CGANs trained on the CIFAR10 dataset is presented on the left side of Figure
9 by reporting the runtime of the slowest process. The independence of the
generator-discriminator pairs allows the code to scale with the number of pro-
cessors that take care of separate data classes. The average GPU utilization is
87.5% with a standard deviation of 2.2%, and the memory utilization is 7,839
mebibytes (MiB).

5.4 CIFAR100

The training portion of the CIFAR100 dataset [16] consists of 50,000 32x32
color images in 100 classes, with 500 images per class. For details about the
objects represented in each class, we refer the reader to [16].

The fact that CIFAR100 has fewer image data per class than CIFAR10
makes the GANs training more difficult, but the use of the Wasserstein metric
stabilizes the parallel training of W-CGANs, which results into a higher IS
score and lower FID score as shown in Table 4. A visual comparison between
the images produced by DC-CGANs in Figure 5 and the images produced
by W-CGANs in Figure 6 shows that W-CGANs outperforms DC-CGANs on
objects that are particularly complex to represent, such as houses surrounded
by a garden (second row, third picture from the left), butterflies (second row,
fifth picture from the left), and camels (second row, sixth picture from the left).

Weak scaling plot for DC-CGANs and W-CGANs trained on the CIFAR100
dataset is presented on the right side of Figure 9, by reporting the runtime
of the slowest process. Also in this case, the independence of the generator-
discriminator pairs allows the code to scale with the number of processors that
take care of separate data classes. The average GPU utilization is 93.8% with
a standard deviation of 0.7%, and the memory utilization is 7,839 MiB.



Springer Nature 2021 LATEX template

12 Stable Parallel Training of Wasserstein Conditional GANs

Fig. 3 Fake images generated by parallel DC-CGANs trained on the CIFAR10 dataset.

5.5 ImageNet1k

The training portion of the ImageNet1k dataset [17] consists of a training set
of 1.2 million colored images and a test set of 50,000 colored images in 1,000
classes, with 50 images per class. We refer the reader to [16] for details about
the objects represented in each class. The resolution of the images varies across
the samples, with an average pixel size equal to 482x418.



Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 13

Fig. 4 Fake images generated by parallel W-CGANs trained on the CIFAR10 dataset.

The comparison between DC-CGANs and W-CGANs in terms of IS score
and FID score is shown in Table 5, where W-CGANs shows an improvement
with respect to DC-CGANs in terms of both figures of merits.

A visual comparison between the images produced by DC-CGANs in Figure
7 and the images produced by W-CGANs in Figure 8 shows that W-CGANs
outperforms DC-CGANs on objects that are particularly complex to represent,
such as monuments (second row, first picture from the left), butterflies (second



Springer Nature 2021 LATEX template

14 Stable Parallel Training of Wasserstein Conditional GANs

Fig. 5 Fake images generated by parallel DC-CGANs trained on the CIFAR100 dataset.

row, fifth picture from the left), and camels (second row, sixth picture from
the left).

5.6 Scaling performance of parallel training of W-CGANs

We tested the scalability of our parallel approach to train W-CGANs by run-
ning experiments on the OLCF supercomputer Summit. We measured the
wall-clock time needed by the parallel W-CGANs to complete the training as a
function of the number of data classes (and thus processes). The parameters for



Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 15

Fig. 6 Fake images generated by parallel W-CGANs trained on CIFAR100.

IS FID

Parallel DC-CGANs 11.61 12.23

Parallel W-CGANs 12.93 11.92

Table 5 Inception score (IS) and Fréchet Inception Distance (FID) for the training of
parallel DC-CGANs and parallel W-CGANs on the ImaheNet1k dataset.



Springer Nature 2021 LATEX template

16 Stable Parallel Training of Wasserstein Conditional GANs

Fig. 7 Fake images generated by parallel DC-CGANs trained on ImageNet1k.

the numerical optimization are the same as discussed before. The training of
the model has been performed by distributing the computation through a one-
to-one mapping between the process and the data classes. Each process was
mapped to two NVIDIA V100 GPUs, so that the neural networks for discrim-
inator and generator for each data class would be trained on separate GPUs.
For the CIFAR10 dataset, the number of processes spans the range from 1 to
10, whereas the number of processes, for the CIFAR100 dataset was set to 10,
20, 40, 80 and 100, and for the ImageNet1k dataset was set to 100, 200, 400,
800 and 1,000. The results for the scalability tests on CIFAR10 and CIFAR100
datasets are shown in Figure 9 by reporting the runtime of the slowest proces-
sor. The trend of the wall-clock time shows that, as long as the computational
workload for each process stays fixed, the computational time to complete the
training is not affected by the increasing number of data classes, thus showing
that weak scaling is obtained by the training of parallel W-CGANs on all three
datasets. On the ImageNet1k dataset, we notice a deterioration of the weak
scaling performance of the parallel W-CGANs for 200 processes and beyond.
Since the ImageNet1k datasets has balanced classes, the same workload is
assigned to each W-CGANs. Therefore, the deteriorated scalability cannot be
attributed to a non-uniform work load balance of the algorithm. Additional
studies are being currently conducted to understand what interconnectivity
properties in the hardware may cause the deterioration of the scaling. One
simple workaround is at the job scheduler level by running multiple jobs (all
below 200 GPUs), so that the overall time-to-solution still abides by ideal weak



Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 17

Fig. 8 Fake images generated by parallel W-CGANs trained on ImageNet1k.

Fig. 9 Results of weak scaling tests for CIFAR10, and CIFAR100. Wall-clock time measured
in seconds is reported for the slowest processor.

scaling performance. The average GPU utilization is 93.8% with a standard
deviation of 0.7%, and the memory utilization is 7,839 MiB.

6 Conclusions and future developments

We used the Wasserstein metric to stabilize the parallel training of CGANs
under the constraint of a fixed computational budget. Differently from state-
of-the-art distributed methods for GANs training at large scale, our approach
reduces the risk of cycling and mode collapse and avoids inter-process com-
munications by using multiple generators that are concurrently trained, each
one of them focusing on a single data label. The fact that each generator-
discriminator pair focuses on a specific label removes the need for multiple



Springer Nature 2021 LATEX template

18 Stable Parallel Training of Wasserstein Conditional GANs

GANs replicas to communicate with each other, until the trained model repli-
cas need to be combined at the end of training. Moreover, by forcing each
GANs replica to focus only on one class, each model replica is assigned with
an easier computational task which can be executed effectively within a fixed
limited computational budget.

Numerical results have been presented using the three open-source bench-
mark image datasets CIFAR10, CIFAR100, and ImageNet1k. We maintained
the resolution of the images fixed to the original resolution for each dataset.
The fact that CIFAR100 has fewer image data per class makes the GANs train-
ing more difficult than for CIFAR10, but the use of the Wasserstein metric
stabilizes the parallel training of W-CGANs, which leads to better results as it
is validated by higher IS score, lower FID score, and better quality images than
what previously obtained with a parallel training of DC-CGANs [7]. Weak
scaling plots reporting the wall-clock time of the slowest process show that the
stabilization obtained with W-CGANs does not compromise the scalability of
the approach on CIFAR10 and CIFAR100 datasets. For ImageNet1k scalability
performance start deteriorating for more than 200 concurrent processes.

Future work will extend this study to more complex but also more accurate
neural network architectures, such as auxiliary classifier GANs (AC-GANs)
[29], residual neural networks (ResNet) [30], and self-attention generative
adversarial neural networks (SAGANs) [31]. In terms of applications, we will
focus on quantum chemistry problems where scalable GANs training can ben-
efit the design of new alloys with improved structural properties and drug
design with minimized HOMO-LUMO gap. If needed by the scientific appli-
cations, we will introduce regular communications between the model replicas
to allow distributed training in situations where interpolating between data
from different classes is useful.

Acknowledgements

Massimiliano Lupo Pasini thanks Dr. Vladimir Protopopescu for his valuable
feedback in the preparation of this manuscript. This work was supported in
part by the Office of Science of the Department of Energy and by the Lab-
oratory Directed Research and Development (LDRD) Program of Oak Ridge
National Laboratory. This research is sponsored by the Artificial Intelligence
Initiative as part of the Laboratory Directed Research and Development Pro-
gram of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for
the US Department of Energy under contract DE-AC05-00OR22725. This
work used resources of the Oak Ridge Leadership Computing Facility, which
is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

Declarations

The authors declare that they have no conflict of interest.



Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 19

Datasets CIFAR10 [15], CIFAR100 [16] and ImageNet1k [17] used during this
study are open-source and can be accessed through the details provided by the
respective items in the Reference list.

References

[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets.
In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 27. Curran Associates, Inc., Palais des Congrès de Montréal,
Montréal, Canada (2014). https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[2] Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning
with deep convolutional generative adversarial networks. In: Bengio, Y.,
LeCun, Y. (eds.) 4th International Conference on Learning Representa-
tions, ICLR 2016, Conference Track Proceedings, San Juan, Puerto Rico,
May 2-4, 2016 (2016). http://arxiv.org/abs/1511.06434

[3] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A.,
Chen, X.: Improved techniques for training GANs. arXiv (2016). https://
doi.org/10.48550/ARXIV.1606.03498. https://arxiv.org/abs/1606.03498

[4] Bertsekas, D.: Multiagent rollout algorithms and reinforcement learn-
ing. arXiv (2019). https://doi.org/10.48550/ARXIV.1910.00120. https:
//arxiv.org/abs/1910.00120

[5] Mertikopoulos, P., Papadimitriou, C., Piliouras, G.: Cycles in adver-
sarial regularized learning. In: Proceedings of the 2018 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2703–
2717. https://doi.org/10.1137/1.9781611975031.172. https://epubs.siam.
org/doi/abs/10.1137/1.9781611975031.172

[6] Hazan, E., Singh, K., Zhang, C.: Learning linear dynamical systems
via spectral filtering. In: Guyon, I., Luxburg, U.V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances
in Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., Long Beach Convention & Entertainment Center, Long Beach,
California, USA (2017). https://proceedings.neurips.cc/paper/2017/file/
165a59f7cf3b5c4396ba65953d679f17-Paper.pdf

[7] Lupo Pasini, M., Gabbi, V., Yin, J., Perotto, S., Laanait, N.: Scalable
balanced training of conditional generative adversarial neural networks on
image data. Journal of Supercomputing 77(11) (2021). https://doi.org/
10.1007/s11227-021-03808-2

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://arxiv.org/abs/1511.06434
https://doi.org/10.48550/ARXIV.1606.03498
https://doi.org/10.48550/ARXIV.1606.03498
https://arxiv.org/abs/1606.03498
https://doi.org/10.48550/ARXIV.1910.00120
https://arxiv.org/abs/1910.00120
https://arxiv.org/abs/1910.00120
https://doi.org/10.1137/1.9781611975031.172
https://epubs.siam.org/doi/abs/10.1137/1.9781611975031.172
https://epubs.siam.org/doi/abs/10.1137/1.9781611975031.172
https://proceedings.neurips.cc/paper/2017/file/165a59f7cf3b5c4396ba65953d679f17-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/165a59f7cf3b5c4396ba65953d679f17-Paper.pdf
https://doi.org/10.1007/s11227-021-03808-2
https://doi.org/10.1007/s11227-021-03808-2


Springer Nature 2021 LATEX template

20 Stable Parallel Training of Wasserstein Conditional GANs

[8] Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets. arXiv
(2014). https://doi.org/10.48550/ARXIV.1411.1784. https://arxiv.org/
abs/1411.1784

[9] Yang, D., Hong, S., Jang, Y., Zhao, T., Lee, H.: Diversity-sensitive con-
ditional generative adversarial networks. In: International Conference
on Learning Representations. OpenReview.net, New Orleans, LA, USA
(2019)

[10] Zhou, P., Xie, L., Zhang, X., Ni, B., Tian, Q.: Searching towards
Class-Aware Generators for Conditional Generative Adversarial Net-
works. arXiv (2020). https://doi.org/10.48550/ARXIV.2006.14208. https:
//arxiv.org/abs/2006.14208

[11] Zhang, H., Sindagi, V., Pate, V.M.: Image de-raining using a conditional
generative adversarial network. IEEE Transactions on Circuits and Sys-
tems for Video Technology (2020). https://doi.org/10.1109/TCSVT.2019.
2920407. 10.1109/TCSVT.2019.2920407

[12] Miyato, T., Koyama, M.: cGANs with projection discriminator. In:
6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, Vancouver Convention Center, Vancouver,
Canada (2018). https://openreview.net/forum?id=ByS1VpgRZ

[13] Kavalerov, I., Czaja, W., Chellappa, R.: cGANs with Multi-Hinge
Loss. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.04216. https:
//arxiv.org/abs/1912.04216

[14] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.:
GANs trained by a two time-scale update rule converge to a local nash
equilibrium. In: Proceedings of the 31st International Conference on Neu-
ral Information Processing Systems. NIPS’17, pp. 6629–6640. Curran
Associates Inc., Red Hook, NY, USA (2017)

[15] Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (Canadian Institute for
Advanced Research) (2009)

[16] Krizhevsky, A., Nair, V., Hinton, G.: Cifar-100 (Canadian Institute for
Advanced Research) (2009)

[17] ImageNet. http://image-net.org/

[18] Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of
Mathematical Statistics 22(1), 79–86 (1951)

https://doi.org/10.48550/ARXIV.1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://doi.org/10.48550/ARXIV.2006.14208
https://arxiv.org/abs/2006.14208
https://arxiv.org/abs/2006.14208
https://doi.org/10.1109/TCSVT.2019.2920407
https://doi.org/10.1109/TCSVT.2019.2920407
https://openreview.net/forum?id=ByS1VpgRZ
https://doi.org/10.48550/ARXIV.1912.04216
https://arxiv.org/abs/1912.04216
https://arxiv.org/abs/1912.04216


Springer Nature 2021 LATEX template

Stable Parallel Training of Wasserstein Conditional GANs 21

[19] Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans-
actions on Information Theory 37(1), 145–151 (1991). https://doi.org/
10.1109/18.61115

[20] Belavkin, R.V.: Relation between the Kantorovich–Wasserstein metric
and the Kullback–Leibler divergence. In: Ay, N., Gibilisco, P., Matúš, F.
(eds.) Information Geometry and Its Applications, pp. 363–373. Springer,
Cham (2018)

[21] Scaman, K., Virmaux, A.: Lipschitz regularity of deep neural networks:
analysis and efficient estimation. In: Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems. NIPS’18,
pp. 3839–3848. Curran Associates Inc., Red Hook, NY, USA (2018)

[22] Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high
fidelity natural image synthesis. In: International Conference on Learning
Representations. OpenReview.net, New Orleans, LA, USA (2019). https:
//openreview.net/forum?id=B1xsqj09Fm

[23] Vlimant, Jean-Roch, Pantaleo, Felice, Pierini, Maurizio, Loncar,
Vladimir, Vallecorsa, Sofia, Anderson, Dustin, Nguyen, Thong, Zlokapa,
Alexander: Large-scale distributed training applied to generative adver-
sarial networks for calorimeter simulation. EPJ Web of Conferences 214,
06025 (2019). https://doi.org/10.1051/epjconf/201921406025

[24] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao,
M., Ranzato, M.a., Senior, A., Tucker, P., Yang, K., Le, Q., Ng,
A.: Large scale distributed deep networks. In: Pereira, F., Burges,
C.J., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 25. Curran Associates, Inc., Lake
Tahoe, NV, USA (2012). https://proceedings.neurips.cc/paper/2012/file/
6aca97005c68f1206823815f66102863-Paper.pdf

[25] Liu, M., Zhang, W., Mroueh, Y., Cui, X., Ross, J., Yang, T., Das, P.: A
decentralized parallel algorithm for training generative adversarial nets.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.)
Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, Virtual (2020). https://proceedings.neurips.cc/
paper/2020/hash/7e0a0209b929d097bd3e8ef30567a5c1-Abstract.html

[26] Barratt, S., Sharma, R.: A Note on the Inception Score. arXiv
(2018). https://doi.org/10.48550/ARXIV.1801.01973. https://arxiv.org/
abs/1801.01973

[27] Oak Ridge Leadership Facility: Summit - Oak Ridge National
Laboratory’s 200 petaflop supercomputer. https://www.olcf.ornl.gov/

https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
https://doi.org/10.1051/epjconf/201921406025
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/7e0a0209b929d097bd3e8ef30567a5c1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7e0a0209b929d097bd3e8ef30567a5c1-Abstract.html
https://doi.org/10.48550/ARXIV.1801.01973
https://arxiv.org/abs/1801.01973
https://arxiv.org/abs/1801.01973
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/


Springer Nature 2021 LATEX template

22 Stable Parallel Training of Wasserstein Conditional GANs

olcf-resources/compute-systems/summit/. Accessed: 2021-08-21 (2018)

[28] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In: Wallach, H., Larochelle, H.,
Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Proceedings
of the 33rd International Conference on Neural Information Processing
Systems, pp. 8026–8037. Curran Associates, Inc., Red Hook, NY, USA
(2019)

[29] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis with Aux-
iliary Classifier GANs. In: Precup, D., Teh, Y.W. (eds.) Proceedings
of the 34th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 70, pp. 2642–2651. PMLR, Interna-
tional Convention Centre, Sydney, Australia (2017). http://proceedings.
mlr.press/v70/odena17a.html

[30] Wang, M., Li, H., Li, F.: Generative adversarial network based on Resnet
for conditional image restoration. arXiv (2017). https://doi.org/10.48550/
ARXIV.1707.04881. https://arxiv.org/abs/1707.04881

[31] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention gener-
ative adversarial networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.)
Proceedings of the 36th International Conference on Machine Learn-
ing. Proceedings of Machine Learning Research, vol. 97, pp. 7354–7363.
PMLR, Long Beach Convention & Entertainment Center, Long Beach,
California, USA (2019)

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
http://proceedings.mlr.press/v70/odena17a.html
http://proceedings.mlr.press/v70/odena17a.html
https://doi.org/10.48550/ARXIV.1707.04881
https://doi.org/10.48550/ARXIV.1707.04881
https://arxiv.org/abs/1707.04881

	Introduction
	Background on GANs
	Related work
	Proposed method
	Numerical results
	Hardware description
	Software description
	CIFAR10
	CIFAR100
	ImageNet1k
	Scaling performance of parallel training of W-CGANs

	Conclusions and future developments

