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ABSTRACT

This project aims to establish a framework capable of efficiently predicting the properties of
structural materials for service in harsh environments over a wide range of temperatures and over long
periods of time. The approach is to develop and integrate high throughput first-principles calculations in
combination with machine learning (ML) methods, perform high throughput CALPHAD (calculations of
phase diagrams) modeling, and carry out finite element method (FEM) simulations. Relevant to high
temperature service in fossil power system, nickel-based superalloys such as Inconel 740 and Haynes
282 as well as the associated (Ni-Cr-Co)-Al-C-Fe-Mn-Mo-Nb-Si-Ti system, were investigated.

The present framework was built on the concept of phase-based property data, in which properties
of individual phases are modeled as a function of internal and external independent variables. This
project established an open-source infrastructure with the following capabilities:

e High throughput implementation of first-principles calculations at finite temperatures and

variable compositions using both accurate phonon calculations and the efficient Debye model for

thermodynamic properties, elastic constants, diffusion coefficients, vacancy formation, stacking and

twin faults, and dislocation mobility; i.e., using the developed code DFTTK [1];

e Machine learning capabilities to predict the above properties so that the number of first-

principles calculations can be significantly reduced; e.g., using the developed code SIPFENN [2];

e High throughput CALPHAD modeling of the above properties as a function of temperature and

composition using our unique capability based on ESPEI and PyCalphad [3];

o New capabilities to predict the stress-strain behavior of individual phases; and

o New models for tensile strength prediction in common FEM software with the crystal plasticity

finite element simulations (CPFEM).
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1 EXECUTIVE SUMMARY

The present project aims to establish a framework capable of the efficient prediction of properties
of structural materials for service in harsh environments over a wide range of temperatures and over
long periods of time, through developing and integrating high throughput first-principles calculations
based on density functional theory (DFT) in combination with machine learning methods, high
throughput CALPHAD modeling, and finite element method (FEM) simulations.

This project was built on the expertise of the Pls and the state-of-the-art capabilities such as open-
source high throughput DFT-based predictions, CALPHAD modeling using various software (e.g.:
atomate, PyCalphad, and ESPEI) and the machine learning methods in the community. Our ESPEI is
capable of testing and developing new models with uncertainty quantifications. The multi-scale
integration from electronic structures, phonon properties, phase stability, and phase transformation to
macroscopic tensile property extends our early initiatives in the field, which enabled the PI Liu to coin
and trademark the term Materials Genome®. Therefore, our technology can be expected to contribute
to a developmental breakthrough for high throughput computational design of multicomponent alloy
compositions and tensile properties at elevated temperatures for long-term service. Furthermore, the
open-source strategy of our approaches and tools enable scientists and engineers in the community to
adapt the framework and continue their own development of specific approaches and tools.
Additionally, the incorporation of the state-of-the-art machine learning methods developed in the
community into the proposed framework can significantly reduce the computing expense in DFT-based
first-principles calculations.

This project have six major achievaments in this project; as detailed in the following sections.

First. Development of thermodynamic databases. The CALPHAD-based thermodynamic database
for Ni-based alloys includes the key elmenets of Ni-Cr-Fe-Mo-Nb, and the DFT-based database for Ni-
, Fe-, and Co-based alloys includes the key elements of Al, B, C, Cr, Cu, Hf, La, Mn, Mo, N, Nb, O, P,
Re,Ru, S, Si, Ta, Ti, V, W, Y, and Zr.

Second. Development of simulation tools for high throughput DF T-based first-principles calculations
at finite temperatures via DFTTK; for machine learning predictions of enthalpy of formation via
SIPFENN; and for high throughput CALPHAD modeling via PyCalphad and ESPEI.

Third. Development of ideal shear strength database for FEM simulations of Ni-based alloys based
on first-principles calculations, including NisAl and the dilute Ni-X and Ni-X-Z alloys.

Fourth. Development of DFT-informed FEM simulations to predict strain-stress curves, as applied
for single and polycrystal Ni and Ni-X alloys.

Fifth. Exploration of machine learning methodology to predict stacking fault energy and microscale
features responsible for the formation of local stress and strain hotspots within the grains and near the
grain boundaries.

Sixth. Application of thermodynamic and kinetic database to explore critical Al concentration to form
external Al03 scale on Ni-Al alloys.

The above six achievaments make it possible to establish a framework capable of the efficient
prediction of properties of structural materials for service in harsh environments over a wide range of
temperatures and over long periods of time through an integration of high throughput DFT-based
simulations, high throughput CALPHAD modeling, machine learning, and FEM simulations.



2 ACTUAL ACCOMPLISHMENTS COMPARED WITH PROJECT
OBJECTIVES

Objectives set in the proposed project:

“The proposed computational framework will establish an open-source infrastructure in the Python
environment including the following specific capabilities:

* High throughput implementation of first-principles calculations at finite temperatures and
variable compositions using both the accurate phonon calculations and the efficient Debye model for
thermodynamic properties, elastic constants, diffusion coefficients, vacancy formation, stacking and
twin faults, grain boundary and interfacial energy, and dislocation mobility;

» Exploration of machine learning methods to predict the above properties so that the amount of
first-principles calculations can be significantly reduced;

» High throughput CALPHAD modeling of the above properties as a function of temperature and
composition using our unique capability based on pycalphad and ESPEI;

* New capabilities to be developed in the proposed project to predict the stress-strain behavior of
individual phases with dislocations and cohesive strength of grain boundary and interfaces; and

* New models for tensile strength prediction in common finite element method (FEM) analysis
software.”

Acutal accomplishments with respect to the check points set in the proposal: ALL DONE; see
below the decision points, and more details in Section 3: Report Details.

Decision point 1: High throughput implementation of first-principles calculations
Criteria for success: Development of Python-based software for high throughput DFT-based first-
principles calculations

Acutal accomplishment w.r.t. decision point 1: DONE.
Software DFT Tool Kit (DFTTK) has been developed [1], see also https://www.dfttk.org

Decision point 2: Exploration of machine learning (ML) methods to predict properties
Criteria for success: Development of Python-based software and exploration of ML methods.

Acutal accomplishment w.r.t. decision point 2: DONE.

Software SIPFENN [2] has been developed to predict enthalpy of formation, and ML methods have
been explored to predict stacking fault energy [4] and to reveal the microscale features responsible
for the formation of local stress and strain hotspots within the grains and near the grain boundaries

[5]

Decision point 3: High throughput CALPHAD modeling and improvement of PyCalphad/ESPEI
Criteria for success: PyCalphad and ESPEI are further improved and Ni-based thermodynamic
database are generated.

Acutal accomplishment w.r.t. decision point 3: DONE.
ESPEI/PyCalphad were developed, see details in https://espei.org and https:/pycalphad.org. In
addition, the Ni-Cr-Fe-Mo-Nb database was generated.

Decision points 4 and 5: Development of finite element method (FEM) for strain-stress predictions
Criteria for success: Novel CPFEM is developed to predict strain-stress curves.



Acutal accomplishment w.r.t. decision points 4 and 5: DONE.
DFT-informed FEM simulations were developed to predict strain-stress curves as applied for single

and polycrystal Ni and Ni-X alloys [6—8]

The milestone status is listed in Table 1.

Table 1: Milestone status report.

for high throughput DFT, high
throughput CALPHAD, and FEM
simulations

codes

Milestone title Planned Actual Verification Comments
IDescription completio | completio method
n date n date
Milestone 1: Completion of literature 3/31/2018 4/30/2018 | Literature Done.
survey of thermodynamic and other report.
properties in the (Ni-Cr-Co)-Al-C-Fe- Found practice
Mn-Mo-Nb-Si-Ti system relevant to methods to
the prediction of tensile properties. predict CRSS.
Milestone 2: DFT calculations and 12/31/2018 | 9/30/2021 | Database and Done
CALPHAD modeling of publications
thermodynamic and other properties
for all binary phases in (Ni-Cr-Co)-Al-
C-Fe-Mn-Mo-Nb-Si-Ti.
Milestone 3: DFT calculations of 7/31/2019 9/30/2021 | Database and Done
tensile properties for y-phase and TC- publications
PRISMA simulations of phase
distribution and implementation of
tensile strength model for y-phase
Milestone 4: Development of 5/31/2019 9/30/2021 | Properties Done
properties database including all database
phases by CALPHAD modeling
Milestone 5: DFT calculations and 6/30/2020 6/30/2022 | Database, Done
modeling of tensile properties for y'- publications.
phase; TC-PRISMA simulations of and open-
phase distributions; open-source source code
code to prepare input for FEM (DFTTK)
simulations; and results from
experimental validations
Milestone 6: Open-source code for 8/31/2020 9/30/2021 | Open-source Done.
high-throughput DFT calculations code DFTTK
released.

Milestone 7: Open-source code to 9/30/2020 9/30/2021 | Open-source Done.
high-throughput CALPHAD modeling code ESPEI and
for the properties of interest in the PyCalphad.
proposed project, i.e., the PyCalphad Released and
code improved.
Milestone 8: A complete FEM model | 10/31/2020 | 9/30/2022 | Publications Done.
to predict tensile properties of real
alloys together with validation from
experiments
Milestone 9: Final report together 12/31/2020 | 12/31/2022 | Final report, Done. This
with the complete open-source codes open-source report.

* TCP represents “topologically closed packed”




3 REPORT DETAILS

Aiming to establish a high throughput computational framework capable of the efficient prediction of
properties of structural materials for service in harsh environments over a wide range of temperatures
and over long periods of time, we developed high throughput DFT-based first-principles calculations in
combination with machine learning (ML) methods, high throughput CALPHAD modeling, and finite
element method (FEM) simulations. The present project has the following key accomplishments within
five years (including no cost extension of two years). For each of the accomplishments, we show the
key details, results and discussion, and conclusions. Also we refer to our publications and our websites
for each accomplishment when available:

o Development of open-source software for DFT, ML, and CALPHAD calculations

o Development of thermodynamic database and its applications

e DFT-based pure shear deformation to predict ideal shear strength and stacking fault energy

e DFT-informed FEM simulations

3.1 Development of open-source software packages

3.1.1 Machine learning for thermodynamic properties

We developed a user-friendly open-source tool (SIPFENN) for predicting the formation enthalpy of
any atomic structure on the millisecond timescale based on a structure file (POSCAR/CIF/etc.) or on
the microsecond timescale if the descriptor has been calculated.

Unlike the vast majority of other reported models, SIPFENN does not require any intensive model
training from the user but is delivered ready to use on a desktop PC or a laptop. SIPFENN does not
require any input other than structure files, what allows effortless integration into any CALPHAD study
within minutes. On the computational end, pymatgen (www.pymatgen.org) converts structure data into
a unified form, and if needed, performs an additional project-specific analysis. Descriptors are
generated with Magpie and then passed through one of the trained neural networks to predict the values
of formation energy. Our code is built to allow easy switch of the neural network, which is encoded in a
popular open-source format of MXNet. We leverage that by making it easy for others to re-train the
network to include new data into the model at a fraction of computational cost (transfer learning). The
model itself is built using a structure-informed descriptor, open DFT databases, and new neural network
architectures designed by us. On a random 5% subset of the OQMD (www.ogmd.org), we achieve a
mean absolute error (MAE) of 28 meV/atom. In addition to trivial cross-validation, we also tested our
model on a few special quasirandom structures (SQS’s) and 243 endmembers of 5-sublattice model of
Fe-Cr-Ni o-phase, getting very similar results in both cases.

This work was published in Computational Materials Science [2]:
o A.M. Krajewski, J.W. Siegel, J. Xu, Z.-K. Liu, Extensible Structure-Informed Prediction of
Formation Energy with improved accuracy and usability employing neural networks,
Comput. Mater. Sci. 208 (2022) 111254.

Figure 1 shows the SIPFENN schematic description of operation [2]; see also our website for more
details: https://www.phaseslab.com/sipfenn.
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Figure 1. SIPFENN schematic description of operation [2].
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Figure 2. Schematic DFTTK workflow with FW (firework) for job control and ISIF for structure
relaxations in VASP (www.vasp.at); see details in [1].

3.1.2 DFTTK for high throughput first-principles calculations

We developed the DFT Tool Kit (www.dfttk.org) and published a paper about DFTTK in the journal
of CALPHAD :


http://www.vasp.at/

e Y. Wang, M. Liao, B.J. Bocklund, P. Gao, S.-L. Shang, H. Kim, A.M. Beese, L.-Q. Chen, Z.-
K. Liu, DFTTK: Density Functional Theory ToolKit for high-throughput lattice dynamics
calculations, Calphad. 75 (2021) 102355.

In this paper, we present a software package in Python for high-throughput first-principles
calculations of thermodynamic properties at finite temperatures, which we refer to as DFTTK (Density
Functional Theory Tool Kit).

DFTTK is based on the atomate package and integrates our experiences in the last decades on the
development of theoretical methods and computational software; see its workflow in Figure 2. It includes
task submissions on all major operating systems and task execution on high-performance computing
environments. The distribution of the DFTTK package comes with examples of calculations of phonon
density of states, heat capacity, entropy, enthalpy, and free energy under the quasiharmonic phonon
scheme for the stoichiometric phases of Al, Ni, AlsNi, AINi, AlNis, AlsNis, AlsNis, and the fcc solution
phases treated using the special quasirandom structures at the compositions of AlsNi, AINi, and AlNis.

3.1.3 ESPEI/PyCalphad for high throughput CALPHAD modeling

ESPEI (www.espei.org) or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for
thermodynamic database development within the CALPHAD method. It uses PyCalphad
(www.pycalphad.org) for calculating Gibbs energies of thermodynamic models. PyCalphad is a Python
library for computational thermodynamics using the CALPHAD method.

In this project, ESPEI was updated to use site fraction to model phase diagrams. In the previous
version of ESEPI, site fraction data cannot be considered as a direct input for CALPHAD modeling due
to the complexity of site fraction calculations. However, with Bayesian parameter estimation in ESPEI,
site fraction data together with other thermochemical and phase equilibrium data can be directly used
to be fitted with Gibbs energy parameters by Markov Chain Monte Carlo (MCMC) optimization in ESPEI.
For example, the experimental data of site fraction by Joubert [9] were used to modify the mu phase
(another TCP phase) in the Nb-Ni system [10]. The comparison between site fraction of Chen’s paper
(Figure 3a) and the site fraction of the present work (Figure 3b) shows that after taking site fraction data
as direct input for CALPHAD modeling, the discrepancy between simulation results and experimental
data become much smaller.
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In addition to implementation of site fraction, more updates of PyCalphad and ESPEI were listed in
their websites:

e Www.espei.org
e www.pycalphad.org

3.2 Development of thermodynamic database and its applications

3.2.1 DFT-based thermodynamic database and its applications

Based on mainly the developed DFTTK code [12] and the quasiharmonic phonon calculations using
our code YPHON [13], we performed high-throughout DFT calculations at finite temperatures for over
3000 structures for the systems made of 26 elements, namely, Ni, Fe, and Co alloyed with Al, B, C, Cr,
Cu, Hf, La, Mn, Mo, N, Nb, O, P, Re, Ru, S, Si, Ta, Ti, V, W, Y, and Zr.
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Figure 4. (a) Phase fractions of IN718 calculated by DFT (lines) without considering grain boundary
constraint compared those calculated based on commercial database TCNI9 (symbols,
www.thermocalc.com). (b) Phase fractions for IN718 calculated by DFT (lines) with considering grain
boundary constraint. (c) Fe-Ni binary phase diagram (Courtesy of Yang et al. [14,15]). (d) T-T-T diagram
for IN718 (Courtesy of Oradei-Basile and Radavich [16]).

This work aims to provide reliable thermochemical data that are mostly unavailable from
experiments. Accordingly, a computational procedure was developed for predicting morphology
evolutions as functions of temperature and composition. The applicability of this database was
demonstrated using the AM Ni-based superalloy IN718 by monitoring the formations of various phases
and their evolution during the heating-cooling cycles. Furthermore, to support the theoretical approach,
a series of transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS)
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measurements of AM IN718 samples were performed to obtain spatial elemental distribution data. The
procedure was verified by the successful predictions of the formations of various phases at low
temperatures [L1o-FeNi, y’-Niz(Fe,Al), a-Cr, 8-Niz(Nb,Mo), v"-NisNb , and n-NisTi], intermediate
temperatures [y’-NizAl, &-NisNb, y’-NisNb, a-Cr, and y-Ni(Fe,Cr,Mo)], and high temperatures [6-NisNb
and y-Ni(Fe,Cr,Mo)]. For example, Figure 4 shows the presently predicted phases in Ni-based Inconel
718 (IN718) in comparison with experimental Fe-Ni phase diagram [14,15] and the TTT (time-
temperature-transformation) diagram for IN718 [16]. Figure 4 shows the presently predicted enthalpies
of IN718 as a function of temperature in comparison with the results from commercial database TCNI9
(c.f., www.thermocalc.com) and experimental data [17,18]. It shows that the present results are in good
agreement with experiments.

Currently this work was published:

e Y. Wang, F. Lia, K. Wang, K. McNamara, Y. Ji, X. Chong, S.-L. Shang, Z.-K. Liu, R.P.
Martukanitz, L.-Q. Chen, A thermochemical database from high-throughput first-principles
calculations and its application to analyzing phase evolution in AM-fabricated IN718, Acta Mater.
240 (2022) 118331.

3.2.2 CALPHAD-based thermodynamic database and its applications

As a model system to examine Ni-based Inconel alloys (e.g., 625 and 718), a thermodynamic
database of the Ni-Cr-Fe-Mo-Nb system was established based on our DFT-based first-principles
results for the topologically close pack (TCP) phases. We used the high throughput CALPHAD modeling
software packages ESPEI and PyCalphad [19] to adjust phase boundaries with respect to experimental
data. The adopted sublattice models for the key TCP phases are as follows:

¢ o (5-sublattice to represent 5 Wyckoff positions)

o u (5-sublattice to represent 5 Wyckoff positions)

o (C14-laves (3-sublattice to represent 3 Wyckoff positions)
e (3-sublattice to represent 3 Wyckoff positions)

v (2-sublattice to represent 2 Wyckoff positions), and

v” (3-sublattice to represent 3 Wyckoff positions).

One of the examples is the Ni-Nb system shown in Figure 5 [10]. Figure 5 (a) is the phase diagram
from the TCNI9 commercial database developed by Thermo-Calc [20], Figure 5(b) is the phase diagram
calculated by the present database. It can be seen from Figure 5(b), a better fitting with experimental
data is achieved for & phase around compositions of 23.5 — 26.5 at. % Nb, and also a better agreement
for u phase around 49.8 - 58.3 at. % Nb. At the same time, Figure 5 (c-d) shows the Gibbs energy
surface of 6 phase calculated by PyCalphad [19]. Note that the three-sublattice model based on the
Wyckoff positions are applied for the 6 phase (Figure 5 (d)) instead of the two-sublattice model used by
the TCNI9 (Figure 5 (c)). With the presently updated sublattice, it allows the CALPHAD model to actually
describe the Gibbs energy by incorporating more endmembers (the edges in the Gibbs energy surface)
as show in Figure 5 (d), which give a better description of thermochemical properties like site fractions
shown in Figure 3 and reduce the limitation to model multi-component system.

The ternary systems (such as Ni-Fe-Mo, Ni-Fe-Nb, Ni-Mo-Nb, and Fe-Mo-Nb) were also optimized
based on thermochemical and phase boundary data after all the binary systems were finished. For
example, the isothermal section of Fe-Nb-Ni at 1373 K from the TCNI 9 database (Figure 6 (a)) and the
present database (Figure 6 (b)) shows that the calculations from the present database has a better
match with experimental data of the C14-laves phase. For the 5 phase region, two databases both
shows a good agreement with experimental data, while the present database indicates that the & phase
region is wider with increasing Fe. The isothermal section of Fe-Mo-Nb at 1373 K from TCNI 9 database

11
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(Figure 6 (c)) and the present database (Figure 6 (d)) shows that the present database has a better

agreement with experimental data for the C14-laves region and the p phase region.

Currently we published one CALPHAD modeling work of Ni-Hf [21] and are preparing more
manuscripts to report the above modeling results.
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Figure 5. Nb-Ni phase diagram with experimental data and Gibbs energy surface of 5 phase. (a) Nb-Ni
phase diagram of TCNI 9 database. (b) Nb-Ni phase diagram of the present database. (c) Gibbs surface
energy of 8 from TCNI 9 database. (d) Gibbs surface energy of 6 from the present database.

12



S
CETUERSSmy n

o >
TS

A 00 0.1 02 03 04 13 05 01 08 09
AN MOLE_FRACTION FE
ey !

00 ——————— = =
n 00 Xl 02 03 04 o o
AN MOLE_FRACTI

Figure 6. Isothermal section of Fe-Nb-Ni at 1373K from TCNI 9 (a) and the present database (b) and
isothermal section of Fe-Mo-Nb at 1373 K from TCNI 9 (c) and the present database (d).

3.3 DFT-based pure shear deformation and its applications

Shear deformation and associated properties such as stacking fault energy, v, ideal (or theoretical)
shear strength, ts, and critical resolved shear stress (CRSS), tcrss, are fundamental for understanding
and modeling a vast number of materials properties and phenomena related to dislocations, plastic
deformation, crystal growth, and phase transitions. Notably, s is a key parameter to estimate the
Peierls stress — the force required to move an individual dislocation. The Peierls stress, e, is

approximately equal to tcrss at 0 K. For the case of a wide dislocation and according to Jo6s and
Duesbery [22],

Kb
Tp = ——exp (—2n¢/a) Eq. 2
where b is the Burgers vector, a the row spacing of atoms within the slip plane, K an elastic factor, and
2
¢'the half-width of the dislocation with = Kb Foran isotropic crystal, K;5, = u( o+ cos?0) with u

sin
47TTIS 1-v
being shear modulus, v Poisson’s ratio, and 6 the angle between the dislocation line and its Burgers
vector. To predict the ts values, we adopted the DFT-based alias shear deformation scheme. For
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example of Ni and NisAl, estimates of the Peierls stresses using tis and elastic properties suggest the
prevalence of edge dislocations in Ni and screw dislocations in NisAl, agreeing with experimental
observations regarding the dominance of edge dislocations in the first stage of crystal deformation in
fcc metals and the yield-strength anomaly related to screw dislocations in NisAl; see Figure 7.

In addition to NizAl, we also predicted the effect of alloying elements (denoted X) on the ideal shear
strength for 26 dilute Ni-based alloys, Nii1X, as determined by first-principles calculations of pure alias
shear deformations; see Figure 8. We found that the variations in ideal shear strength are quantitatively
explored with correlational analysis techniques, showing the importance of atomic properties such as
size and electronegativity. The shear moduli of the alloys are affirmed to show a strong linear
relationship with their ideal shear strengths, while the shear moduli of the individual alloying elements
were not indicative of alloy shear strength.
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Figure 7. Calculated Peierls stresses at 0 K for four cases of edge (e) and screw (s) dislocations using
elastic factors for isotropic (iso) and anisotropic (aniso) crystals in comparison with experimental CRSS
values at room temperature for NizAl and Ni.

Al Si
— 4.58 | 4.17
Sc T1 A% Cr 1 Cu /n
3.62 | 424 | 462 | 490 451 | 442
Y sv | Zr sv |Nb pv|Mo pv
206 | 303 | 391 | 45
Hf pv|Ta pv|W pv
323 | 393 | 4.57

Figure 8. Calculated ideal shear strengths for 26 alloying elements and pure Ni (i.e., Ni11X) in units of
GPa. The “pv” and “sVv” listed after an atomic symbol indicates that the DFT calculations were performed
while treating p or s states as valence states. Warmer colors indicate a higher value of ideal shear
strength (blue = low, yellow = middle, red = high).
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Currently we published two papers and one will be published soon.

e S.L. Shang, J. D. Shimanek, S. Qin, Y. Wang, A.M. Beese, Z.K. Liu, Unveiling dislocation
characteristics in Ni3Al from stacking fault energy and ideal strength: A first-principles study via
pure alias shear deformation, Phys. Rev. B. 101 (2020) 024102.

e J.D. Shimanek, S.-L. Shang, A.M. Beese, Z.-K. Liu, Insight into ideal shear strength of Ni-
based dilute alloys using first-principles calculations and correlational analysis, Comput. Mater.
Sci. 212 (2022) 111564.

e S.Lin, S. Shang, J.D. Shimanek, Y. Wang, A.M. Beese, Z. Liu, Predicting ideal shear strength
of dilute multicomponent Ni-based alloys by an integrated first-principles calculations,
CALPAHD modeling approach and correlation analysis, (2023) To be published and attached in
this final report.

3.4 DFT-informed FEM simulations

To reduce reliance on experimental fitting data within the crystal plasticity finite element method
(CPFEM), an approach is proposed that integrates first-principles calculations based on density
functional theory (DFT) to predict the strainhardening behavior of pure Ni single crystals; see Figure 9.
Flow resistance was evaluated through the Peierls—Nabarro equation using the ideal shear strength
and elastic properties calculated by DFT-based methods, with hardening behavior modeled by imposing
strains on supercells in first-principles calculations. Considered alone, elastic interactions of pure edge
dislocations capture hardening behavior for small strains on single-slip systems. For larger strains,
hardening is captured through a strain-weighted linear combination of edge and screw flow resistance
components. The rate of combination is not predicted in the present framework, but agreement with
experiments through large strains (~0.4) for multiple loading orientations demonstrates a possible route
for more predictive crystal plasticity modeling through incorporation of analytical models of mesoscale
physics.

In addition to pure Ni, we also predicted the strain-stress curves of dilute Nis1X alloys using the same
method, where the alloying elements X = Fe, Co, Cr, Al, V, Ti, and Nb [7].
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Figure 9. A schematic of the overall approach proposed in the current work, showing the transfer of
information from the atomic scale ideal shear process to a mesoscale description of hardening on a slip
system level to, finally, a description of macroscale deformation of single crystal samples.

We also used a full-field crystal plasticity model with a DFT-informed dislocation density (DD)
hardening law to identify the key microstructural features correlated with micromechanical fields
localization, or hotspots, in polycrystalline Ni. An ensemble learning approach to machine learning



interpreted with Shapley additive explanation was implemented to predict nonlinear correlations
between microstructural features and micromechanical stress and strain hotspots; see Figure 10.

Results reveal that regions within the microstructure in the vicinity of the grain boundaries,
higher Taylor and Schmid factors, and high intergranular misorientations, are more prone to being
micromechanical hotspots. Additionally, under combined loading, intergranular misorientations are
more responsible than Schmid factor in formation of stress hotspots while Schmid factors take
precedence under high plastic strain localizations. The present work demonstrates a successful
integration of physics-based crystal plasticity with DD-based hardening into machine learning
models to reveal the microscale features responsible for the formation of local stress and strain
hotspots within the grains and near the grain boundaries, as function of applied deformation states,
grain morphology/size distribution, and microstructural texture, providing insights into
micromechanical damage initiation zones in polycrystalline metals (Figure 10).
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Figure 10. A schematic of the overall approach of physics-based crystal plasticity with DD-based
hardening into machine learning models to reveal the microscale features responsible for the formation
of local stress and strain hotspots within the grains and near the grain boundaries.

Currently we published three papers and one will be published soon to demonstrate the DFT-

informed FEM simulations.

o J.D. Shimanek, S.-L. Shang, A.M. Beese, Z.-K. Liu, Insight into ideal shear strength of Ni-based
dilute alloys using first-principles calculations and correlational analysis, Comput. Mater. Sci.
212 (2022) 111564.

¢ J.D. Shimanek, S. Qin, S.-L. Shang, Z.-K. Liu, A.M. Beese, Predictive Crystal Plasticity Modeling
of Single Crystal Nickel Based on First-Principles Calculations, JOM. 74 (2022) 1423-1434.

e A. Eghtesad, J.D. Shimanek, S.-L. Shang, R. Lebensohn, M. Knezevic, Z.-K. Liu, A.M. Beese,
Density functional theory-informed dislocation density hardening within crystal plasticity:
Application to modeling deformation of Ni polycrystals, Comput. Mater. Sci. 215 (2022) 111803.

e A. Eghtesad, Q. Luo, S. Shang, R. Lebensohn, M. Knezevic, Z. Liu, A.M. Beese, Machine
learning-enabled identification of micromechanical stress and strain hotspots predicted via
dislocation density-based crystal plasticity simulations, (2023) To be published.
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2. GRAPHICAL MATERIALS LIST(S)
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Figure 11. Key graphical materials for this project (a) the logos of our software tools: DFTTK, Pycalphad,
and ESPEI, (b) the idea of CALPHAD modeling, and (c) the DFT-informed FEM simulations.

3. LIST OF KEY ACRONYMS AND ABBREVIATIONS

ABBREVIATIONS EXPLANATIONS

CALPHAD Calculations of phase diagram

DFT Density functional theory

DFTTK Density functional theory based tool kit
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ESPEI Extensible, self-optimizing phase equilibrium computer program
PyCalphad Python based CALPHAD modeling code
SIPFENN Extensible structure-informed prediction of formation energy by maching
learning
FEM Finite element method
CPFEM Crystal plasticity finite element simulations
4. PRODUCTS

4.1. Two Ph.D. students graduated with two theses published

o Shipin Qin, “Influence of microstructure on the multiaxial plasticity and fracture of dual phase
steels: experiments and multiscale computational modeling”, Pennsylvania State University,
Ph.D. thesis, 2020. https://etda.libraries.psu.edu/files/final submissions/21517

¢ Brandon Bocklund, “Computational design of additively manufactured functionally graded
materials by thermodynamic modeling with uncertainty quantification”, Pennsylvania State
University, Ph.D. thesis, 2021. https://etda.libraries.psu.edu/catalog/21192bjb54

4.2. Three Ph.D. students and one postdoc partially supported

Shuang Lin (Ph.D. student, to be graduated within 2 years)
Hui Sun (Ph.D. student, to be graduated within 1 year)

John Shimanek (Ph.D. student, to be graduated within 1 year)
Adnan Eghtesad (Postdoc)

4.3. Twenty publications (17 papers published and 3 to be published and attached)

¢ Fundamentals of thermodynamics (3 papers published)
o Review of thermodynamics and its applications in 2020 by Liu [23]
o Entropy and critical phenomena in 2019 by Liu et al. [24]
o Theory of cross phenomena in 2022 by Liu (cited this project but indirectly) [25]
o Software tools development (3 papers published or to be published)
o DFTTKin 2019 by Wang et al. [1]
o SIPFENN in 2022 by Krajewski et al. [2]
o ESPEI in 2022 by Hui et al. (to be published, attached) [10]
¢ Thermodynamic databases development (3 papers published or to be published)
o DFT-based database in 2022 by Wang et al. [26]
o CALPHAD-based thermodynamic modelings of the Ni-Hf [21] and Nb-Ni [10] systems
e Applications of thermodynamics and kinetics (1 paper published)
o Predict critical Al concentration to form external Al,Os scale in Ni-Al alloy in 2022 by
Ross et al. [27]
o Ideal shear deformation and associated properties (e.g., input for DFT-informed FEM, 3
papers published or to be published)
o NisAl in 2020 by Shang et al. [28]
o Dilute Ni-X alloys in 2022 by Shimanek et al. [7]
o Dilute Ni-X-Z by Lin et al. (to be published, attached) [29]
e DFT-informed FEM (or ML-informed FEM) (4 papers published or to be published)
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o Single crystal Ni [6] and dilute Ni-X alloys [7]
o Ni polycrystal [8]
o Hotspots by ML (to be published, attached) [5]
¢ Machine learning with input data from DFT-based calculations (2 papers published or to be
published)
o Stacking fault energy [4]
o Hotspots by ML (to be published, attached) [5]
o Experimental work of AM (1 paper published)
o Inconel 625 manufactured by laser powder bed fusion [30]
o Other works indirectely related to this project (3 papers published)
o Partially supported by this project to study strain-controlled antiferromagnetic memory
[31]; to study synergetic effects of solute and strain in biocompatible Zn-based and Mg-
based alloys [32]; and to study zentropy theory for positive and negative thermal
expansion [33]

4.4. Websites related to the results of this project
o http://espei.org for ESPEI (Extensible Self-optimizing Phase Equilibria Infrastructure): A tool for

automated thermodynamic database development within the CALPHAD method.

e htitps://pycalphad.org for pycalphad code: A Python library for computational thermodynamics
using the CALPHAD method.

o hitps://www.dfttk.org for DFTTK: Density functional theory (DFT) workflows for finite temperature

thermodynamics based on the atomate (atomate.org) workflows.

e https://www.phaseslab.com/sipfenn for SIPFENN: Structure-Informed Prediction of Formation

Energy using Neural Networks.

o hitps://www.phaseslab.com/MPDD for the Material-Property-Descriptor Database.

5. REFERENCES

[1 Y. Wang, M. Liao, B.J. Bocklund, P. Gao, S.-L. Shang, H. Kim, A.M. Beese, L.-Q. Chen, Z.-K.
Liu, DFTTK: Density Functional Theory ToolKit for high-throughput lattice dynamics
calculations, Calphad. 75 (2021) 102355. https://doi.org/10.1016/j.calphad.2021.102355.

[2] A.M. Krajewski, J.W. Siegel, J. Xu, Z.-K. Liu, Extensible Structure-Informed Prediction of
Formation Energy with improved accuracy and usability employing neural networks, Comput.
Mater. Sci. 208 (2022) 111254. https://doi.org/10.1016/j.commatsci.2022.111254.

[3] R.A. Otis, Z.-K. Liu, pycalphad: CALPHAD-based Computational Thermodynamics in Python, J.
Open Res. Softw. 5 (2017) 1. https://doi.org/10.5334/jors.140.

[4] X. Chong, S.-L. Shang, A.M. Krajewski, J.D. Shimanek, W. Du, Y. Wang, J. Feng, D. Shin,
A.M. Beese, Z.-K. Liu, Correlation analysis of materials properties by machine learning:
illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys,
J. Phys. Condens. Matter. 33 (2021) 295702. https://doi.org/10.1088/1361-648X/ac0195.

[5] A. Eghtesad, Q. Luo, S. Shang, R. Lebensohn, M. Knezevic, Z. Liu, A.M. Beese, Machine
learning-enabled identification of micromechanical stress and strain hotspots predicted via
dislocation density-based crystal plasticity simulations, (2023) To be published.

19


http://espei.org/
https://pycalphad.org/
https://www.dfttk.org/
https://www.phaseslab.com/sipfenn
https://www.phaseslab.com/MPDD

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

J.D. Shimanek, S. Qin, S.-L. Shang, Z.-K. Liu, A.M. Beese, Predictive Crystal Plasticity
Modeling of Single Crystal Nickel Based on First-Principles Calculations, JOM. 74 (2022)
1423-1434. https://doi.org/10.1007/s11837-022-05175-6.

J.D. Shimanek, S.-L. Shang, A.M. Beese, Z.-K. Liu, Insight into ideal shear strength of Ni-based
dilute alloys using first-principles calculations and correlational analysis, Comput. Mater. Sci.
212 (2022) 111564. https://doi.org/10.1016/j.commatsci.2022.111564.

A. Eghtesad, J.D. Shimanek, S.-L. Shang, R. Lebensohn, M. Knezevic, Z.-K. Liu, A.M. Beese,
Density functional theory-informed dislocation density hardening within crystal plasticity:
Application to modeling deformation of Ni polycrystals, Comput. Mater. Sci. 215 (2022) 111803.
https://doi.org/10.1016/j.commatsci.2022.111803.

J.-M. Joubert, Y. Feutelais, Contribution of the Rietveld method to non-stoichiometric phase
modeling. Part II: a-TI5Te3 and y Nb-Ni as experimental examples, Calphad. 26 (2002) 427—
438.

H. Sun, S.-L. Shang, R. Gong, B.J. Bocklund, A.M. Beese, Z.-K. Liu, Thermodynamic modeling
with uncertainty quantification in the Nb-Ni system using the upgraded PyCalphad and ESPEI,
ArXiv. (2022). https://doi.org/10.48550/arxiv.2204.11813.

H. Chen, Y. Du, Refinement of the thermodynamic modeling of the Nb — Ni system, 30 (2006)
308-315. https://doi.org/10.1016/j.calphad.2006.02.005.

Python-based open source software developed at Pennsylvania State University, ESPEI
(http://espei.org), PyCalphad (http://pycalphad.org), SIPFENN
(https://www.phaseslab.com/sipfenn), and DFTTK (http://github.com/PhasesResearchLab)
based on atomate (https://github.com/hackingmaterials/atomate), (n.d.).

Y. Wang, L.-Q. Chen, Z.-K. Liu, YPHON: A package for calculating phonons of polar materials,
Comput. Phys. Commun. 185 (2014) 2950—-2968. https://doi.org/10.1016/j.cpc.2014.06.023.
C.-W. Yang, D.B. Williams, J.l. Goldstein, A revision of the Fe-Ni phase diagram at low
temperatures (<400 °C), J. Phase Equilibria. 17 (1996) 522-531.
https://doi.org/10.1007/BF02665999.

J. Yang, J.l. Goldstein, The formation of the Widmanstatten structure in meteorites, Meteorit.
Planet. Sci. 40 (2005) 239-253. https://doi.org/10.1111/j.1945-5100.2005.tb00378.x.

A. Oradei-Basile, J.F. Radavich, A Current T-T-T Diagram for Wrought Alloy 718, in: E. A Loria
(Ed.), The Minerals, Metals & Materials Society, Warrendale, PA, 1991: pp. 325-335.

K.C. Mills, Recommended values of thermophysical properties for selected commercial alloys,
Woodhead, Cambridge, England, 2002.

H. Hosaeus, A. Seifter, E. Kaschnitz, G. Pottlacher, Thermophysical properties of solid and
liquid Inconel 718 alloy, High Temp. High Press. 33 (2001) 405—-410.

S. Shang, ESPEI : Extensible , Self-optimizing Phase Equilibrium Infrastructure for Magnesium
Alloys ESPEI : Extensible , Self-optimizing Phase Equilibrium Infrastructure for Magnesium
Alloys, (2010).

J.-O. Andersson, T. Helander, L. Hoglund, P. Shi, B. Sundman, Thermo-Calc & DICTRA:
Computational tools for materials science, Calphad. 26 (2002) 273-312.
https://doi.org/10.1016/S0364-5916(02)00037-8.

A.J. Ross, T. Gheno, P.K. Ray, M.J. Kramer, X.L. Liu, G. Lindwall, B. Zhou, S.L. Shang, B.
Gleeson, Z.-K. Liu, A first-principles based description of the Hf-Ni system supported by high-
temperature synchrotron experiments, Thermochim. Acta. 668 (2018) 142—-151.
https://doi.org/10.1016/J.TCA.2018.08.011.

B. Joos, M.S. Duesbery, The Peierls Stress of Dislocations: An Analytic Formula, Phys. Rev.
Lett. 78 (1997) 266—269. https://doi.org/10.1103/PhysRevLett.78.266.

Z.-K. Liu, Computational thermodynamics and its applications, Acta Mater. 200 (2020) 745—
792. https://doi.org/10.1016/j.actamat.2020.08.008.

Z.-K. Liu, B. Li, H. Lin, Multiscale Entropy and Its Implications to Critical Phenomena, Emergent
Behaviors, and Information, J. Phase Equilibria Diffus. 40 (2019) 508-521.

20



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

https://doi.org/10.1007/s11669-019-00736-w.

Z.-K. Liu, Theory of cross phenomena and their coefficients beyond Onsager theorem, Mater.
Res. Lett. 10 (2022) 393—439. https://doi.org/10.1080/21663831.2022.2054668.

Y. Wang, F. Lia, K. Wang, K. McNamara, Y. Ji, X. Chong, S.-L. Shang, Z.-K. Liu, R.P.
Martukanitz, L.-Q. Chen, A thermochemical database from high-throughput first-principles
calculations and its application to analyzing phase evolution in AM-fabricated IN718, Acta
Mater. 240 (2022) 118331. https://doi.org/10.1016/j.actamat.2022.118331.

A. Ross, S. Shang, H. Fang, G. Lindwall, X.L. Liu, W. Zhao, B. Gleeson, M.C. Gao, Z. Liu,
Tailoring critical Al concentration to form external Al203 scale on Ni—Al alloys by computational
approach, J. Am. Ceram. Soc. 105 (2022) 7770-7777. https://doi.org/10.1111/jace.18707.
S.L. Shang, J. Shimanek, S. Qin, Y. Wang, A.M. Beese, Z.K. Liu, Unveiling dislocation
characteristics in Ni3Al from stacking fault energy and ideal strength: A first-principles study via
pure alias shear deformation, Phys. Rev. B. 101 (2020) 024102.
https://doi.org/10.1103/PhysRevB.101.024102.

S. Lin, S. Shang, J.D. Shimanek, Y. Wang, A.M. Beese, Z. Liu, Predicting ideal shear strength
of dilute multicomponent Ni-based alloys by an integrated first-principles calculations,
CALPAHD modeling approach and correlation analysis, (2023) To be published.

S. Qin, T.C. Novak, M.K. Vailhe, Z.-K. Liu, A.M. Beese, Plasticity and fracture behavior of
Inconel 625 manufactured by laser powder bed fusion: Comparison between as-built and stress
relieved conditions, Mater. Sci. Eng. A. 806 (2021) 140808.
https://doi.org/10.1016/j.msea.2021.140808.

H. Yan, Z. Feng, S. Shang, X. Wang, Z. Hu, J. Wang, Z. Zhu, H. Wang, Z. Chen, H. Hua, W.
Lu, J. Wang, P. Qin, H. Guo, X. Zhou, Z. Leng, Z. Liu, C. Jiang, M. Coey, Z. Liu, A
piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields, Nat.
Nanotechnol. 14 (2019). https://doi.org/10.1038/s41565-018-0339-0.

Y.Q. Guo, S.H. Zhang, |.J. Beyerlein, D. Legut, S.L. Shang, Z.K. Liu, R.F. Zhang, Synergetic
effects of solute and strain in biocompatible Zn-based and Mg-based alloys, Acta Mater. 181
(2019). https://doi.org/10.1016/j.actamat.2019.09.059.

Z.-K. Liu, Y. Wang, S.-L. Shang, Zentropy Theory for Positive and Negative Thermal
Expansion, J. Phase Equilibria Diffus. (2022) In press. https://doi.org/10.1007/s11669-022-
00942-z.

6. APPENDICES

Three to be published papers are attached in the following pages, including:

H. Sun, S.-L. Shang, R. Gong, B.J. Bocklund, A.M. Beese, Z.-K. Liu, “Thermodynamic
modeling with uncertainty quantification in the Nb-Ni system using the upgraded PyCalphad
and ESPEI". (2023) To be published.

S. Lin, S. Shang, J.D. Shimanek, Y. Wang, A.M. Beese, Z. Liu, Predicting ideal shear strength
of dilute multicomponent Ni-based alloys by an integrated first-principles calculations,
CALPAHD modeling approach and correlation analysis, (2023) To be published.

Eghtesad, Q. Luo, S. Shang, R. Lebensohn, M. Knezevic, Z. Liu, A.M. Beese, “Machine

learning-enabled identification of micromechanical stress and strain hotspots predicted via
dislocation density-based crystal plasticity simulations”, (2023) To be published.

21



Thermodynamic modeling with uncertainty quantification in the Nb-Ni system
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Abstract

The Nb-Ni system is remodeled with uncertainty quantification (UQ) using the upgraded software
tools of PyCalphad and ESPEI with new capability by modeling site occupancy of Wyckoff
position for the phases of interest. Specifically, the five- and three-sublattice models are used to
model the topologically close pack (TCP) phases of pu-Nb7Nis and §-NbNi3z according exactly to
their Wyckoff positions. The inputs for CALPHAD-based thermodynamic modeling include the
predicted thermochemical data as a function of temperature by density functional theory (DFT)
based first-principles and phonon calculations together with phase equilibrium and site occupancy
data in the literature. In addition to phase diagram and thermodynamic properties, the CALPHAD
predictions of site occupancies agree well with experimental data, namely the measured site
occupancies of Nb in p-Nb7Nis. In addition, the UQ values estimated using the Markov Chain
Monte Carlo (MCMC) method as implemented in ESPEI make it possible to quantify uncertainties

in the Nb-Ni system, for example, site occupancy in p-Nb7Nig and enthalpy of mixing in liquid.

Highlights
e New capability implemented into PyCalphad and ESPEI to model site occupancy
e TCP phases (u-Nb7Nis and 6-NbNi3) modeled well using sublattice models according
exactly to their Wyckoff positions
e The Nb-Ni system remodeled with uncertainty quantification
e Finite-temperature thermochemical properties predicted by DFT-based first-principles

and phonon calculations

Keywords: CALPHAD modeling; Nb-Ni; PyCalphad and ESPEI; First-principles and phonon
calculations; Site occupancy; TCP phases; Uncertainty quantification.



1 Introduction

The topologically close pack (TCP) phases, also known as the Frank-Kasper phases [1], are
intermetallic compounds with complex crystalline structures, which are frequently observed in Ni-
based superalloys, for example, the o, x, P, R, §, u, M, A15, and Laves phases [2]. TCP phases are
usually brittle and detrimental, and hence, their type, amount, and distribution are of great
importance for the performance of Ni-based superalloys [3]. For example, when Ni-based
superalloys are highly alloyed with refractory elements (e.g., Cr, Mo, Nb, Ta, W, and Re) to
achieve better strengths at high temperatures, the TCP phases will be formed and produce
detrimental effects on the properties of superalloys by draining refractory elements from the matrix
to reduce the solid solution strengthening like the y phase with the FCC lattice in Ni-based
superalloys [4] or the strengthening phase like the y’ phase with the L1 lattice in Co-based
superalloys [5].

Relevant to the present work, the TCP phases in the Nb-Ni system are 6-NbNi3 and p-Nb7Nie,
which are deleterious to the performance of Ni-based superalloys since their formations will drain
alloying element Nb from the matrix [6]. For example, the formation of a 10% volume fraction of
0-NbNi3 can lower 40% of elongation in Ni-based superalloy of Inconel 718 [7]. The formation of
around 10 vol.% of 3-NbNi3 after stress relief heat treatment resulted in a 9% increase of the
ultimate tensile strength but a 45% decrease of the fracture strain in Inconel 625 [8]. Similarly, p-
NbsNis¢ also shows an undesirable influence on mechanical properties, for example, the
precipitation of u-Nb7Nis in the Ni-Mo-Cr alloy decreased its room temperature impact roughness
by 100 joules in the Charpy test [9]. Therefore, an accurate thermodynamic description of the TCP
phases in the Nb-Ni system is critical for a better understanding of their formations through
thermodynamic calculations, so that the TCP phases can be avoided through designing chemistry

and/or manufacturing process of superalloys.

In general, the TCP compounds are complex intermetallic phases with different elements in one
or more of their Wyckoff sites. For example, 3-NbNi3 includes three Wyckoff sites (2a, 2b, and
4e) with space group Pmmn (No. 59) [10] as shown in Table 1, while p-Nb7Nig has five Wyckoff
sites (3a, 6¢(1), 6¢(2), 6¢(3), and 18h) with space group R3m (No. 166) [11] as shown in Table 1.



The crystallographic information of Wyckoff sites indicates that a three-sublattice model is
expected for a complete description of d-NbNiz and a five-sublattice model for p-Nb7Nie.
However, the previous CALPHAD modeling works of Nb-Ni [12—15] cannot capture well the
change of site occupancies in TCP phases, i.e., the occurrence of a given kind of atoms (or
vacancy) in a given Wyckoff position; for example, Nb in Wyckoff sites of pu-NbsNis measured
by Joubert et al. [16], since p-NbsNi¢ was described by the simplified sublattice models like
(N1)0.47(Nb)o.53[17], (Nb, Ni)7(Nb)s [13], and (Nb, Ni);Nig(Nb, Ni)2Nbe [14]; see details in Table 2
which summarizes the previous thermodynamic models for p-Nb7Nig and d-NbNis. It shows that
Kaufman and Nesor [17] modeled p-NbsNig and 8-NbNi3 as stoichiometric compounds using
(N1i)o.47 (Nb)o.s3 for u-Nb7Nis, (Ni)o.75(Nb)o2s for 6-NbNiz, while Kejun et al. [14] used a four-
sublattice model (Nb, Ni)1Nis(Nb, Ni)2Nbs for u-Nb7Nis and a two-sublattice model (Nb, Ni)3(Nb,
Ni); for 8-NbNis. Bolcavage and Kattner [13] used the model (Nb, Ni)7(Nb)s for u-Nb7Nis. Note
that Joubert et al. [18] adopted a five-sublattice model for p-Nb7Nis, i.e., (Nb, Ni)1Nb2Nb2(Nb,
Ni)2(Nb, Ni)s, which gives a better description of solubility and site occupancy in p-Nb7Nie.
However, two of the sublattices in Joubert et al.’s model [ 18] include only one element Nb instead
of two elements of Nb and Ni, in which the absence of all possible elements limits its model for
further application in higher order systems. Most recently, Chen et al. [15] remodeled the Nb-Ni
system with the (Nb, Ni)iNb4(Nb, Ni)2(Nb, Ni)s model for u-NbsNis and the (Nb, Ni)3(Nb, Ni);
model for 6-NbNis. Table 2 summarizes that none of the previous thermodynamic models of p-
Nb7Nigs were based exactly on Wyckoff positions, resulting in a discrepancy regarding site
occupancy between CALPHAD modeled results and experiments. The less accurate descriptions
of TCP phases, especially their site occupancies, in the Nb-Ni system motivate the present
CALPHAD remodeling. The sublattice model with all possible elements in each sublattice is
needed to accurately describe the distribution of elements in different sublattices, which will be
used to compare with other models and experimental data, and further benefit the model of multi-

component systems.

It is worth mentioning that an arbitrary value of 5000 J/mol-atom was assigned as the enthalpy of
formation for nonstable endmember compounds of TCP phases in Nb-Ni by Chen et al. [19], which

is less reliable. To address this issue, in the present work, density functional theory (DFT) based



first-principles calculations (and phonon calculations for stable endmembers) are used to
determine thermodynamic properties at 0 K (or as a function of temperature for stable

endmembers) for all endmembers of p-Nb7Nis and 3-NbNis.

In summary, the present work aims to remodel the Nb-Ni system in terms of the CALPHAD
approach with UQ using the open-source tools of ESPEI (the Extensible, Self-optimizing Phase
Equilibria Infrastructure) for database development [20], and PyCalphad for equilibrium
thermodynamic calculations [21]. Here, the input for CALPHAD modeling includes the present
first-principles and phonon calculations, and experimental data in the literature with an emphasis
on site occupancy data. Note that ESPEI has been upgraded in the present work, making it possible

to model site occupancies with UQ for WyckofT sites.

2 Literature Review of Thermodynamic properties in Nb-Ni
2.1  The previous CALPHAD modeling

The Nb-Ni system has six phases including three solution phases (BCC, FCC, and liquid) and three
intermetallic compounds (p-Nb7Nis, 6-NbNi3, and NbNig) based on the summary by Chen et al.
[19]. The Nb-Ni system has been modeled several times in terms of the CALPHAD approach [12—
15]. Kaufman and Nesor [17] provided a modeled Nb-Ni phase diagram by considering p-Nb7Nig
and o0-NbNi3 as stoichiometric compounds as shown in Table 2, which didn’t match with
experimental observations of Nb solubilities in these two phases measured by Murametsu et al.
[22], Duerden et al. [23], and Chen et al. [24]. Kejun et al.’s modeling work [14] adopted the
model of (Nb, Ni);Nig(Nb, Ni)2Nbs for u-Nb7Nis, which cannot describe well the solubilities of
Nb in the composition range of 50 — 54 at. % Nb around 1100°C measured by Duerden et al. [23].
In addition, the enthalpies of formation of pu-Nb7Nis from Kejun et al.’s modeling show a large
discrepancy around 13 kJ/mol-atom compared with experiments by Argent et al. [25]. In the
modeling work by Bolcavage and Kattner [13], they did not consider the NbNig compound because
of the lacking of experimental data at that time. The predicted liquidus in the Nb-rich region is
higher around 200 — 300 K than experimental data from Wicker et al. [26]. Joubert et al. [18]
considered NbNig in their modeling work. However, an arbitrary value of 5000 J/mol-atom was

used to describe the enthalpy of formation for the pure element endmembers in the TCP phases.



This value is too positive to describe correctly the partially occupied Wyckoft sites in p-Nb7Nie in

comparison with experimental data by Joubert et al. [16].

The most recent modeling work was done by Chen et al. [19], which was widely used in
thermodynamic modeling of ternary systems such as Fe-Nb-Ni [27], Nb-Ni-Zr [28], and Nb-Ni-
Ti [29]. Chen et al.’s work [19] contains the NbNig phase but fails to depict accurate phase
boundaries between p-Nb7Nig and 6-NbNi3 and between p-NbsNig and BCC measured by
Murametsu et al. [22]. In addition, Chen et al.’s modeling didn’t consider experimental liquidus
temperatures with respect to BCC by Wicker et al. [26] and the enthalpies of mixing for the liquid
at 1823 K by Chistyakov et al. [30].

Due to the limitation of the aforementioned sublattice models of TCP phases to describe well phase
boundaries and thermochemical properties in the Nb-Ni system, an appropriate sublattice model
derived from crystallographic information is needed to precisely describe the TCP phases. To this
end, the sublattice model of (Nb, Ni)i(Nb, Ni)i(Nb, Ni), is adopted to model 3-NbNiz and (Nb,
Ni)1(Nb, Ni)2(Nb, Ni)2(Nb, Ni)2(Nb, Ni)s is used to describe pu-NbsNis in the present work,

corresponding exactly to their Wyckoff positions as shown in Table 1.

2.1 Thermodynamic properties
2.1.1 Phase diagram data

Phase boundaries between FCC and liquid (0 — 15 at. % Nb) were measured using thermal analysis
via heating curves by Duerden et al. [23], Pogodin et al. [28], and Grube et al. [32]; using
differential thermal analysis (DTA) by Chen et al. [24] and Kajikawa [33]; and using the solid-
liquid diffusion couple method (DCM) by Kajikawa [33]. All these measurements show good
agreement, e.g., the temperature variation at each fixed composition is less than 40 K. All these

data are hence used in the present CALPHAD modeling of the Nb-Ni system.

Phase boundaries between FCC and 6-NbNi3 (0 — 15 at. % Nb) were measured by Pogodin et al.
[31] and Grube et al. [32] by thermal analysis from heating curves. Chen et al. [24] used DFT
results to analyze the FCC to 3-NbNis transition at 1322 K, while Guseva et al. [34] detected the



FCC to 8-NbNij transition using X-ray powder diffraction (XRD) at 1073 — 1473 K. Joubert et al.
[18] assessed the homogenous regions of 6-NbNi3 using electron probe micro-analysis (EPMA).

All these measurements show good agreement with each other, e.g., the composition change is
only 5 at. % Nb from 1000 K to 1500 K, and we hence use all these data in the present CALPHAD

modeling.

The NbNig phase was first observed using transmission electron microscopy (TEM) by Quist et al.
in 1969 [35]. It was confirmed by Joubert et al. [18] that NbNig is a stable phase by examining
samples annealed at 723 K for 76 days using XRD. Wekken et al. [36] used the changes in
electrical resistivity to detect the existence of NbNis, showing that NbNis forms at 10.3 at. % Nb
at 853 K. Chen et al. [24] also detected NbNig with differential scanning calorimetry (DSC).

Therefore, NbNig is considered as a stable phase in the present work.

The Nb,Ni phase was observed by Zhao et al. [37] by using the TEM method for sample annealing
at 1523 K for 5h. However, this phase was not confirmed further using samples with a longer

annealing time. The Nb2Ni phase is hence excluded in the present modeling work.

Regarding solubility of Nb in 6-NbNi3, Murametsu et al. [22] observed 24.0 — 26.6 at. % Nb in d-
NDbNi3 in the temperature range of 1023 K — 1303 K by EPMA. Chen et al. [24] reported the phase
boundary around 23.4 — 25.7 at. % Nb by DTA at 1323 K for 336h. Duerden et al. [23] estimated
the phase boundary around 23.5 — 26.5 at. % Nb using XRD at 1273 K. The phase boundaries of
0-NbNi3 between 6-NbNi3 and liquid were measured by Grube et al. [32], Duerden et al. [20], and
Svechnikov et al. [38] using heating curves of thermal analysis, and by Chen et al. [24] using DTA.
All these data are included in the present CALPHAD modeling.

Regarding solubility of Nb in p-Nb7Nis, Duerden et al. [23] estimated 50 — 54 at. % Nb in p-
Nb7Nig around 1373 K using the optical microscopy method. Svechnikov et al. [38] reported 49.8
- 58.3 at. % Nb in pu-NbsNig by using the heating curves of thermal analysis. Murametsu et al. [22]
reported 48.6 - 56.2 at. % Nb in pu-Nb7Nig around 1023 K — 1303 K by EPMA. Joubert et al. [16]
reported 49.6 - 56.9 at. % Nb in u-Nb7Nig at 1273 K by EPMA. Chen et al. [24] estimated 49.5 —
56.3 at. % Nb in pu-NbsNig around 1273 K — 1303 K by EPMA. The phase boundaries of n-Nb7Nis



between u-Nb7Nig and liquid were measured by Duerden et al. [23] and Svechnikov et al. [38]
using the heating curves of thermal analysis and by Chen et al. [24] using DTA. All these data are
included in the present CALPHAD modeling.

The measured temperatures of invariant reactions between liquid, 3-NbNi3, and FCC phase agree
well with each other from 1170 K to 1175 K by Chen et al. [24] using DTA, and by Duerden et al.
[28] and Svechnikov et al. [39] using the heating curves of thermal analysis. However, the invariant
temperatures between liquid, 5-NbNi3 and pu-Nb7Nig have large uncertainties (from 1290 to 1320
K) measured by Duerden et al. [28] and Wicker et al. [26]. Nevertheless, all these data are included
in the present CALPHAD modeling.

For phase boundaries between liquid and BCC, Svechnikov et al. [39] and Wicker et al. [26]
measured them by quenching the samples, and Duerden et al. [23] measured them by heating,
cooling, and quenching. Albeit these measurements exhibit noticeable discrepancies, as much as

300 K, the present modeling work considers all these experimental data.

2.1.2  Thermochemical data

The enthalpies of formation for the Nb-Ni system were measured by Argent et al. [25] through the
calorimetry method with an error around 4 kJ/mol-atom from 12.5 — 75.0 at. % Nb. On the other
hand, electromotive force (emf) measurements were adopted by Sokolvskaya et al. [40], Alekseev
et al. [34], and Lyakishev et al. [42] to determine the enthalpies of formation for intermediate
phases at 25.0 at. % Nb and 50.0 at. % Nb. However, the results from Alekseev et al. [41] and
Sokolvskaya et al. [40] show great discrepancies around 8 kJ/mole-atom at 25.0 at. % Nb with
respect to those from Argent et al. [25] as shown in Fig. 1. Compared with the DFT results from
the Materials Project [43] and the Open Quantum Materials Database (OQMD) [44] as shown in
Fig. 1, the DFT calculations using the generalized gradient approximation (GGA) are higher than
experiments data by around 10%; agreeing with the general trends of higher enthalpies of
formation from DFT-based calculations in comparison with those from experimental
measurements [45]. The enthalpies of formation data from Argent et al. [25] are higher by around

3.4 kJ/mol-atom for compositions of 25.0 at. % Nb, but still compatible with the results from DFT-



based predictions [45]. Therefore, the data from Argent et al. [25] are more reliable than those

from Sokolvskaya et al. [40] and hence adopted in the present CALPHAD modeling.

Two sets of measurements about enthalpy of mixing were available for the Ni-rich liquid phase.
As shown in Fig. 2, the data from Schaefers et al. [46] at 1927 K and 2000 K show a larger
difference around 15 kJ/mol-atom at 30.0 at. % Nb compared with those from Chistyakov et al.
[30] at 2096 K and Sudavtsova et al. [40] at 2148 K. In general, the enthalpies of mixing for liquids
and solids should be compatible with each other in the same alloy system. For example, in the Al-
Cu system [47] the difference between the enthalpy of mixing in liquid and the enthalpy of
formation in solid is around 4 kJ/mole-atom at 40.0 — 60.0 at. % Cu, and in the Fe-Ni system [48]
the difference is around 5 kJ/mole-atom at 50.0 — 75.0 at. % Ni. The enthalpies of formation of
solids in the Nb-Ni system are around 30 kJ/mole-atom at 25.0 at. % Nb, which is closer to the
data of liquid (around 25 kJ/mole-atom) measured by Chistyakov et al. [30] and Sudavtsova et al.
[40]. Since all the experiments were measured using the calorimetry method, the results from
Chistyakov et al. [30] and Sudavtsova et al. [40] are adopted in the present work, while the
experimental data of liquid from Schaefers et al. [46] is excluded because the difference is too
large (up to 15 kJ/mole-atom at 25.0 at. % Nb) comparing with the enthalpies of formation of
solids in the Nb-Ni system.

Experimental data of site occupancy are only available for Nb in pu-Nb7Nie by Joubert et al. [16]
measured by EPMA at 1273 K. With the present upgrade of the ESPEI code (see details in
Sec.3.2.2), these data are included in the present CALPHAD modeling.

3  Methodology
3.1 First-principles thermodynamics

DFT-based first-principles calculations can be used to predict Gibbs (and Helmholtz) energy of

solid phase as a function of temperature. The expression for Gibbs energy under zero external

pressure (P = 0 GPa, i.e., the Helmholtz energy) within the quasiharmonic approach is [49],
G=FW,T)|p=o + PVlp=o = Eo(V) + Fyp(V,T) + F(V, T) Eq. 1


https://www.sciencedirect.com/topics/materials-science/calorimetry

where F is the Helmholtz energy, V is the volume, T is the absolute temperature, and P is the
pressure. E, (V) is the static energy at 0 K without vibrational contribution. F,;;, is the contribution

of lattice vibrations and F,; the contribution by thermal electrons, and both are functions of /" and

T.

The energy versus volume (E-V) curves for each phase (or endmember) at 0 K were predicted by
DFT-based first-principles calculations, usually employing 7 data points. The E, (V) curves were
fitted by the following 4-parameter Birch-Murnaghan (BM4) equation of state (EOS) [49],

Eo(V) = ky + k,V72/3 + kaV=4/3 + k,V 2 Eq. 2
where k4, k,, k3, and k, are fitting parameters. This EOS will result in four equilibrium properties
at P = 0 GPa, including equilibrium energy E, volume Vo, bulk modulus Bo, and the pressure
derivative of bulk modulus B’. The vibrational contribution F,,;;, can be predicted by the frequency-
dependent phonon density of states (DOS) [50],

hw

Eq.3
ZkBT] g(w) dw

Fyin(T,V) = kgT f In [2 sinh

0
where g(w) is the phonon DOS as a function of VV and frequency w. The thermal electronic
contribution F,; can be predicted by Mermin statistics through F,; = E,; — TS,;, where E,; is the

internal energy at V and T, and S,; the bare electronic entropy [51].

3.2 Details of first-principles calculations

DFT-based first-principles calculations were performed for BCC Nb and FCC Ni as reference
states and the two TCP phases of 6-NbNiz and p-NbsNig in the Nb-Ni system. 6-NbNiz was
modeled by a three-sublattice model with a total of 8 endmembers; and pu-Nb7Nis was modeled by
a five-sublattice model with 32 endmembers. Phonon calculations were performed for BCC Nb
and FCC Ni and the stable endmembers of 6-NbNis and p-Nb7Nig including Nb2Ni2Nis and
NboNi2Nis of 6-NbNis, and NbeNigNbsNiigNbsz, NbsNbsNbegNijsNbs, NbsNbsNbsNiigNiz, and
NbsNbeNigNii1gNi3 of u-Nb7Nie. Note that the crystal structures of p-Nb7Nig and 6-NbNi3 can be
found in such as the Materials Project [43].
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The Vienna ab initio Simulation Package (VASP) [52] was adopted for DFT-based first-principles
and phonon calculations in the present work. The projector augmented wave (PAW) method was
used to describe the ion-electron interaction [53], while the generalized gradient approximation
(GGA) by Perdew, Burke, and Ernzerhof (PBE) was used to describe the exchange-correlation
functional [54]. The plane-wave cutoff energy was set to be 367.945 eV for structural relaxations
and phonon calculations, and 520 eV for the final static calculations to get accurate £-} data points
and electron DOS’s. The convergence criterion of electronic self-consistency was set as 6x107
eV/atom for relaxations, static calculations, and phonon calculations, while k-points meshes of
(8x8x%7) were used for relaxations and static calculations of 6-NbNisz and (5x5x1) for relaxations
and static calculations of p-Nb7Nis. For phonon calculations, k-points meshes of (2X2X2) were
adopted for 0-NbNiz and (1x1X1) for u-NbsNie. The selected electronic configurations include 5
charge valences for Nb and 10 for Ni, which are the same as those used by the Materials Project

[43].
3.2  CALPHAD modeling

3.2.1 Thermodynamic models

There are three types of phases in the Nb-Ni system, i.e., the solution phases of BCC, FCC, and
liquid, the stoichiometric compound of NbNig, and the non-stoichiometric TCP phases of 3-NbNi3

and pu-Nb7Nie. For the solution phases, the Redlich-Kister polynomial [55] was adopted to describe

Gibbs energy,
Gy = xnp Gy + xniGRi + RT (xyplnxyy, + xnilnxy;) Eq. 3
+ XNpXNi Z “Lpni vy — Xn)*
k=0

where xy, and xy,, are the mole fractions of Nb and Ni in phase a. Gy; and Gy, are the Gibbs
energies of pure elements, Ni and Nb, with respect to their standard element reference (SER) states
at P =1 bar and 7' = 298.15 K, obtained from the Scientific Group Thermodata Europe (SGTE)
database [56]. R is the gas constant, T the temperature, and kLNb,Nl- the k'™ interaction parameter
between Nb and Ni,

“Lypni =a+bT Eq. 4

where a and b are model parameters.
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NDNis is treated as a stoichiometric compound with its Gibbs energy described by,
Gugn? = °GESC +8°GEEC + A+ BT Eq. 4

BCC

where A and B are model parameters. °GE¢¢ and °GE¢C

are the Gibbs energies of pure Nb and
Ni in their stable structures, i.e., BCC and FCC, respectively. The values of °G ,%C and °G I\F”cc are

taken from the SGTE database [56].

For non-stoichiometric compounds, the compound energy formalism (CEF) is used to describe the
phase with its sublattices corresponding to its Wyckoff sites, see Table 1 [57]. In the CEF, the

Gibbs energy for the phase of interest is described as follows,

Gmp = "Gy + RTZ atz yinyf + FGpy Eq. 5
t i

where °G, 7 18 the Gibbs energy contribution of each endmember, R the gas constant, and T the
temperature. Y., at Y; yflny! is sublattice ratio a® in the sublattice ¢ times the ideal mixing in this
sublattice, which is calculated by the site fraction y} and site fraction yf. © Gy 18 the excess Gibbs

energy which contains the contributions from the mixing in one sublattice where all other
sublattices only contain one component; and from the mixing in more than one sublattice where

more than one sublattices contain two or more components.

3.2.2 CALPHAD modeling by the upgraded ESPEI and PyCalphad

The open-source software tools, PyCalphad [21] and ESPEI [58], were employed in the present
work to remodel the Nb-Ni system. PyCalphad is a Python-based code for computational
thermodynamics using the CALPHAD method, focusing on calculating phase diagrams,
investigating thermodynamic properties, and designing new materials [58]. ESPEI is a tool for
database development using the CALPHAD approach [58], which uses PyCalphad as
computational engine to perform thermodynamic calculations. ESPEI has two major features. First,
ESPEI uses thermochemical data to choose and evaluate parameters to model Gibbs energy of
individual phases. Second, ESPEI optimizes and quantifies uncertainties of model parameters
using both thermochemical and phase equilibrium data through Bayesian parameter estimation via
an ensemble Markov Chain Monte Carlo (MCMC) [59-61]. However, in the previous versions of

ESPEI, the site occupancy data cannot be used as input for CALPHAD modeling.
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In the present work, a new function that uses site occupancy data as input to optimize model
parameters and quantify their uncertainties is implemented in ESPEI. ESPEI uses Bayesian
parameter estimation to optimize model parameters, in which the acceptance of parameters is
based on the posterior probability p(6/D) of the model parameters 8 under the data D. The
posterior probability p(8/D) can be calculated by the likelihood p(D/8), the prior p(8), and the
evidence p(D), i.e.,p(8/D) = p(D/6) * p(8)/p(D). The likelihood p(D/0) is related to how
experimental data are described by the proposed parameters, and the prior p(8) is the probability
distribution of each parameter. The flowchart of the present implementation is illustrated in Fig.
3, showing that ESPEI can take site occupancy as input using the JavaScript Object Notation
(JSON) data format, propose new parameter values from the MCMC method, and calculate the
log-type posterior probabilities from the prior and likelihood of site occupancy and other
experimental data from the fixed temperature, pressure, and the number of moles. Then, the
acceptance of the new parameters is decided by the Metropolis-Hastings criteria [61], comparing
the posterior probabilities calculated from the new parameters with those from the current
parameters. The JSON files that contain data about site occupancy are proposed and the codes to
calculate the posterior probability of site occupancy are implemented into the error functions of
ESPEI To be consistent with the weighting of error from different types of data like activity, phase
boundary, and thermochemical data, the likelihood for site occupancy data is normalized by the
standard deviation of the error. The default value of the standard deviation of the site occupancy
is set to be 0.01. After this implementation, the site occupancy data can be considered together
with thermochemical and phase equilibrium data to fit all model parameters simultaneously,
enabling the uncertainty propagation of site occupancies. In the present work, experimental data
of site occupancy by Joubert et al. [16] were used to remodel p-Nb7Nig in the Nb-Ni system as

shown in Sec. 4.2.

Uncertainty quantification (UQ) in ESPEI can quantify uncertainties of model parameters using
the possible values during the MCMC sampling process [61]. The UQ in ESPEI adopts the samples
from different Markov chains in the MCMC optimization and leverages them to estimate the
uncertainties for thermodynamic properties of interest. In the present work, the UQ of site
occupancy is implemented into ESPEI, which allows the analysis of site occupancy from modeling

parameters. For example, the uncertainties of site occupancy of n-Nb7Nis and enthalpy of mixing
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of liquid were used to show the possible range from the MCMC optimization. Note that four chains
for each parameter were used during the MCMC optimization for 1000 steps which is enough to
gain convergent results based on our tests. The standard deviation was set to be 0.01 in the

initialization of chain values using the Gaussian distribution.

4 Results and discussion
4.1 Thermodynamic properties by first-principles calculations

Table 4 summarizes the space group and the predicted properties of Vo, Bo , and B’y for the phases
of BCC-Nb, FCC-Ni, 8-NbNi3, and pu-Nb7Nis at 0 K using Eq. 2, in comparison with available
experimental data [10,11,62,63].The 5-NbNis has the highest bulk modulus (207.7 GPa), followed
by u-NbsNig (200.0 GPa), FCC-Ni (195.9 GPa), and BCC-Nb (173.5 GPa), indicating that the
bonding in 8-NbNis is strongest. The B’ values increase from BCC-ND (3.86), u-Nb7Nie (4.48), -
NbNi; (4.65), to FCC-Ni (4.81). For Bg values from DFT-based predictions, both BCC-Nb and
FCC-Ni show good agreement with experimental data [62,63]. BCC-Nb shows only a 1.0%
difference and FCC-Ni has a 5.0% difference when compared with experiments. Table 4 shows
that Vo increases from BCC-Nb, pu-NbsNig, FCC-Ni, to 6-NbNi3. The difference of Vo between
DFT-based calculations and experiments is about 1.72%. Note that these differences are due
mainly to the exclusion of vibrational contribution to DFT calculations and the uncertainty of

exchange-correlation functional used in the calculations [45].

Fig. 4 shows the predicted values of entropy and enthalpy of BCC Nb as a function of
temperature from the present DFT calculations using Eq. 1, which are in good agreement with
the SGTE data [56] with an average difference of 4.83% as well as the standard deviation of 0.49
for entropy; and an average difference of 5.79% as well as the standard deviation of 0.97 for
enthalpy. Similarly,
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Fig. 5 presents the predicted entropy and enthalpy of FCC Ni as a function of temperature from
present DFT calculations using Eq. 1, showing a good agreement with the SGTE database [56]
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(with magnetism) with the average difference of 3.24% and the standard deviation of 1.21 for
entropy; and the average difference of 6.44% and the standard deviation 2.42 for enthalpy.

a
b

Table 5 exhibits the predicted enthalpy of formation (AHfrm) values of 8-NbNi3 and p-Nb7Nis
from DFT-based first-principles calculations at both 0 K and room temperature, which are in good
agreement with experiments [25], with a difference less than 3.3 kJ/mol-atom. The configurations
on the convex hull around the compositions of 25 at. % Nb and 50 at. % Nb were chosen to
represent the AHform for 6-NbNi3 (Ni:Nb:Ni2) and p-NbsNis (NbaNbaNbaNieNii). The predicted
AHform value of 8-NbNi3 (Ni:Nb:Ni>) is -28.4 kJ/mol-atom at 0 K (and -28.5 kJ/mol-atom at room
temperature). The difference between the predicted AHfm value and experimental result (-31.8
kJ/mol-atom) is 3.2 kJ/mol-atom at 0 K (and 3.3 kJ/mol-atom at room temperature), which is
within the reported error (4.73 kJ/mol-atom) of measurements by Argent et al. [25] using the
calorimetry method for three samples at 25 at. % Nb. While the predicted AHfm value of u-Nb7Nig
(Nb2NbaNbaNigNi) is -20.6 kJ/mol-atom at 0 K (and -20.4 kJ/mol-atom at room temperature).
The difference between the predicted AHfm and experimental value (-22.6 kJ/mol-atom) is 2
kJ/mol-atom at 0 K (and 2.2 kJ/mol-atom at room temperature), which is also within the reported
error (6.82 kJ/mol-atom) of measurements by Argent et al. [25] using the calorimetry method for

six tests at 50 at. % Nb.

Fig. 6 shows the predicted phonon DOS curves at the equilibrium volumes of BCC Nb, FCC Ni,
0-NbNi3, and p-Nb7Nig. The phonon DOS’s of BCC Nb and FCC Ni show a good agreement with
experimental data [64] as shown in Supplemental Fig. 12. Fig. 6 indicates that BCC Nb exhibits a
higher phonon DOS at the lowest frequency region (e.g., <5 THz) compared with those from FCC-
Ni, u-Nb7Nig, and 6-NbNi3; indicating phonon of BCC Nb has a larger contribution to Helmholtz
energy due to vibrational entropy (Svis) since Sy, X — [ g(w)In (w)d w [65]. The phonon DOS
of pu-Nb7Nig is higher at the highest frequency region (e.g., > 8 THz), causing a smaller
contribution to vibrational entropy (as well as Helmholtz energy). This trend is in accordance with

bulk moduli predicted from DFT and observed from experiments [62,63]: in general the higher the
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bulk modulus, the smaller the contribution to entropy will be, for example, Bo = 173.5 GPa of BCC
Nb and By = 207.7 GPa of 6-NbNis; see Table 4.

4.2 Thermodynamic modeling by ESPEI/PyCalphad

The present model parameters are summarized in the thermodynamic database (TDB) file in the
Supplemental Material. Fig. 1 illustrates the predicted AHfm values for the stable compounds
(endmembers) in the Nb-Ni system at 298 K from the present CALPHAD modeling, agreeing
reasonably well with the predictions by the present first-principles calculations and those in the
literature (e.g., Materials Project [43] and OQMD [44]) and experimental data by Argent et al.
[25]. As shown in a

b

Table 5, the predicted AHfom values at 25.0 at. % Nb from both 0 K and room temperature show a
good agreement with experimental data [25] for 8-NbNis (at 25 at. % Nb) with the difference of
less than 3.4 kJ/mol-atom, which is in the range of experimental error (4.73 kJ/mol-atom). For p-
Nb7Nis, the predicted AHfom values at 46.0 at. % Nb from both 0 K and room temperature show a
good agreement with experimental data [25] for p-Nb7Nie (at 50 at. % Nb) with a difference less
than 2.2 kJ/mol-atom (experimental error is 6.82 kJ/mol-atom). As shown in Fig. 1, the predicted
AHform values from the present CALPHAD modeling show less than 6.5 kJ/mol-atom difference
with those measured by Argent et al. [25] from 12.2 — 75.0 at. % Nb, which is slightly higher than
the error bar (around 4 kJ/mol-atom) given by Argent et al. [25]. However, Argent et al. [25]’s
AHgorm values at 50 at. % Nb (-22.4 kJ/mol-atom) have a difference of 6.8 kJ/mol-atom using six
experiments. The predicted AHfom value from CALPHAD modeling is -28.9 kJ/mol-atom at 50 at.
% Nb, causing a 6.5 kJ/mol-atom difference in AHgm which is comparable with experimental
error (6.8 kJ/mol-atom [25]). Note that Sokolvskaya et al. [40]’s data were not considered in the
present CALPHAD modeling, since their AHgm value (-41.6 kJ/mol-atom at 50 at. % Nb) shows
a 19.2 kJ/mol-atom lower than the one (-22.4 kJ/mol-atom) by Argent et al. [25]. Therefore, we
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conclude that the present AHfm value at 50 at. % Nb (-28.9 kJ/mol-atom) agree reasonably well
the experiments (-22.4 kJ/mol-atom) by Argent et al. [25].

Fig. 2 plots the presently predicted enthalpy of mixing (AHmix) curve of liquid at 1823 K in
comparison with experiments data measured by Schaefers et al. [46] at 1927 K and 2000 K, by
Chistyakov et al. [30] at 2096 K, and by Sudavtsova et al. [40] at 2148 K. Fig. 2 shows that the
AHmix decreases with increasing the composition of Nb until 30.0 at. % Nb, then increases with
increasing the composition of Nb. It is seen that the presently calculated results show a good
agreement those by Chistyakov et al. [30] and Sudavtsova et al. [40] with an average difference of
2 kJ/mol-atom. As mentioned in Sec. 2, the present CALPHAD modeling excluded Schaefers et
al. [46]’s data.

Table 6 summarizes the invariant reactions from the present modeling. It shows a good agreement
with experiments [23,66] with the difference in compositions less than 2.3 at. % Nb, and the
variance of the reaction temperature is less than 46 K. For example, the eutectic reaction from
liquid to FCC and 8-NbNis, from experimental observation [23] the reaction composition is 16.0
at. % Nb for liquid phase, 12.7 at. % Nb for FCC, and 22.6 at. % Nb for 6-NbNis; and the reaction
temperature is 1555 K. From the present predictions, these values are 14.7 at. % Nb, 12.8 at. %
Nb, 23.3 at. % Nb, and 1547 K, respectively.

Fig. 7 shows the calculated phase diagram based on the present CALPHAD modeling, agreeing
reasonably well with experimental data [16,18,19,22-24,26,38]. The present phase boundaries of
0-NbNi3 between FCC and 6-NbNij3 are predicted from 23.8 to 23.3 at. % Nb at 790 K — 1547 K,
matching well with experimental data from Chen et al. [24] (around 23.5 at. % Nb at 1323 K),
Joubert et al. [18] (23.6 at. % Nb at 1280 K), Duerden et al. [23] (23.6 — 23.6 at. % Nb at 1273 K
- 1420K), and Murametsu et al. [22] (24.1 — 24.1 at. % Nb from 1070 - 1240 K). The phase
boundaries of 3-NbNi3 between 1-Nb7Nis and 6-NbNi3 are predicted from 25.7 to 28.4 at. % Nb
at 1000 K — 1494 K, agreeing well with experimental data by Chen et al. [24] (25.6 at. % Nb at
1323 K), Duerden et al. [23] (26.5 to 26.6 at. % Nb at 1273 K - 1420K), and Murametsu et al. [22]
(26.5 at. % Nb at 1170 K). Phase boundaries of pu-Nb7Nis between p-Nb7Nig and BCC were
predicted as 57.2 — 56.6 at. % Nb at 1000 K -1400 K, matching well with measurements by
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Duerden et al. [23] (54.0 at. % Nb at 1273K), Chen et al. [24] (56.3 at. % Nb at 1323K), Murametsu
et al. [22] ( 56.2 — 56.2 at. % Nb at 1070 - 1240 K), Svechnikov et al. [38] (58.2 — 58.2 at. % Nb
at 1074 -1276 K), and Joubert et al. [16] (56.9 at. % Nb at 1273K).

The comparison between the present modeling and the previous modeling work by Chen et al. [19]
is shown in Fig. S2, showing that the present model has a better fit with experimental data on the
phase boundaries of pu-Nb7Nis between pu-Nb7Nig and 6-NbNis, and the phase boundaries between
liquid and BCC. Phase boundaries between liquid and BCC measured by Wicker et al. [26] were
considered in the present work besides the heating, cooling, and quenching measurements by
Duerden et al. [23]. From the present work, the phase boundaries between liquid and BCC show
around 200 K lower than those from Chen et al.’s modeling work [19] at 50.0 — 85.0 at. % Nb,
which gave a better match (with an average difference around 100 K) with the measured data by
Wicker et al. [26]. The phase boundaries of p-Nb7Nis between p-Nb7Nie and 8-NbNis are predicted
around 48.3 — 49.3 at. % Nb at 1000 K — 1494 K in present work while those in Chen et al. [19]
are 51.6—51.7 at. % Nb at 1000 K — 1458 K. The phase boundaries of 1-Nb7Nis between p-Nb7Nis
and O-NbNi; from the present work match better with experimental data including from
Murametsu et al. [22] (48.6 at. % Nb at 1240 K), Svechnikov et al. [38] (49.7 at. % Nb at 1276
K), and Chen et al. [24] (49.5 at. % Nb at 1273K), while Chen et al. [19] modeling work has a
good agreement with experiments by Svechnikov et al. [38] (51.8 at. % Nb at 1074 K).

Fig. 9 shows the predicted site occupancy curves of Nb in p-Nb7Nig from the present modeling
compared with measured data by Joubert et al. [16]. It can be seen that the present CALPHAD
predictions of site occupancy regarding Nb in p-Nb7Nig agree well with experiments with an
absolute error less than 0.062, especially when compared with site occupancy of Nb in pu-Nb7Nie
predicted by Chen et al. [19] using a four-sublattice model, cf., Table 7. Therefore, the sites 6¢»
and 6¢3 have the same site occupancy values from Chen et al. [19]’s model, causing the mean
absolute error (MAE) with experiments [16] up to 0.044 in site 6¢2 which is much higher than that
from the present model (0.008 in site 6¢2). At the same time, the MAE values compared with
experiments are 0.128 at site 6¢1, 0.032 at site 6¢3, 0.088 at site 18h, and 0.086 at site 3a from Chen
et al. [19] modeling, while the MAE values from the present model are 0.006 at site 6¢1, 0.032 at
site 6¢3, 0.024 at site 18h, and 0.002 at site 3a. The standard deviations from the present work are
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also smaller than those from Chen et al. [19]’s modeling, with the difference of standard deviation
being 0.151 at site 6¢1, 0.043 at site 6¢2, 0.0 at site 6¢3, 0.094 at site 18h, and 0.112 at site 3a.
Therefore, with the present sublattice models based on Wyckoff sites of p-Nb7Nis and 6-NbNi3
and the new function in ESPEI to consider site occupancy data into modeling, these two TCP

phases can be modeled well.

Fig. 10 shows the 95 % credible interval uncertainty propagation regions of site occupancy of each
Wyckoff site concerning Nb in p-Nb7Nis predicted by the parameters in the MCMC method as
implemented in ESPEI during CALPHAD modeling, showing a good agreement with the
uncertainty of experimental data [16]. It is seen that the uncertainty range of Nb in the first
sublattice is around 0.2, corresponding to Wyckoff position 6¢i. The shadow region in Fig. 10
covers all experimental data [16] except for the one at 49.6 at. % Nb that has a 0.2 difference with
respect to the data point at 51.8 at. % Nb, which means the uncertainty of site occupancy at site
6¢1 includes most of the uncertainty of experiments at site 6¢1. Similarly, at the second, fourth, and
fifth sublattices (corresponding to Wyckoff positions 6¢», 18h, and 3a, respectively), the
uncertainty ranges of Nb are around 0.2, which also cover most experimental data except for the
one at 49.6 at. % Nb at 6¢; site that has 0.06 (the average difference is 0.03) difference with respect
to the data point at 51.8 at. % Nb. For the third sublattice corresponding to Wyckoff position 6c3,
the uncertainty ranges of Nb do not appear due to the third sublattice of stable endmembers
occupied by Nb around 49.6 -56.9 at. % Nb. The uncertainty propagation regions of site occupancy
of Nb in p-Nb7Nis cover 80% of experiments, which shows a good match with experimental data
by considering that the standard deviation of experimental data is around 0.35. The good
agreement between uncertainty propagation regions and the experimental data shows that the

uncertainty during CALPHAD modeling reflects the uncertainty of experiments.

As another example, Fig. 11 shows the uncertainty propagation regions of AHmix in liquid with a
95 % credible interval, indicating that the uncertainty increases from 0.0 —40.0 at. % Nb, increases
slightly from 40.0 — 80.0 at. % Nb, and then decreases from 80.0 — 100.0 at. % Nb, with the largest
uncertainty around 3 kJ/mol-atom at 80.0 at. % Nb. It shows that a large increase of uncertainty in
AHnix of liquid appears at the Nb-rich region due to the parameters of the liquid phase being more
sensitive at the Nb-rich region in the present CALPHAD modeling.
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4 Conclusions

The present work combines thermodynamic data from DFT-based first-principles calculations and
experiments, and the uncertainty quantification (UQ) method in CALPHAD modeling to model
Gibbs energy expressions of the Nb-Ni system. The key conclusions are summarized as follows.

e First-principles calculations are used to predict thermochemical properties as a function of
temperature for the TCP phases of 6-NbNi3 and p-Nb7Nis, which provide the predicted
AHform as input for CALPHAD modeling.

e The present thermodynamic models of the 6-NbNi3 and p-Nb7Nis phases are built on their
Wyckoff positions combined with site occupancy as input for CALPHAD modeling by
ESPEI, making precise descriptions for both phase diagram and the distribution of site
occupancies compared with available experimental data. For the phase diagram, the
invariant reactions from the present modeling agree well with data from experiments
[23,66].

e The uncertainty propagation regions have been employed to show uncertainties of enthalpy
of mixing, and site fraction of Nb in the u-Nb7Nie phase. The UQ regions of site occupancy
of Nb in p-NbsNis include 80% of the experimental data [16], indicating that the

uncertainty during the modeling reflects the uncertainty of the experiments.
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Table 1: Wyckoff positions of the TCP phases of u-NbsNig and 6-NbNi3 in the Nb-Ni system.

Wyckoff position of & phase * | x y V4

2a 0 0 0.318
2b 0 0.5 0.651
4f 0.75 0 0.841
Wyckoff position of u phase ®

3a 0 0 0

6c (1) 0 0 0.167
6c (2) 0 0 0.346
6c (3) 0 0 0.443
18h 0.5 0.5 0.590

5 phase with space group Pmmn (no. 59), Pearson symbol oP8, strukturbericht designation DO,
and prototype of f-CusTi [10].

b 1 phase with space group R3m (no. 166), Pearson symbol hR 13, strukturbericht designation
D85, and prototype of FesWe [11].

Table 2: Sublattice models used in the previous CALPHAD modeling.

References Model for 6-NbNis Model for u-Nb7Nig

Kaufman and Nesor [17] (Ni)o.75s (Nb)o.25 (Ni)o.47 (Nb)o.s3

Kejun et al. [14] (Nb, Ni)3; (Nb, Ni); (Nb, Ni);Nis(Nb, Ni):Nbs
Bolcavage and Kattner [13] (NDb, Ni); (Nb, Ni); (Nb, Ni)7 (Nb)s

Joubert et al. [18] (Nb, Ni)3; (Nb, Ni); (Nb, Ni);Nb2Nb,(NDb, Ni)2(Nb, Ni)s
Chen et al. [15] (Nb, Ni); (Nb, Ni); (Nb, Ni){Nb4(Nb, Ni)2(Nb, Ni)s

Table 3: Crystallographic information for the phases in Nb - Ni and their sublattice models used
in the present CALPHAD modeling.

Phase name Strukturbericht ~ Space Pearson symbol ~ Model
group
Liquid(L) (Nb, Ni)
FCC Al Fm3m cF4 (Nb, Ni); (Va),
HCP A3 P63/mmc  hP2 (Nb, Ni); (Va),
BCC A2 A2 Im3m cl2 (Nb, Ni); (Va)3
8-NbNi; DO, Pmmn oP8 (Nb, Ni)i(Nb, Ni);(Nb, Ni),
p-Nb7Nis D8s R3m hR13 (Nb, Ni)1(Nb, Ni)2(Nb, Ni)2(Nb, Ni)2(Nb, Ni)s
NbNig (Nb)i(Ni)s
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Table 4: Predicted equilibrium volume (Vo, A’/atom), bulk modulus By (GPa), and the derivative
of bulk modulus B’y from the present EOS fitting at 0 K in comparison with experimental data
[10,11,62,63].

Phase Vo (A3/atom) % Diff? By (GPa) % Diff® B’ Source
BCC-Nb 18.338 0.221 173.5 1.00 3.86 This work
18.297 171.8 Expt. [62]
FCC-Ni 21.860 0.217 195.9 5.03 4.81 This work
21.807 186.0 Expt. [63]
0-NbNij; 24.176 1.714 207.7 4.65 This work
24.591 Expt. [10]
L-Nb7Nie 21.135 0.964 200.0 4.48 This work
21338 Expt. [11]
a
b

Table 5: The enthalpy of formation of the 3-NbNis phase and p-Nb7Nis phase from present DFT-
based calculations at both 0 K and room temperature (RT) compared with experimental data at

RT [25].
Phase o ArH (kJ/mol-atom) Difference ArH (kJ/mol-atom) Difference Source
at 0K (kJ/mol-atom) at RT (kJ/mol-atom)
0-NbNi;  0.25 -28.4 34 -28.5 33 This work
0.25 -31.8 -31.8 Expt. [25]
u-NbsNig  0.46 -20.6 2.0 -20.4 2.2 This work
0.50 -22.6 -22.6 Expt. [25]
Table 6: Predicted invariant reactions in the Nb-Ni system from the present CALPHAD
modeling in comparison with available experiments [23,66].
Type Reaction compositions (at. % Nb) Teml()le{)ature Source
Eutectic Liquid © fcc + 0-NbNi3
14.7 12.8 23.3 1547 This work
16 12.7 22.6 1555 Expt. [23]
Congruent  Liquid © 6-NbNis
25.0 25.0 1712 This work
25.0 25.0 1675 Expt. [23]
Eutectic Liquid © 8-NbNi; + u-NbsNig
41.7 28.4 49.3 1494 This work
40.5 27.5 50 1448 Expt. [23]
Peritectic Liquid + bce © p-Nb7Nig
47.9 94.8 56.3 1542 This work
50.0 95.5 54 1568 Expt. [23]
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Peritectic

fee +
8.5

0-NbNi;
23.8

NbNis
11.1

790 This work
808 Expt. [66]

Table 7. Site occupancies of Nb in u-NbsNig from the present CALPHAD modeling compared
with the modeling work by Chen et al. [19] work and experimental values [16]. Here, MAE
indicates the mean absolute error and STD the standard deviation.

Composition | Type of results 6¢1 6c 6¢3 18h 3a
Calc., this work 0.77 0.94 1.00 0.04 0.79
xnb = 0.496 | Calc., Chen et al. 0.91 1.00 1.00 0.00 0.86
Expt. 0.67 0.85 0.95 0.13 0.74
Calc., this work 0.79 0.96 1.00 0.07 0.79
xnb = 0.518 | Calc., Chen et al. 0.91 1.00 1.00 0.01 0.87
Expt. 0.89 1.00 0.89 0.07 0.77
Calc., this work 0.81 0.97 1.00 0.09 0.80
xnb = 0.530 | Calc., Chen et al. 0.93 1.00 1.00 0.02 0.88
Expt. 0.78 0.94 1.00 0.10 0.84
Calc., this work 0.81 0.97 1.00 0.10 0.80
xnb = 0.533 | Calc., Chen et al. 0.94 1.00 1.00 0.03 0.89
Expt. 0.85 0.99 1.00 0.12 0.81
Calc., this work 0.85 0.98 1.00 0.16 0.80
xnp = 0.569 | Calc., Chen et al. 0.95 1.00 1.00 0.08 0.90
Expt. 0.81 1.00 1.00 0.16 0.81
MAE, this work 0.006 | 0.008 0.032 -0.024 0.002
MAE, Chen et al. 0.128 | 0.044 0.032 -0.088 0.086
STD, this work 0.070 |0.049 0.068 0.052 0.031
STD, Chen et al. 0.221 ]0.092 0.068 0.146 0.143
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Fig. 1. The presently calculated enthalpies of formation at 298 K of the intermetallic compounds
in the Nb-Ni system, in comparison with experimental data by Argent et al. [25], Sokolvskaya et
al. [40], Alekseev et al. [34], and Lyakishev et al. [42], and the DFT results from the Materials
Project (MP) [43] and the Open Quantum Materials Database (OQMD) [44].
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Fig. 2. Calculated enthalpy of mixing in the liquid phase in comparison with available
experimental data by Schaefers et al. [46] at 1927 K and 2000 K, by Chistyakov et al. [30] at
2096 K, and by Sudavtsova et al. [40] at 2148 K.
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Fig. 4. (a) Entropy and (b) enthalpy of BCC-Nb as a function of temperature calculated from
present work using DFT-based phonon calculations and Eq. xx, compared with the SGTE
database [56].
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Fig. 5. (a) Entropy, (b) Enthalpy of FCC-Ni as a function of temperature calculated from present
work using phonon calculations, compared with the SGTE database[56].
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Fig. 7. Calculated phase diagram of the Nb-Ni system from the present CALPHAD modeling
compared with available experimental data [16,18,19,22-24,26,38].
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Fig. 8. Calculated phase diagram of the Nb-Ni system from Chen et al.’s CALPHAD modeling
[19] in comparison with available experimental data [16,18,19,22-24,26,38]
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Fig. 10. Uncertainty quantification of site occupancies of Nb in the u-NbsNis phase marked by
the shaded region for each Wyckoff site: (a) , (b) .... [see also my comment in Fig 9]
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Fig. 11. Uncertainty quantification of the enthalpy of mixing in the liquid phase at 1823 K
marked by shaded region.
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Abstract

The present work predicts the ideal shear strength of dilute Ni34XZ ternary alloys determined by
first-principles calculations of pure alias shear deformations. The major elements of Inconel alloys
are examined to understand composition and concentration effects on ideal shear strength. The
alloy ideal shear strength decreased in the following order of alloying elements: Co > Mn~Fe >
(pure) Ni > Cr > Al > Ti > Mo > Si > Nb. The ideal shear strength shows a roughly linear
correlation with alloying concentration at the dilute side and concentration effect splits depending
on the relative atomic volume of the alloying element compared to that of pure Ni. The alloying
elements with larger atomic volume decrease the ideal shear strength of the alloy, and with smaller
atomic volumes increase the ideal shear strength of the alloy. Binary and ternary interaction

parameters are quantified by CALculation of PHAse Diagrams (CALPHAD) method, indicating
1



that atomic volume differences and the standard state crystal structure difference determine the
degree of the interaction on the ideal shear strength. The ideal shear strength of the Ni-based dilute
ternary system was estimated using a linear combination of binary systems. The variations of ideal
shear strength are quantitatively correlated with features of the pure elements X and Z, showing
that atomic size of alloying element is the most important factor strongly associated in calculating

ideal shear strength.



1 Introduction

The ideal shear strength is the shear stress required to plastically deform a crystal lattice without
defects [1]. This upper bound material property can be predicted by first-principles calculations
based on density functional theory (DFT) [2]. Recently, motivated by reducing reliance on
experimental fitting data in crystal plasticity finite element method (CPFEM), a DFT-based first-
principles calculations approach was proposed to predict the strain-hardening behavior of pure Ni
[3]. The flow resistance was evaluated by the Peierls—Nabarro model [4], with the input of the
ideal shear strength and elastic properties calculated by DFT-based calculation. The elastic
hardening behavior of the pure edge dislocations is captured at small strains. For large strains, the
linear model was proposed to combine both edge and screw dislocation contributions to flow
resistance, giving good agreement between the CPFEM results and experimental results of pure
Ni single crystal [3]. A continuous work quantitively examined the effects of 26 alloying elements
on the ideal shear strength in dilute Ni;; X alloys via first-principles techniques [5]. Through the
combination of the Mg alloys data, the trends of the ideal shear strength are explored by the feature
selection method, showing that the elemental properties such as elemental volume and
electronegativity are the most two important factors in ideal shear strength variation. The elastic
modulus Css of the Ni based alloys show a strong linear correlation with the ideal shear strength.
The ideal shear strength data of Ni;1X were severed to predict the macroscopic single crystal

deformation behavior for small and large strain [5].

Although the ideal shear strength of the pure Ni and binary multicomponent systems Nij1 X are
well investigated in the previous study, the higher order composition effect on the ideal shear

strength is still missing. One of the most successful approaches to model materials properties from



binary to ternary systems is the CALculation of PHAse Diagrams (CALPHAD) approach, which
was originally developed for modeling thermodynamic properties by integrating experimental
phase equilibrium and thermochemical data [6,7]. The CALPHAD approach relies on interaction
parameters from unary, binary, and ternary systems to model more complex multi-component
systems. Thus, with all interaction parameter data, the CALPHAD approach can cover the whole
composition of the system, which includes uninvestigated compositions. In addition, the most
challenging thing after adding the third element in the dilute alloys system is that the possible
structures will exponentially increase when calculating the ideal shear strength. Therefore, the
present work examines all the possible structures of NizsXZ and chooses the lowest energy

structure to perform the ideal shear strength calculation.

The present work aims to predict the ideal shear strength of the dilute ternary alloys Niz4XZ based
on first-principles calculations. All possible structures after adding the third elements are examined
with the system NissFeX. The composition and concentration effects on ideal shear strength are
explored combining with Ni11X data. The CALPHAD method evaluates all the binary parameters

Ocl)ij and the ternary parameters ¢y with input from first-principles calculations. The feature
selection method is also used in the present work to investigate correlation between the calculated

ideal shear strength and features of pure elements.



2 Methods

2.1 Pure alias shear deformation
Pure alias shear deformation as shown in Figure I (a) with one sliding plane involved was adopted
to predict ideal shear strength. Here ‘pure’ means full relaxations of atomic positions, cell shape,
and cell volume, except for the fixed shear angle. This type of shear deformation is more realistic
because the displacement of one atomic layer (e.g., the top layer) influences only the next atomic
layer at first, then the relaxation will propagate from top down through the entire cell with fixed
shear displacement [8]. Previous investigations show that the {111}(112) shear deformation is the
primary slip system of face-centered-cubic (FCC) metals [9]. In the present work, DFT-based first-
principles calculations were performed to determine ideal shear strength of dilute Ni-X-Z ternary
alloys with alloying elements X and Z representing Al, Co, Cr, Fe, Mn, Mo, Nb, Si, and Ti. These
elements were chosen based on the major compositions of Inconel alloys, for example Inconel 625
and Inconel 718 [10,11]. A supercell of the conventional FCC lattice, i.e., the 36-atom
orthorhombic cell (a=£=y=90°), with 3 {111} layers and 12 atoms on each layer is employed, was
used to predict ideal shear strength based on the {111} (112) shear deformation. Figure 1 (b)
shows this 36-atom orthorhombic cell with the lattice vectors a along the [112] direction, b the
[110], and c the [111], respectively. The initial lattice parameters along these three directions are
8.625, 7.470, and 6.099 A, respectively. The deformed lattice vector R can be obtained by [12],
R=RD Eq. 1

where R is the original lattice vector before alias shear, and D is the deformation matrix [8]:

100 Eq. 2
D[llf]z 0 1 0
e 0 1



Here € is the magnitude of engineering strain, defined as the ratio between displacement applied
for first-principles calculations and the height of the supercell. The relaxation of pure alias shear
deformation was performed by the external optimizer GADGET [13] to fix the angle during pure

shear deformation of {111}(112).

2.2 First-principles calculations

All DFT-based first-principles calculations in the present work were performed by the Vienna Ab

initio Simulation Package (VASP) [14] using the projector augmented wave (PAW) method [15].

The exchange-correlation functional is described by the generalized gradient approximation (GGA)
[16]. A 3 x 4 x 5 k-point meshes together with a 350 eV plane wave cutoff energy were employed

based on convergent tests. The energy convergence criterion of electronic self-consistency was

chosen as 2x10° eV per supercell in all the calculations. The reciprocal space energy integration

was performed by the Methfessel-Paxton technique [17] for structural relaxations with a 0.2 eV

smearing width. Because of the magnetic nature of Ni, the spin-polarized approximation was used

in all first-principles calculations.

The configuration of the Niz4XZ supercell is determined by examining all possible structures
determined by the ATAT code [18], indicating that there are 5 independent structures when X and
Z elements on the same (111) plane; see one of the structures in Figure 2 (a), and 8 independent
structures when X and Z elements stay at different (111) planes; see one of the structures in Figure
2 (b). The alloying element X (purple atom) is fixed and the numbers indicate equivalent sites

when substituting the second alloying element Z.



Taking NisFeX as an example, Figure 3 shows the relative energies in terms of the total 13
independent configurations, where the structures S1 to S5 represent different alloying site
scenarios when X and Z are at the same layer, while the structures D1 to D8 represent different
alloying site scenarios when X and Z are at the different layer. For example, the structure S1 means
the second alloying element Z is substituted at site 1 in Figure 2 (a) and D3 means the second
alloying element Z is substituted at site 3 in Figure 2 (b). Figure 3 suggests that the configurations
of S1, S2, DI, and D7 process a relatively higher energy, ranging from 0.06 to 0.34 eV per
supercell, while the other 9 configurations process a relatively low energy. The S3 configuration
is one of the lowest energy configurations for most elements, except for the systems NizsFeAl and
NissFeMn showing the D2 configuration is the lowest energy configuration. Since the
configurations S3 and D2 are both one of the maximum entropy structures[19] with alloying
element X and Y separate the most, the energy difference is small for the systems NizsFeAl (0.0046
eV/supercell) and Niz4FeMn (0.0086 eV/supercell). In addition, the examination shows the energy
difference effect on ideal shear strength calculation of the S3 and D2 configuration is negligible.
Since the Ni based alloy solid solution should be the mixture of the lowest energy configurations,
therefore, the configuration S3 was selected in the present work to perform calculations of ideal

shear strength.

2.3 CALPHAD modeling of ideal shear strength
The CALPHAD approach has been extended to model any properties related to individual phases,
such as elastic properties [20], molar volume [21], diffusion coefficient [22], and stacking fault

energy [23] in multicomponent systems. In the present work, the CALPHAD approach is used in



modeling ideal shear strength of dilute multicomponent Ni-based alloys. The CALPHAD

modeling of phase-related properties can be written as follows [23]:
¢="9+Ad Eq. 3

Eq. 4
%= x0 by ¢
i

where ¢ is a property of a multicomponent system and °¢ represents linear mixing of individual
elements’ properties in terms of their mole fraction (x?). Lastly, A represents the interaction

among alloying elements, written as:

A = A¢conf+zxxzz g Gamx) D DY by Eq. 5

j>i L= i j>i k>j

where Adqnr is usually described by ideal atomic configurational entropy, which is ignored in the
present work. Ld)i]- is the L"-order binary interaction, and ®jjk the ternary interaction parameter.
The superscript L of (xj—x;) indicates its power, and i, j, and k denotes different species in
multicomponent system. The present work aims to evaluate all the binary parameters Ocl)i]- and the

ternary parameters ¢y with input from first-principles calculations.

The CALPHAD modeling approach as shown in Eq. 5 was adopted to describe the ideal shear

strength by following equation:

Tig = T+AT_ZX T1+ZXXZ ¢1]+ZZZXX xkcl)uk Eq. 6

j>i i j>i k>j
where T;q4 1s 1deal shear strength of multicomponent system, Ocl)i]- is zero order of binary fitting

parameter and ¢y is ternary fitting parameter, and X;, Xy represent mole fractions of alloying

element X and Z respectively. Since we are investigating the dilute Ni-based system, °t is



assumed equal to the ideal shear strength of pure Ni, and the mole fraction of Ni (x;) in Eq. 6 is
assumed to be 1. Therefore, all the binary parameters and the ternary parameters were calculated

using the following equation:

Tig = Tgﬁ + Z Xj O¢Ni,x + Z Z Xijd)Ni,x,z with rgi = 5.09 GPa Eq. 7
j i k

where t) ' is ideal shear strength of pure Ni, °¢N1,X is zero order of binary fitting parameter
between Ni and alloying element X, and ¢y x 7 is ternary fitting parameter among Ni, alloying

element X and Z. x;, Xy represents mole fraction of alloying element X and Z respectively.

2.4 Correlation analysis and feature selection

To understand connections between physical informed features of alloying elements and the
resulting ideal shear strength, the variation of ideal shear strength was examined by correlation
analysis and feature selection algorithms. The major material features were chosen based on the
features table in our previous study regarding the effect of 26-alloying elements on ideal shear
strength [5], including atomic, periodic, Elastic, thermodynamic, lattice, and electronic properties.
In addition to the material specific properties, the present work includes extra features, which are

DFT-calculated features and combination of materials properties feature based on some surrogate
o . Gb .
models and criteria. For example, ‘Gb2pih’ in the feature table represents the feature of pyn which

equals to ideal shear strength based on the work of Frenkel [24]. ‘DFTBvG’ represents the ratio
between bulk modulus and shear modulus based on DFT-based predictions. ‘Cauchy’ is ‘Cauchy
pressure’ defined by the difference of elastic constants Ci2 and Cs4. These two features are usually
the intrinsic ductility criteria indicating whether a material is ductile or brittle [25]. Table 6 in the

appendix lists all the features and explanations.



Feature selection methods can be categorized into filter type methods and wrapper type methods
[26]. Filter type methods are separate from any machine learning algorithms and are based on
statistical tests of correlation. For example, the coefficient of determination of linear fitting (i.e.,
the R?) is a filter type method. In addition to the coefficient of determination, the present work
includes several other filter methods, such as the maximal information coefficient (MIC), F-tests,
and feature scores from a regression Relief algorithm. MIC evaluates the linear or non-linear
correlation between two variables, conceptualized by a partitioning grid separating the scatterplot
of two variables [32]. F-tests statistically test the variance of two variables, extending the R?
method. The relief algorithm quantifies correlations by adjusting feature weights based on their

ability to explain the variance of targeted features [27].

In wrapper type methods, a subset of features will be used to train a machine learning model. A
metric of model performance, for example the mean squared error (MSE), will determine whether
features are added into or removed from the feature subset. Both the forward and the backward
feature selection modes can be used in the wrapper methods. Forward means features are
sequentially added into a null set and backward means features are sequentially removed from a
full-feature set. All filter-type method and wrapper-type method are coded by MATLAB (version
R2020b used herein) [28]. A rational quadratic gaussian process regression (GPR) model was used
in the wrapper methods based on our tests to run the forward and backward feature selection, with
the 5-fold cross validation used to determine model performance, i.e., the MSE value. 1000

iterations in wrapper method were used in the present work to guarantee the converge of feature

10



selections and the higher iteration times do not significantly change the frequency of the selected

features.
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3 Results and discussion

3.1 First-principles calculations

In the present work, the calculated ideal shear strength of pure Ni is 5.09 GPa, which agrees well
with the previous results using the same method (5.13 GPa) [5]. A probable explanation of the
0.04 GPa difference comes from the different size of the supercell used in the calculation.
Compared with 12-atom supercell in previous study, a larger supercell with 36 atoms was used in
the present work. The Table 1 shows the relaxed total energy of different size of pure Ni when
reaching to the ideal shear strength. Compared with the smaller supercell size, a larger supercell
processes a higher relaxed energy. In the present study, all the results consistently show that a
higher relaxed energy is associated with a lower ideal shear strength. The ideal shear strength could
be experimentally measured by such as nanoindentation [29] and micropillar compression method
[30], which results approach to DFT-based predictions, at least in similar magnitudes. For instance,
compared to the ideal shear strength of pure Ni by first-principles calculations, the nanoindentation
result of pure Ni is around 8 GPa [31], and the difference could be explained by the complicated

triaxial stress state during the test.

12



Table 2 summarized the Ni3sXZ ideal shear strength values, which fall in the range 0of 4.16 to 5.24
GPa. It suggests that Ni34CoCo has the highest ideal shear strength, but Ni34NbNb has the lowest.
Additionally, there is a clear trend in ideal shear strength from the highest to the lowest when
alloying elements into dilute Ni alloys, i.e., Co > Mn~Fe > Cr > Al > Ti > Mo > Si > Nb. By setting
ideal shear strength of pure Ni as reference, Co, Mn, and Fe can be considered as the strengthening
alloying elements for dilute multicomponent Ni alloys, while Cr, Al, Ti, Mo, Si, and Nb can be

considered as the softening alloying elements.

Figure 4 shows one example (Ni3sCoNb) of ideal shear strength and total energy evolution with
different applied shear displacements. It shows the increase of shear stress with increasing shear
strain before reaching the maximum point, i.e., the ideal shear strength. Besides shear stress, the

slope of total energy with respect to the displacement continuously increases when approaching
. . o OE :
the ideal shear strength. Since the force definition is F = — 3 the maximum stress occurs at the

point of largest slope in Figure 5. After reaching the maximum point, the stress sharply drops.
When the total energy reaches the highest point, the stress of the system is zero. Figure 6 shows
the calculated shear stress versus shear strain relationships of Niz4CoCo (blue circles), Niz4CoNb
(green triangles) and NizsNbNb (purple squares). The red symbols represent the ideal shear
strength among these three systems. The ideal shear strength of Ni3sCoNb is roughly equal to the
average ideal shear strength of the Ni34CoCo and NizsNbNb system. The interaction parameters
will be quantified in the CALPHAD result discussion. The calculation results also suggests that a

higher ideal shear strength occurs at a lower shear strain.

Table 3 summarizes the results of ideal shear strength of Ni3sX, Ni34X> from the present work and
Ni1 X results from previous work [5]. It is worth mentioning that there is only one independent

13



configuration of Ni3sX and Ni;1 X when one alloying element on the top layer of the supercell as
shown in Table 3. The ideal shear strength difference among NizsX, Ni34X> and Ni11X could be
attributed to the alloying elements’ concentration difference. Figure 7 shows relative ideal shear
strength as function of X alloying elements concentration with the reference being the ideal shear
strength of pure Ni (5.09 GPa), indicating that the ideal shear strength roughly linearly correlates
with alloying element concentration (at least in dilute Ni-based alloy), but the trend splits in terms
of the effect of alloying elements. The only exception is the ideal shear strength of Ni;1Mo increase
as the Mo concentration increase. A likely explanation is that the ideal shear trend of Nij1Mo from
alloying element concentration effect only works well at dilute Ni-based alloy, with Mo
concentration under around 6%. When the concentration higher than 6%, the ideal shear strength
will fluctuate rather than keep decreasing. Higher concentration of strengthen alloying elements
(Co, Mn, Fe) will lead to higher ideal shear strength. However, higher concentration of softening
alloying elements (Cr, Al, Ti, Mo, Si, Nb) will lead to lower ideal shear strength of the alloys. The
largest decrease of ideal shear strength is due to the addition of Nb, while the largest increase is
caused by adding Co. The split threshold is atomic volume of host element, pure Ni. The atomic
volume of Co, Mn and Fe all are close or smaller than pure Ni; whereas the others are all larger
than pure Ni. It is also suggested that the ideal shear strength determined by the first-principles
calculation has negative correlation with alloying elements’ atomic volume, i.e., the alloying
elements with larger atomic volume decrease the ideal shear strength of the alloy. These results
can be explained by the total relaxed energy change when applying the displacement on the shear
plane. Compared with reference element, pure Ni, alloying elements with larger atomic volume

causes lower total relaxed energy, which always lead to the higher ideal shear strength in the
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present work. The relationship between ideal shear strength and alloying elements’ atomic volume

will be quantified the in the correlation analysis discussion.

3.2 CALPHAD modeling of ideal shear strength
The CALPHAD method evaluates all the binary parameters °¢i,- and the ternary parameters ¢y

with input from first-principles calculations. Based on CALPHAD approach as shown in Egq. 7,

the binary interactions are calculated as follows:

Ni , O 0 2
Tig = To + ©nixX = 5.09 + q)Ni,X*%
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Table 4 summarizes the results of all binary interactions from 9 systems (Ni3sX2). The binary
interaction of the alloying element Co, Mn and Fe is positive, which means these elements have
strengthen effect on ideal shear strength of dilute Ni-based alloys. The sign of O<|>Ni,x indicates the
strengthen or softening effect on ideal shear strength and the absolute value of Ocl)Ni,X indicates
the degree of strengthening or softening. Agreed with the analysis of previous investigation, it
follows the conclusion that larger alloying atomic volume is associated with a smaller ideal shear
strength. Furthermore, to determine the ternary interaction parameter, based on the pure Ni and
binary interaction parameter, we can obtain the ternary interaction ¢y;xz using the following

equation:

_ o Ni, 0 0
Tia = To + OnixXj+  OnizXk + dnix zXjXk

2 Eqg. 9
1, . 1
= 5.09 + ET ( bnix ¢Ni,z) + (%) * ONixz
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Table 5 shows the results of the ternary interaction parameters ¢y x z of all 45 Ni34XZ systems.
Similar to the binary interaction parameter, the sign of ¢y; x 7 indicated positive or negative effect
on the ideal shear strength from the interaction between alloying elements X and Z and the absolute
value of ¢y; x 7z indicated the degree of the strengthening or softening effect. For most cases, the
ternary interaction parameter ¢y x z 1s negative, which means the ideal shear strength of dilute Ni-
based alloy will decrease due to the ternary interaction. Some large ternary interaction parameters

are observed in the

17



Table 5. The large ternary interaction parameters of Nb-Co, Nb-Mn, and Nb-Fe can be explained
by the large atomic volume difference between two alloying elements, but it is hard to find a clear
trend of all these ternary interaction ¢y x z fitting results only in terms of their atomic volumes.
For example, a relatively large interaction value is also found for Nb and Cr related interactions,
such as Cr-Al and Cr-Si, but the atomic volumes difference is not significant, especially for the
Cr-Al system. These large ternary interactions parameter in Cr-Al and Cr-Si can possibly be
understood from structure similarity principles, since each element has a different standard state
crystal structure at room temperature: Cr (BCC), Al (FCC), Si (diamond cubic). Therefore, the
ternary interaction discrepancy can be majorly attribute to the atomic volumes difference and the

standard state crystal structures difference.

Another interesting finding is non-linear effect is examining the present work. Figure § shows a
promising prediction between DFT-predicted ideal shear strengths and linear combination
predictions based on the binary system (Ni34X2), with R? value of 0.977. The linear combination
ideal shear strength of Ni34XZ is defined as followed:

TP (NiggXZ) = 0.5 * Tig(NizaX5) + 0.5 * Tig(NizeZ3) Eq.10
Deviation from /13" and t2f T indicates nonlinear effects not captured in the above equation.
The result suggests that in the dilute Ni-based alloys, the ternary interaction does not significantly

change ideal shear strength. The ideals shear strength of Ni-based dilute ternary system could be

estimated by the linear combined of binary systems.

3.3 Correlational analyses based on elemental properties

18



Table 7 shows the correlational analysis result of alloying element X and Z variations in ideal
shear strength. We want to infer what physical features, or combination of features, could best
explain the relationship between ideal shear strength and alloying element properties. There is a
general agreement between the filter methods that among the most important features are the
DFTvO0 (atomic volume based on DFT-based calculations). Figure 9 shows the ideal shear
strength versus the average atomic volumes of alloying elements X and Z, suggesting that, in
general, larger atomic volumes of alloying elements associating with lower calculated ideal shear
strength. This trend could be explained by total energy variation when applying displacement on
shear plane. Previous investigation shows relaxed energy decreased with increasing alloying

element atomic volumes.

In addition to the filter-type selected features, the wrapper method indicates DebyeT (Debye
temperature), Radius vDW(Van der Waals atomic radius), USFE (Unstable stacking fault energy)
are the common features by using forward and backward feature selection. The unstable stacking
fault energy is selected 436 times for the forward selection method and 846 times for the backward
selection method. The strong association between unstable stacking fault energy and ideal shear
strength may be explained by the information is carried by the unstable stacking fault energy when
applying the shear deformation on the supercell. This specific correlation cannot solely support by
this general correlation, but in statistically perspective it gives us some directions when we want

to predict ideal shear strength by using intrinsic materials properties.
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4 Summary

The present work predicts ideal shear strength of dilute multicomponent Ni-based alloys
determined by first-principles calculations. There is a clear trend of ideal shear strength from
highest to lowest when alloying elements into dilute Ni alloys, i.e.,
Co>Mn~Fe>Cr>Al>Ti>Mo>Si>Nb. Larger atomic volume of alloying elements are associated
with lower calculated ideal shear strengths. Trends of concentration of alloying elements splits
according to atomic volume difference between host element (pure Ni). The CALPHAD method
evaluate all the binary parameters Ocl)ij and the ternary parameters ¢y with input from first-
principles calculations. CALPHAD method quantified the binary and ternary interaction
parameters of ideal shear strength and supports the conclusion that larger atomic volume is
associated with a smaller ideal shear strength. Additionally, ideal shear strength of Ni-based dilute
ternary system could be estimated by the linear combination of binary systems. Filter type and
wrapper type feature selection methods generally agree that the atomic volume is the most
important feature when calculating the ideal shear strength. Some other atomic properties like
Debye temperature, van der Waals atomic radius, and unstable stacking fault energy also show a
strong connection with ideal shear strength. These intrinsic material properties can be the

interesting directions to predict ideal shear strength of the materials in the future.
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8 Figures
(@) (b)

! 2PN R
=X

{%% ° Layer A

[111]
&
T4
TA

(%)

Figure 1. Schematic representation of (a) alias shear deformation, where € is the magnitude of
shear strain (b) Rotated orthorhombic FCC lattice with 36-atom supercell, showing Ni atom

(gray) and alloying atoms X (purple) and Z (green). As lattice vectors shown, three {111} layers

and 12 atoms on each layer is employed.
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Figure 2. Schematic representation of independent configurations. First alloying element (purple

® © ©
® © 6
0@0@
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atom) is fixed. The numbers indicate equivalent sites when substituting the second alloying
element. (a) Five independent configurations when alloying elements at the same layer. (b) Eight

independent configurations when alloying elements at the different layers.
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Figure 3. The result of the 13 independent structures’ relative energy in terms of lowest energy

structure (S3), where S1 to S5 represent different alloying site scenarios when X and Z are at the

same layer, i.e. Figure 2 (a), while D1 to D8 represent different alloying site scenarios when X

and Z are at the different layer i.e. Figure 2 (b). The plot suggests that S1, S2, D1 and D7 have a

relatively higher energy, however structure S3, one of the maximum entropy structures, has the

lowest energy.
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Figure 4. The result of total energy and shear strength with imposing displacement of Niz4CoNb

system determined by first-principles calculations. It shows the increase of shear stress with

increasing shear strain before reaching the maximum point, i.e., the ideal shear strength. Besides

shear stress, the slope of total energy with respect to the displacement continuously increases

when approaching the ideal shear strength.
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strength point. The ideal shear strength occurs at the point of largest slope of total energy.
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Figure 6. Calculated shear strength vs imposing shear strain for systems of Ni34CoCo (blue
circles), Ni34CoNb (green triangles) and Ni34NbNb (purple squares). The red symbols represent
the highest value of the shear strength, which are the ideal shear strength among these three
systems. The ideal shear strength of Ni34CoNb is roughly equal to the average ideal shear
strength of the Ni34CoCo and Ni34NbND system and a higher ideal shear strength typically

occurs at a lower shear strain.
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concentration of softening alloying elements (Cr, Al, Ti, Mo, Si, Nb) will lead to lower ideal
shear strength of the alloys. The only exception is ideal shear trend of Nij1Mo from alloying
element concentration effect only works well at dilute Ni-based alloy, with Mo concentration

under around 6%.
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Figure 8. Linear correlation between DFT ternary predicted ideal shear strength and linear
combined from binary system, suggesting that in the dilute Ni-based alloys, the ternary interaction

does not significantly change ideal shear strength. The ideals shear strength of Ni-based dilute

ternary system could be estimated by the linear combined of binary systems.
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9 Tables
Table 1. Comparison results of pure Ni with different supercell size. Typically, larger supercell
processes a higher relaxed energy at the ideal shear strength point. This deviation causes a lower

ideal shear strength

Supercell size Relaxed Energy at the ideal Ideal shear strength (GPa)
shear strength point (eV/atom)

12-atom -5.4409 5.13

36-atom -5.4406 5.09
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Table 2. Ideal shear strength summary of Ni34XZ determined by the first-principles calculations.

The ideal shear strength ranging from 4.16 to 5.24 GPa with a clear trend in ideal shear strength

from the highest to the lowest when alloying elements into dilute Ni alloys, i.e., Co > Mn~Fe >

Cr> Al>Ti> Mo > Si > Nb.
Co Mn Fe Cr Al
524 520 5.18 510 4.98
517 517 5.02 492

5.17 5.05 4.94
4.88 4.88
4.73

Ti
4.87
4.84
4.82
4.70
4.64
4.57

4.83
4.76
4.79
4.64
4.60
4.52
4.45

Si
4.83
4.71
4.73
4.73
4.53
4.41
4.41
4.32

Nb
4.62
4.57
4.57
4.51
4.42
4.35
431
418
4.16

Co

Fe
Cr
Al
Ti

Si
Nb
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Table 3.Schematic representation of the shear plane view from {111} plane. The ideal shear

strength summary of Ni3sX, Ni34X> and Ni11X][5].

Ni. X .
35 N134X2 Ni X
o o !
(8] O (+)
(&) (#)
(o) () o
O (#)
(] (s) *
O
X clement 2.7% 5.5% 8.3%
concentration
Co 5.20 5.24 5.46
Mn 5.10 5.17 5.17
Fe 5.14 5.17 5.20
Cr 5.03 4.88 4.90
Al 4.85 4.73 4.58
Ti 4.77 4.55 4.24
Mo 4.74 4.45 4.53
Si 4.68 431 4.17
Nb 4.51 4.16 391
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Table 4. Calculated the binary interaction parameters °¢y; y using Eq. 8.

X

Co

Mn

Fe

Cr

Al

Ti

Mo

Si

Nb

q)Ni,X

3.10

1.80

1.80

-3.44

-6.09

-9.27

-11.15

-13.64

-16.37
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Table 5. Calculated the ternary interaction parameters °¢y; y using Eq. 9.

Co

0.00

Mn

-5.81

0.00

Fe

-31.90

-4.23

0.00

Cr

46.32

64.80

28.43

0.00

Al

-13.31

-34.43

-27.64

73.35

0.00

Ti

-55.09

-35.19

-64.82

-23.77

-8.78

0.00

Mo

-61.98

-30.72

-32.64

10.32

22.29

0.00

Si

-40.01

-12.42

10.49

-32.75

42.64

0.00

Nb

-7.64

-37.77

-6.58

2.90

-75.27

0.00

Co

Fe

Cr

Al

Ti

Si

Nb
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Table 6. Correlation features and corresponding explanations

Feature

Explanation

Radius Coval

Covalent radius (pm) based on the collections of Wolfram Mathematica; see

“ElementData” in Ref. [32].

Radius vDW  [Van der Waals atomic radius (pm) [32,33].
V0 Miedema |Atomic volume (cm®/mol) used in the Miedema model [34].
‘é Mass Mass of pure elements
< Group Group of pure elements in the periodic table.
Mendeleev number MN2, starting bottom left and moving up then to the right.
M_Num?2
[35]
o Number Atomic number of pure elements in the periodic table
% Period Period of pure elements in the periodic table.
~
‘ Bulk modulus (GPa) of pure elements based on [36,37]. Note that elastic
¥ properties of fcc Sr were taken from [38].
G Shear modulus (GPa) of pure elements based on [36,37].
% Y Y oung’s modulus (GPa) of pure elements based on [36,37].
= BoilingT Boiling temperature (K) [39].
Ele Conduc |Electrical conductivity of metals in (ohm-cm)™! [40].

Heat Capacity

Heat capacity at 298 K (J/kg-mol - K) [40].

é Heat Fusion [Heat of fusion at 298 K (J/mol) [40].

<

gHeat_Sublimati

= Heat of sublimation (J/mol) at 298 K [40].
Elon

<

=
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MeltingT

Melting temperature (K) based on the collections by Kittel [40].

S298

Standard entropy (J/mol.K) at 298 K [41].

Therm Conduc

Thermal conductivity at 300 K (W cm™ K1) [32,40].

Vaporization heat (kJ/mol) based on the collections of Wolfram Mathematica;

VaporHeat
see “VaporizationHeat” in Ref. [32].
CohEnergy Cohesive energy (eV/atom) collected by Kittel [40].
DebyeT Debye temperature (K) collected by Kittel [40].
Predicted vacancy activity energy of pure elements in the fcc structure, with
Va Acti FCC |[the vacancy formation energy adopted for those with unstable fcc structures
(i.e., Ge and La) [42].
'% Va Form FCC |Predicted vacancy formation energy of pure elements in fcc structure [42].
—

Electron Affini

ty

Electron affinity (eV) [33].

EleDensity Mie

dema

Electron density at the boundary of Wigner-Seitz cell used in the Miedema

model [34].

EleNeg Miede

ma

Electronegativity (Volt) used in the Miedema model [34].

EleNeg Pauling

Electronegativity (dimensionless) on the Pauling scale [32,33][13,16].

lon Pot 1 The first ionization potential (eV) [39].
oflon_Pot_2 The second ionization potential (eV) [39].
=
o
gflon_Pot_3 The third ionization potential (eV) [39].
5
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MaxR Ele in

Solid

Maximum range (mm) of electrons in solid elements for electron energy of 15

keV [39].

No Spectral lin

CS

Number of spectral lines of the elements [39].

PPot radius_s

[Nonlocal pseudopotential radius (a.u.) for the s orbital [43].

PPot radius p

[Nonlocal pseudopotential radius (a.u.) for the p orbital [43].

(removed when

NsVal [Number of filled s-shell valence electron states.
NpVal Number of filled p-shell valence electron states.
NdVal Number of filled d-shell valence electron states.
INfVal (removed

when Number of filled f-shell valence electron states.
correlation)

(Nval [Number of filled valence electron states.

NsUnfill [Number of unfilled s-shell valence electron states.
NpUnfill [Number of unfilled p-shell valence electron states.
(NdUnfill Number of unfilled d-shell valence electron states.
INfUnfill

Number of unfilled f-shell valence electron states, not applicable here.

correlation)
(Nunfill [Number of unfilled valence electron states.
DFTC11 Elastic constant C11

» DFTCI12 Elastic constant C12

A
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DFTC44 Elastic constant C44
DFTC13 Elastic constant C13
DFTC33 Elastic constant C33
DFTvO0 Equilibrium volume
DFTb Burgers vector
DFTpoisson  |Poisson ratio
USFE Unstable stacking fault energy [12]
Electronic work function, energy (or work) required to withdraw an electron
WorkFunc
completely from a metal surface.
DFTBh Voigt-Reuss-Hill approach shear modulus [44].
DFTGh Voigt-Reuss-Hill approach calculated shear modulus [44].
DFTBvG The ratio between bulk modulus and shear modulus [45].
DFTGvb The ratio between bulk modulus and Burgers vector
DFTGV Shear modulus G multiply Volume
‘5 Gb2pih Ideal shear strength empirical model by Frenkel (Gb/2rth)[24] .
IS
'_'.§ BGsq Squart (B/G)
S
it Cauphy pressure which is difference between elastic constant C12 and C44,
% Cauphy
s i.e., C12-C44 [25].
==
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Table 7. Result of filter-type and wrapper type features ranking.

Index Ftest rRelief R? MIC forward backward
1 DFTv0 25.31 | DFTv0 0.07 | DFTv0 0.77 | DFTvO 0.77 | DFTv0 964 | DebyeT 969
2 DFTGvb 16.31 Radius_vDW 0.07 | V0_Miedema 0.69 CohEnergy 0.67 DebyeT 955 Radius_vDW 958
3 | VO_Mied 16.22 | VO0_Miedema 0.07 | DFTGvb 0.64 | Heat_Subli 0.67 | Va_Activa_f 728 | USFE 846
ema mation cc
4 | DFTb 16.07 | BoilingT 0.06 | CohEnergy 0.54 | DFTb 0.62 | Nval 573 | DFTv0 721
5 | Heat Fusi 14.78 | Heat_Fusion 0.05 | DFTb 0.54 | DFTGvb 0.60 | Radius_ vDW 513 | NdVal 695
on
6 CohEnerg 12.82 Mass 0.05 VaporHeat 0.52 V0_Miedem 0.58 USFE 436 EleDensity M 630
y a iedema
7 Mass 11.66 | G_wiki 0.05 DFTC44 0.52 DFTpoisson 0.55 VO0_Miedema 356 | VO0_Miedema 612
8 | Number 11.31 DFTCI12 0.04 | Heat_Sublimati 0.51 VaporHeat 0.53 DFTb 335 BoilingT 580
on
9 | Heat_Sub 10.88 | Y_wiki 0.04 | DFTpoisson 0.50 | Heat_Fusion 0.51 VaporHeat 326 | Ion_Pot 2 561
limation
10 No_Spect 10.87 Number 0.04 Nval 0.50 Mass 0.51 Heat_Sublim 325 PPot_radius_p 553
ral_lines ation
11 Nval 9.26 | Heat_Sublimat 0.04 | BGsq 0.48 | DFTC44 049 | G_wiki 296 | DFTC33 551
ion
12 Radius_v 8.15 Period 0.04 | DFTBvG 0.46 Radius_vD 0.48 Group 286 | Nval 545
DW w
13 DebyeT 791 CohEnergy 0.04 | DebyeT 0.36 | Number 0.48 M_Num2 282 NUnfill 544
14 M_Num2 7.72 lon_Pot_1 0.04 Electron_Affinit 0.34 BGsq 0.47 MeltingT 279 WorkFunc 541
y
15 VaporHea 7.64 | VaporHeat 0.03 DFTGh 0.34 | Nval 0.46 PPot_radius_ 278 Y_wiki 529
t p
16 | DFTpoiss 7.44 | DFTCI13 0.03 | NUnfill 0.34 | DFTCI2 0.45 | Electron_Aff 258 | Ion_Pot 3 515
on inity
17 | DFTC44 7.44 | DebyeT 0.03 | BoilingT 0.33 | DFTBVG 0.45 | NUnfill 179 | VaporHeat 501
18 BoilingT 7.25 lon_Pot_3 0.03 EleNeg_Miede 0.33 DebyeT 0.44 | PPot_radius_ 174 | DFTC11 485
ma s
19 | DFTGh 7.12 | MeltingT 0.03 Radius_vDW 0.32 | BoilingT 0.44 | WorkFunc 153 | Therm_Condu 484
c
20 DFTCI12 7.06 MaxR_Ele_in 0.03 NdVal 0.31 No_Spectral 0.43 EleDensity 144 DFTBh 482
_Solid _lines Miedema
21 Y_wiki 6.77 NsVal 0.03 No_Spectral_lin 0.30 Ton_Pot_1 0.43 EleNeg_Mie 141 Group 472
es dema
22 | DFTBVG 6.55 | NsUnfill 0.03 | Ion_Pot 3 0.28 | NUnfill 0.42 | NpVal 126 | DFTCI2 470
23 BGsq 6.55 DFTGvb 0.02 MeltingT 0.24 PPot_radius 0.41 Y_wiki 123 NpVal 467
s
24 NdVal 6.16 USFE 0.02 NsVal 0.20 PPot_radius 0.41 DFTpoisson 111 M_Num2 451
_p
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25 Period 5.99 | PPot_radius_s 0.02 NsUnfill 0.20 M_Num2 0.40 Ele_Conduc 97 B_wiki 423
26 G_wiki 5.72 Radius_Coval 0.02 Ton_Pot 2 0.20 DFTCI1 0.39 DFTC33 86 PPot_radius_s 374
27 Gb2pih 5.40 Ion_Pot 2 0.02 Heat_Capacity 0.18 DFTC33 0.39 Cauchy 85 Ton_Pot 1 362
28 Electron_ 4.98 DFTBvG 0.02 Y_wiki 0.16 Radius_Cov 0.38 NpUnfill 82 MaxR_Ele_in 361
Affinity al _Solid
29 | NsVal 4.78 | NpVal 0.02 | DFTBh 0.15 | Y_wiki 0.37 | Va_Form_fc 77 | NpUnfill 350
c
30 | NsUnfill 4.78 Va_Activa_fc 0.02 Radius_Coval 0.15 NdVal 0.37 Radius_Cova 73 Va_Form_fcc 343
c 1
31 MeltingT 4.67 | NdVal 0.02 | DFTCI2 0.15 | DFTGh 0.37 | BoilingT 72 | EleNeg Miede 313
ma
32 | USFE 4.55 | S298 0.02 | Gb2pih 0.14 | USFE 0.37 | DFTGvb 72 | No_Spectral_li 290
nes
33 Radius_C 4.54 | PPot_radius_p 0.01 DFTC33 0.14 | MaxR_Ele_i 0.35 | NdUnfill 70 | CohEnergy 285
oval n_Solid
34 | Heat Cap 430 | BGsq 0.01 DFTC13 0.13 | G_wiki 0.35 | Ion_Pot_1 68 | G_wiki 281
acity
35 | Group 4.18 Ele_Conduc 0.01 G_wiki 0.13 EleNeg_Mie 0.34 | NsUnfill 68 Heat_Sublimat 273
dema ion
36 | NUnfill 4.13 Nval 0.01 EleDensity Mie 0.13 Ton_Pot_3 0.34 Ton_Pot_3 64 | NdUnfill 269
dema
37 EleNeg_ 3.86 | NpUnfill 0.01 DFTCI11 0.13 Electron_Af 0.33 NsVal 64 Mass 266
Miedema finity
38 Ton_Pot_3 3.68 Heat_Capacity 0.01 DFTGV 0.13 DFTGV 0.33 CohEnergy 63 NsUnfill 261
39 PPot_radi 3.54 DFTBh 0.01 Ele_Conduc 0.12 MeltingT 0.32 NdVal 61 NsVal 260
us_s
40 DFTGV 3.19 DFTb 0.01 NpVal 0.12 Va_Form_fc 0.32 DFTC44 60 Number 230
c
41 PPot_radi 2.96 | M_Num2 0.01 Cauchy 0.10 | DFTBh 0.31 EleNeg_Paul 59 | Cauchy 209
us_p ing
42 | DFTC33 2.68 | NdUnfill 0.00 | Heat_Fusion 0.09 | NsVal 0.30 | MaxR_Ele_i 58 | Radius_Coval 202
n_Solid
43 EleDensit 2.62 Va_Form_fcc 0.00 | MaxR_Ele_in_ 0.09 | NsUnfill 0.30 BGsq 37 Heat_Fusion 185
y_Miede Solid
ma
44 Ton_Pot_1 227 Group 0.00 Mass 0.08 Period 0.30 Ton_Pot 2 35 Period 175
45 DFTCI11 225 B_wiki 0.00 | Number 0.07 Ton_Pot_2 0.30 Therm_Cond 33 Ele_Conduc 159
uc
46 NpVal 1.94 NUnfill 0.00 Ton_Pot_1 0.07 DFTC13 0.28 B_wiki 29 DFTC13 159
47 | Ton_Pot 2 1.91 | EleNeg Mied 0.00 | PPot_radius_s 0.07 | Gb2pih 0.27 | DFTC11 27 | Electron_Affin 118
ema ity
48 | Ele_Cond 1.82 | EleNeg_Pauli 0.00 | NpUnfill 0.06 | NpVal 0.27 | Gb2pih 18 | DFTpoisson 112
uc ng
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49 MaxR_El 1.74 | Therm_Condu 0.00 Period 0.05 NpUnfill 0.27 Period 17 MeltingT 106
e_in_Soli c
d

50 | Cauchy 1.72 | DFTC44 -0.01 USFE 0.04 | NdUnfill 0.27 | DFTBh 17 | DFTGh 98

51 NpUnfill 1.71 DFTpoisson -0.01 PPot_radius_p 0.04 Group 0.27 Mass 11 Gb2pih 84

52 WorkFun 1.67 EleDensity M -0.01 Va_Form_fcc 0.03 Heat_Capaci 0.26 DFTBvG 11 DFTGvb 75
c iedema ty

53 NdUnfill 1.39 | DFTC11 -0.01 Therm_Conduc 0.02 Cauchy 0.25 Heat_Fusion 10 BGsq 61

54 | DFTCI3 1.37 | Electron_Affi -0.02 | Va_Activa_fcc 0.01 EleDensity 0.25 | DFTGV 9 | DFTC44 57

nity Miedema

55 | DFTBh 1.18 | DFTGV -0.02 | WorkFunc 0.01 S298 0.24 | Number 7 | DFTb 38

56 Va_Form 0.96 DFTGh -0.02 NdUnfill 0.01 Ele_Conduc 0.21 No_Spectral 7 DFTBvG 38
_fee lines

57 S298 0.70 | DFTC33 -0.02 EleNeg_Pauling 0.00 | Therm_Con 0.21 DFTCI12 4 | DFTGV 29

duc
58 B_wiki 0.61 Cauchy -0.04 Group 0.00 Va_Activa_f 0.20 Heat_Capacit 3 Va_Activa_fcc 26
cc y

59 Therm_C 0.28 ‘WorkFunc -0.04 M_Num?2 0.00 B_wiki 0.19 DFTGh 3 EleNeg_Paulin 17
onduc g

60 EleNeg_P 0.15 Gb2pih -0.04 S298 0.00 EleNeg_Pau 0.19 S298 2 Heat_Capacity 3
auling ling

61 Va_Activ 0.05 No_Spectral_1 -0.05 B_wiki 0.00 WorkFunc 0.19 DFTC13 1 S298 3
a_fec ines
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Machine learning-enabled identification of micromechanical stress and strain hotspots predicted
via dislocation density-based crystal plasticity simulations
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Abstract
The present work uses a full-field crystal plasticity model with a first principles-informed dislocation
density (DD) hardening law to identify the key microstructural features correlated with
micromechanical fields localization, or hotspots, in polycrystalline Ni. An ensemble learning
approach to machine learning interpreted with Shapley additive explanation was implemented to
predict nonlinear correlations between microstructural features and micromechanical stress and
strain hotspots. Results reveal that regions within the microstructure in the vicinity of
the grain boundaries, higher Taylor and Schmid factors, and high intergranular misorientations, are
more prone to being micromechanical hotspots. Additionally, under combined loading, intergranular
misorientations are more responsible than Schmid factor in formation of stress hotspots while
Schmid factors take precedence under high plastic strain localizations. The present work

demonstrates a successful integration of physics-based crystal plasticity with DD-based hardening

into machine learning models to reveal the microscale features responsible for the formation of local

*Corresponding author at: Department of Materials Science and Engineering, Pennsylvania State University, University Park,
PA 16802, United States. E-mail address: beese@matse.psu.edu (A.M. Beese).
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stress and strain hotspots within the grains and near the grain boundaries, as function of applied
deformation states, grain morphology/size distribution, and microstructural texture, providing

insights into micromechanical damage initiation zones in polycrystalline metals.

Keywords: Machine learning; ensemble learning; microstructure; hotspots; crystal plasticity



1 Introduction

The formation of micromechanical hotspots during loading triggers damage initiation and accumulation,
e.g., void nucleation, grain boundary sliding, shear band formation (Eghtesad and Knezevic, 2021a;
Orme et al., 2016; Qin and Beese, 2021). Therefore, to aid in the understanding of microstructural origins
of failure, as well as to enable microstructural design for superior properties, it is critical to understand
the microstructural characteristics that contribute to the formation of micromechanical hotspots, and if
and how these change with microstructure and applied loading state. A quantitative description of plastic
deformation and subsequent damage incubation in crystalline materials requires knowledge of how
crystallographic texture, grain morphology, and grain boundary (GB) character of polycrystalline

microstructures alter the localization of micromechanical fields inside the grains and near the GBs.

Crystal plasticity (CP) models facilitate the modeling of microstructure-sensitive elasto-plastic
deformation based on the mechanical response of crystalline grains (Roters et al., 2010). Among CP
models that capture explicit grain-grain interactions and spatial gradients, the crystal plasticity fast
Fourier transform (CPFFT) (Lebensohn et al., 2012a) and the crystal plasticity finite element method
(CPFEM) (Roters et al., 2011) are predominant in the literature. Of these two, CPFFT is the more
computationally efficient formulation (Eghtesad et al., 2018; Eghtesad and Knezevic, 2020a; Lebensohn
and Rollett, 2020), especially with recent developments enabling high-performance computing (HPC)

and graphics processing unit (GPU) hardware acceleration.

While HPC has improved the efficiency of CP modeling, simulations of very large datasets are still time-

consuming. To address this, recent research has enabled the integration of machine learning (ML) into

3



microstructure-property linkage applications (Batra, 2021; Gao et al., 2022; Pilania, 2021; Rodrigues et
al., 2021; Veasna et al., 2023). Minaroodi et al. proposed a deep neural network (DNN) surrogate model
for the quantification of stress fields in anisotropic microstructures (Mianroodi et al., 2021). Cecen et al.
implemented a data driven approach using a convolutional neural network (CNN) for efficient
microstructure-property linkage (Cecen et al., 2018). Yang et al. proposed an artificial intelligence (Al)
based approach within a conditional generative adversarial neural network (cGAN) to find correlations
between a composite microstructure and its micromechanical response (Yang et al., 2021). Pandey et al.
reported an ML based surrogate method for predictions of texture evolution under uniaxial tension within

crystal plasticity (Pandey and Pokharel, 2021).

Several studies have explored the formation of stress hotspots within polycrystalline microstructures.
Rollett et al. investigated stress hotspots under uniaxial tension in Cu using the CPFFT model with Voce
hardening (Rollett et al., 2010a). Chief findings of a study of strain localization under rolling conditions
were that strain concentrations occur at triple junctions or quadruple points and then interconnect with
further straining to create shear bands that extend across the polycrystalline structure(Ardeljan et al.,
2015). Particularly, the triggering strain hotspots occurred at junctions of grains with dissimilar
reorientation propensities, while cold spots were formed vice-versa, i.e., at junctions of grains with
similar reorientation trends. Donegan et al. used convolutional neural networks based on microstructural
images to predict stress localization during the thermoelastic response of particulate microstructures
(Donegan et al., 2019). Fatigue stress hotspots in polycrystalline Cu were explored by a combination of
high resolution EBSD (HR-EBSD) and CPFEM by Wan et al (Wan et al., 2016). In a recent study
(Mangal and Holm, 2018a), the formation of stress hotspots in polycrystalline Cu was investigated by

integrating ML techniques and the CPFFT model with a phenomenological Voce hardening law
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(Lebensohn et al., 2012a). The methodology was based on grain-wise averaging of the stress fields and
intergranular misorientations of neighboring grains. The most relevant microstructural features related
to the stress hotspots formed under uniaxial loading were identified using a Least Absolute Shrinkage

and Selection Operator (LASSO) linear regression criterion (Ranstam and Cook, 2018).

A grain-wise averaging method reduces the complexity of micromechanical variations and local
gradients in the vicinity of grain boundaries. In most practical applications, materials are subjected to
complex multiaxial loading conditions, which affect the intragranular fields in ways that are lost during
homogenization. Additionally, it has been shown that the local distribution of stresses and strains within
a microstructure is heavily dependent on the hardening law (Patil et al., 2021). Phenomenological models
such as Voce, in contrast to the physics-based dislocation density hardening law used here, underestimate

the heterogeneity of spatial distributions by introducing spurious grain-wise homogenizations.

To identify the dominant microstructural features responsible for stress and strain hotspots, the present
work adopts a CPFFT model with a physics-based dislocation density (DD) hardening model informed
by density functional theory (DFT) (Eghtesad et al., 2022). A set of microstructures varying in
crystallographic texture and grain morphology was generated, using the software DREAM3D (Groeber
and Jackson, 2014a), and deformed under a range of applied deformation conditions. Machine learning
techniques were then applied to identify the microstructural features most strongly associated with local

stress and strain hotspots in pure polycrystalline Ni.



2  Methods

Fig. 1 illustrates the ML-based identification of microstructural features correlated to hotspots. The
CPFFT model allows for the quantification of micromechanical fields as a function of applied
deformation. Microstructural RVEs used in this study were generated using DREAM3D software
(Groeber and Jackson, 2014a) with high-resolution (128 voxels in each direction) in order to accurately
capture the spatial gradients within grains and near grain boundaries. Hotspots were defined as locations
in which the value for the field of interest exceeded 95% of the mean value of the field. The
microstructural features and resulting fields vary as function of crystallographic texture, grain

morphology, grain boundary (GB) features, and applied deformation.
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Fig. 1. Schematic of method for machine learning identification of micromechanical features responsible
for hotspot formation used in the present study.



2.1 CPFFT and DFT-based dislocation density hardening law

This study used a DFT-informed DD hardening law within the CPFFT framework, which mitigates the
uncertainties involved in calibration to a macroscopic flow response obtained from experimental
measurements (Eghtesad et al., 2022). The CPFFT model uses a power law constitutive formulation
that defines the plastic strain rate, €P(x), as function of Cauchy stress, 6(x), through a superposition of

shear rates on N slip systems (Asaro, 1983):

N N ps . n
200 = ) P 1°(X) = 1o ) P*X) (%(x‘)’("”) sign(P*(x):0(x)),  Eq.1
PS(x) = %(bS ® n® + n° Q b%), Eq. 2

1

where y°(X), o = 0.001 s™" and n =20 are the shear rate, reference shear rate, and power law

viscoplastic exponent, respectively. 75 (X) denotes the slip resistance, or critical resolved shear stress
(CRSS). The geometry of a slip system s is defined by the Burgers vector, b’ , and slip plane normal,

N’ with the tangent vector being t' =b’xn’ . The family of 12 slip systems for face centered cubic

(FCC) metals is given by {111}(110).

The current slip resistance t7 is written as the sum of contributions from the initial CRSS, 73, the

contribution of mobile forest dislocations, 77, and the slip resistance arising from sessile debris due

T In the following notation, tensors are denoted by bold letters while scalars are italic and not bold. The dot and tensor products

[T}

between the two tensors are denoted by “-”” and “@”, respectively



to the kink-jog dislocation interactions at later stages of hardening, 74,5, as follows (Beyerlein and
Tomé, 2008; Eghtesad and Knezevic, 2021b, 2020b; Zecevic et al., 2016):

T2 =75 + Tforest T Taebris- Eq.3
Details on the DFT-informed DD hardening formulation describing the individual parameters and DFT

calculations can be found in (Eghtesad et al., 2022).

2.2 Microstructural features

The microstructural features studied in the present work include crystallographic orientations of
individual grains, grain morphology, GB features, Schmid factor, intergranular misorientation, and slip
transmission factor, or Luster-Morris parameter, m” (Bayerschen et al., 2016; Luster and Morris, 1995).
The role of the Luster-Morris parameter in determining the likelihood of slip transfer across grain
interfaces was found important in selecting active slip systems and predicting texture evolution (Riyad
et al., 2021). Fig. 2 shows these features and the considered fields, which are discussed individually in

following sections.
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Fig. 2. Microstructural features and fields considered in this study.

2.2.1 Crystal orientations

The orientations of individual grains can be described using different conventions, including the
transformation matrix composed of direction cosines (Kitayama et al., 2013), Bunge-Euler angles
(Bunge, 2013), Miller indices (Frank, 1965; Schwarzenbach, 2003), axis-angle pairs (Kocks et al., 1998),
Rodriguez vector (Neumann, 1991), and quaternions (Takahashi et al., 1985). The components of the

axis-angle pair, @ = 67, are given as:



0. —1
6 = cos™ ! <ZLQ+>, Eq. 4

Q23 — Q32 Q31 — Q13 Q12 — Q21 E

n=——— =7 >NB=———F"T7" q.5
2sinf 2sinf 2sinf

where, 6 is the rotation angle, 7 is the unit direction vector, and Q is the transformation matrix, which

converts the coordinates of the crystal to the sample frame, and is defined as:
cosgcosp, — singcosPsing, —cosg,sing, — sing,cosPsing,  sing;sin®
Q = |sin¢g,cos¢p, + cos¢p,cosPcos¢p, —sing,sing, + cos¢p,cosPcosp,; —cosp,sin@|, Eq. 6

sin®sing, sin®cosg, cos®

where, ¢, ® and ¢, are the Bunge-Euler angles.

The Euclidean distance between a pair of orientations is calculated using their corresponding unit
vectors, 71 and 7, . The distance between an arbitrary orientation P=Q (¢, @, ¢,) and a crystal direction

[hkl] as shown in Fig. 3, can be described as:

FP—[hkl] — \/(ﬁp _ rl[hkl])z + (rzp B rz[hkl])z N (T3P ~ r3[hkl])2, Eq.7

where [hkl] represents each of the three selected directions of [001], [101], and [111], and rip,i =13
are the unit direction vectors of orientation P=Q (¢, ®, ¢,), with [100], [010] and [001] directions
parallel to X, Y and Z axes of sample coordinates. Fig. 3b shows the Euclidean distances between

individual grains within an example RVE microstructure.
2.2.2  Schmid factor

Schmid’s law (Schmid and Boas, 1950) describes the relationship between applied stress, o, and the

resolved shear stress, 7, on a crystallographic slip system as follows:
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T = 0 Cc0SAcosé = om, Eq. 8
where cosA cosé = m is the Schmid factor, 4 is the angle between the loading direction and Burger’s
vector, and ¢ is the angle between the loading direction and slip plane normal. Fig. 3d illustrates the

distribution of Schmid factor with respect to the Y axis within an example microstructure.
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Fig. 3. (a) Euclidean distances of an orientation P=Q (¢4, @, ¢p,) with respect to the directions [001],
[101] and [111], the corners of a standard inverse pole figure triangle correspond to Y axis, (b) Euclidean
distances within an example microstructure for individual grains, (c) representation of an elongated grain
with ellipsoid and quantifications of grain size and grain aspect ratio, (d) Schmid factor distribution for
the entire microstructure RVE.

2.2.3  Grain morphology

The grain morphology and the distribution of grain sizes and aspect ratios within an example RVE are
quantified by considering the elongated grains as ellipsoids with cord lengths a, b, and c. Realization of
ellipsoids from the voxelized grains come from the DREAM3D pipeline “Find Feature Shapes”, where,
the second-order moments of each feature are calculated to determine the ellipsoid principal axis lengths

and directions (Groeber and Jackson, 2014b). Grain size is defined as the equivalent sphere diameter
. . .. . b
(ESD), ESD = vVa? + b? + c?. Grain shape is defined by the minimum aspect ratio, min (E , 2) as shown

in Fig. 3¢, with a as the major axis.
2.2.4  Grain boundary character

GB character is defined by five independent crystallographic and geometrical parameters, three of which
form the lattice intergranular misorientations (¢, ® and ¢,) while the other two represent the GB plane
normal (Beladi et al., 2020). In this study, we also use the Euclidean distances between voxels within
the grain and the location of GB geometrical features such as GB planes, lines, and vertices and slip

transmission compatibility factor, described in the next subsections.
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2.2.5 Grain boundary geometrical features

A GB consists of three major features: (i) surfaces where two adjacent grains meet, (ii) triple junctions
where three grains meet, and (iii) quadruple points at the intersections of four grains (Gottstein et al.,
2010; Gottstein and Shvindlerman, 2006, 2005; Rios and Glicksman, 2015; Zhao et al., 2011). Fig. 4a
shows an illustration of the three types of GB features for an arbitrary grain within an example

microstructure. The distances of each voxel within a RVE to the nearest GB features, 145, 77, and 15p

were calculated, with these values for an example RVE shown in Fig. 4b.
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Fig. 4. (a) Illustration of GB features with surface, triple junctions, and quadruple points for a grain
within an RVE, (b) distances between GB features to voxels within individual grains for a sample RVE,
(c) Schematic illustrating the angles for Luster-Morris parameter between two adjacent grains.
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2.2.6 Intergranular misorientation and slip transmission compatibility factor

Recent studies indicate that hotspots are more likely to initiate at the high angle grain boundaries with
GB intergranular misorientations ranging from 45° to 60° (Bieler et al., 2009; Eghtesad and Knezevic,
2021c). The intergranular misorientation between two adjacent grains a and f is defined as follows:
-1
4077 = (Q&) el Eq.9

ap
AQ; -1

The scalar rotation angle 8%# = cos™! (Z‘T> between the two adjacent grains at the GB is

defined using the axis-angle pair convention in Eq. 4.

The Luster-Morris parameter, m’, is a measure of the ability of slip transmission between two adjacent
grains, given as (Alizadeh et al., 2020):
m' = cosk cosy, Eq. 10

where Kk and y are the angles between the slip plane normals and slip directions of two adjacent grains,

as illustrated in Fig. 4c. A value of m’' =1 indicates co-planarity of slip systems between the two grains
and a fully transmissible GB, while m' =0 indicates the grain boundary is impenetrable, which would

eventually result in dislocation pileups and field localizations near the GBs.

While it is possible to calculate a single value of intergranular misorientation and m” per grain by
averaging over neighboring grains (Mangal and Holm, 2018a), here we use two methods to account for
the heterogeneity of these quantities along the GB segments like in(Knezevic et al., 2014). In the first
method, as shown in Fig. 5a, the intragranular misorientation is obtained by inversely correlating the

weighted average to the Euclidean distances with respect to the GB surfaces as follows:
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N
ESD — rGB) 9 Zizl(SGB’i x6) Eq. 11
> .

0; t lar = (
intragranular ESD z i=1 S6B,i

where S¢p ; is the area of the GB surface for each grain neighbor, and N is the total number of neighbors
of the grain. While this method allows quantification of intragranular misorientation and m’, as shown
in Fig. 5b-c, it obscures the individual characteristics of the GBs corresponding to different neighbors.
Thus, in the second method, the intergranular misorientation and m’ for each GB was computed as shown
in Fig. 5d and e. In this method, a pair of neighbor grains with different grain IDs are identified as grain
boundaries through a search algorithm applied to the individual voxels defining the grains. Once the
grain boundary voxels are identified, their corresponding intragranular misorientation and m” are

calculated using Eq. 9 and Eq. 10.

16



Average
misorientation []
Averagem’

B 0.99

b~ 0.80 -

= =
P "E 0.60 wy
3 3 S
& o 040 W
S Q
- o ™~

-

E: 0.00

g

Fig. 5. (a) Neighbor grains and shared GB areas used for calculation of a weighted average
misorientation angle and Luster-Morris parameter, m”, (b) weighted gradient misorientation, (c)
weighted gradient m’, (d) local intergranular misorientation at GBs, and (e) local m” at GBs for an
example RVE.
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2.3 Correlation analysis

2.3.1 Pearson correlation coefficient

The Pearson correlation coefficient (PCC), rP¢¢, measures the strength of linear association between the

PCC — PCC —

two variables, where r *1 indicate a strong positive/negative linear correlation and r
implies no linear correlation. The PCC for a pair of data represented in form of vectors X and Y, with
length A, is written as (Jebli et al., 2021):

LG =X) T (G -T)

¢ = \/Zli"=1(Xi — X)? \/Zliv=1(yi 7y

PC

r

Eq. 12

where, X and Y are the mean values of vectors X and Y.

2.3.2 Ensemble learning

Ensemble learning-based ML algorithms (Krawczyk et al., 2017; Sagi and Rokach, 2018; Zhang and
Ma, 2012), such as Bagging (Breiman, 1996), AdaBoost (Solomatine and Shrestha, 2004), XGBoost
(Chen and Guestrin, 2016), and random forest (Breiman, 2001; Ho, 1995), enable accurate construction
of nonlinear data associations, by combining the predictions of multiple simpler ML models with a trade-
off between accuracy and computational cost (LeDell, 2015; Sagi and Rokach, 2018). Among ensemble
learning methods, random forest offers an ensemble hybridization training approach, improving the

overfitting drawbacks present in its alternatives (Ardabili et al., 2019; Sagi and Rokach, 2018).

In the present study, we use the random forest regression ensemble learning method based on decision

trees as shown in Fig. 6. As shown later, microstructural features present strongly nonlinear correlations
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with stress and strain hotspots; thus, random forest regression, which can identify arbitrarily complex
functions and correlations, is a suitable choice for identifying the correlations between hotspots and the

microstructural data provided here.

Descriptors

X;>0

Depth of search

Tree #1 Tree #2 Tree #3 Tree #NV

Ensemble of all outputs

Fig. 6. Schematic of random forest ensemble learning. Final decisions are made based on predictions of
all decision trees.

2.4 Shapley additive explanations

While ML models such as random forest offer high levels of predictive performance, their inner
workings are often inexplicable except in the most abstract sense, which hinders the physical
interpretation of their conclusions. Several interpretation methods have recently been proposed to
illuminate the black-box nature of ML models. These methods are either specific to one ML model (i.e.,

model-specific) or generic for all ML models (i.e., model-agnostic). Among the model-agnostic
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methods, Shapley additive explanations (SHAP) (Lipovetsky and Conklin, 2001; Lundberg and Lee,
2017; Merrick and Taly, 2020; Rozemberczki et al., 2022; Shapley et al., 1953) are an extension of the
local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016) within complex ML
models such as random forests. SHAP uses a network of graphs to identify the features that alter the
probability of a prediction and provides visualizable patterns that determine those predictions. Shapley
values provide an interpretation of feature importance by satisfying three major mathematical properties
of a permutation:(i) additivity: the overall net importance of features is directly related to sum of
importance of those features, (i1) symmetry: importance of any two features that contribute equally to
the predictions are the same, and (iii) dummy: SHAP value is zero in the case of zero contribution

(Winter, 2002).

An explainable model { with feature vector x can be written in form of additive feature attributions as

follows:

N
{(x) = wy + Z WX, Eq. 13
i=1

where w; 1s the weight of feature i among N features. In the SHAP model, w; is defined as follows

(Gémez-Ramirez et al., 2020; Rodriguez-Pérez and Bajorath, 2019; Rozemberczki et al., 2022):

1
= Y SN =S = DUFS U e) = £S)) Eq. 14

SEN

where N! is all possible permutations of the total number of features, S is a subset of features, S! is all
possible permutations of the subset of features, and f(S) is the prediction corresponding to a subset of

features S.
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Since Shapley additive explanations are permutation-based, predicted correlations are prone to bias due
to preferential selection of features within the tree search algorithm (Mangal and Holm, 2018a; Strobl et
al., 2008). To address such issue, we use a sequential feature selection (SFS) wrapper method (Chen and
Chen, 2015; El1 Aboudi and Benhlima, 2016; Hall and Smith, 1999; Wang et al., 2015; Xiao et al., 2007)
with an iterative K-fold cross-validation (Fushiki, 2011; Refaeilzadeh et al., 2009) to minimize bias in

selection of features responsible for the formation of hotspots.

2.5 Feature selection and wrapper method

Wrapper-based SFS methods (Chen and Chen, 2015; El Aboudi and Benhlima, 2016; Hall and Smith,
1999; Wang et al., 2015; Xiao et al., 2007) are ML algorithms that use a sequential procedure to select
the most important feature combinations contributing to an output. SFS methods are classified as either
forward selection or backward elimination. Forward selection is based on adding features to a null set,
while in backward elimination features are removed from the full set of features. One feature is selected
at each step, and the next feature is chosen under the condition that the overall performance is improved.
The performance is evaluated by K-fold cross-validation (Fushiki, 2011; Refaeilzadeh et al., 2009) to
avoid the uncertainties arising from the data distribution. The final output of the SFS method is a
combination of features that result in the best model performance - i.e., the highest accuracy/score in the
regression model. Fig. 7 is a flowchart of a forward selection SFS using the random forest model. The
wrapper method starts with adding features to a null list, swapping features out to find the next feature
at that step that improves the model’s cross validation score. Here, the wrapper result rankings were
constructed based on the relative frequency of individual features occurring in the list over 100

repetitions.
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Fig. 7. Flowchart of forward sequential feature selection. The procedure starts with a null set. Features
are added to the list and their correlations with hotspots are predicted using a random forest model. The
random forest model performance is evaluated using K-fold cross-validation. A final set of features is
obtained based on error minimization by K-fold cross-validation.

3 Results and discussion

While recent studies have identified microstructural features related to the formation of hotspots under
uniaxial loading for equiaxed and untextured grains (Mangal and Holm, 2018b), this study expands on

prior work by examining variations in applied deformation state, grain morphology, and texture.
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3.1  Micromechanical deformation in polycrystalline Ni under complex deformation states
The CPFFT model with DFT informed DD hardening law was used to simulate the flow response of
pure Ni polycrystal with a grain size of 2um, using the DD hardening parameters and properties from

DFT-based calculations provided in Table 1 (Eghtesad et al., 2022).

Table 1. DD hardening parameters and DFT calculations for pure Ni

. . Calculation
Quantitiy Description Value method
C11[GPa] 275.5 DFT
Ci, [GPa] Elastic constants 160.1 DFT
Cu4 [GPa] 126.4 DFT
b(113) [nm] Partial Burges vector 0.14 DFT
U [GPa] Shear modulus 92.3 DFT
Tysre [Jm™2] Unstable stacking fault energy  0.28 DFT
Tisre [Jm™2] Stable stacking fault energy 0.13 DFT
HS, [EV] Vacancy formation energy 1.65 DFT
g Normalized activation energy 0.01 DFT
q Rate of debris formation 5.40 DFT
T5[MPa] Initial slip resistance 76.0 Calibration
ki [m™1] Hardening rate 9.0e7  Calibration
D[MPa] Drag stress 308 Calibration

To investigate the impact of applied macroscopic loading condition on micromechanical hotspots, we
subjected the RVEs to the macroscale deformation states listed in Table 2. Note that a mixed boundary
conditions are used to enforce zero stress for lateral directions under uniaxial loading (Lebensohn et al.,
2012b). The resultant von Mises equivalent stress fields are provided in Fig. 8d-e showing significant

variation in field localizations within the microstructure.
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Table 2. Applied deformation states and corresponding deformation gradient tensors in CPFFT.

Applied deformation states

Deformation gradient tensor
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—gapp
[ o o =]
0
Biaxial tension [ 0 gapp 0 ]
0 app—Zeapp
0
Simple shear [ app 0]
_ gapp
z £app 0
) ) £app  gapp 0
Combined tension/shear #1 -app
—&
0 0
2
£app  gapp 0
Combined tension/shear #2 PP £WP 0
0 0 —2£9PP |
- £app
> £app 0
) ) £app  gapp  gapp
Combined tension/shear #3 _gapp
0 :app
€ 2
rgapp  gapp 0
Combined tension/shear #4 £arp  gapp £arp
| 0 g _peam

24



(a) T

oy [MPa]

Fig. 8. Variation in von Mises equivalent stress as function of deformation state to a macroscopic strain
of 2.5% for RVEs with equiaxed grains deformed under: (a) biaxial tension, (b) simple shear, and (c)
combined tension/shear.

3.2 Identification of stress and strain hotspots

The CPFFT model enables quantification of micromechanical fields within the microstructure
throughout the deformation history. While stress hotspots give useful insights into fracture and failure
criteria in elastic regimes, they obscure the failure and dissipation effects resulting from localization of
plastic strain. This becomes more important under multiaxial loading in ductile materials, or in fatigue
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or creep, for which accumulated plastic strain plays a significant role in determining the failure behavior
of the material (Chaboche, 2003). In this work, in addition to the stress hotspots studied in literature
(Mangal and Holm, 2018b; Rollett et al., 2010a), we also consider the strain localizations, which are

important for shear banding-type failure (Ardeljan et al., 2015)

Herein, instead of grain-wise average of the fields, as reported in (Mangal and Holm, 2018a), a local
(i.e., voxel-based) thresholding is used to identify the hotspot locations and account for the gradients of
the fields near the GBs. After obtaining the full-field information from CPFFT simulations extracted at
2.5% total strain, the stress and strain hotspot locations were identified as those exceeding 95% of the
mean value of the field of interest. Fig. 9 shows the distribution of hotspots for von Mises equivalent

stress and effective plastic strain after applying the thresholding.

0.09

Fig. 9. Distribution of full-field values in pure Ni under uniaxial tension to 2.5% macroscopic strain: (a)
von Mises equivalent stress and (b) effective plastic strain.
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3.3 Variation in texture and grain morphology

The present work considers the effects of both textured and untextured (i.e., randomly distributed grain
orientations) RVEs. Common FCC textures were investigated, including Goss, Brass, Cube and Copper
(Butron-Guillén et al., 1994; Jonas, 2009; Sarma et al., 2004). Fig. 10 shows the pole figures, plotted
with MTEX software (Bachmann et al., 2010), associated with the types of texture used in this study
with non-uniform textures showing strong intensities of preferred orientations up to 15.0 for {100}

components.

{100} {110} {111}

(b) | |

‘:F \ /
T—)X Texture intensity

Fig. 10. Texture variants for FCC, (a) uniform, (b) Goss, (c) Brass, (d) Copper and (¢) Cube.

To consider the effects of grain morphology, microstructures with a constant number of voxels (1283),

varying from equiaxed grains to elongated grains and mixed equiaxed and elongated grains were
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generated as shown in Fig. 11a-c with distribution of equivalent sphere diameter (ESD) and aspect ratio
of the elongated grains shown in Fig. 12. Corresponding von Mises equivalent stress fields obtained after

an applied uniaxial deformation of 2.5% strain, reveal significant variations in stress fields and hotspot

locations.
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Fig. 11. Variation in von Mises equivalent stress as function of grain morphology in RVEs with uniform
texture deformed under uniaxial tension to 2.5% macroscopic strain with: (a) equiaxed grains, (b)

elongated grains, and (c) mixed equiaxed/elongated grains.
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Fig. 12. Distribution of equivalent sphere diameter (ESD) and aspect ratio of the elongated grains for

the microstructure with mixed equiaxed/elongated grains.

3.4 Correlation heatmaps

The degree of correlation between microstructural features and hotspots is evaluated in terms of PCC
correlation metrics. Variations in correlation intensities for an equiaxed RVE with uniform texture under
uniaxial tension are given in Fig. 13. More results for stress hotspots as a function of grain morphology,
texture, and deformation state are provided in the supplementary material (Fig Al). Cells with higher
non-zero absolute values indicate stronger correlations. Notable correlations are observed with
misorientation, m’, Euclidean distances from the GB features, and Euclidean distances to the directions
[001], [101] and [111]. Note that the Euclidean distances from the GB features are more appropriate in
the case of RVE with a small number of grains, as individual grains are represented by significantly
more voxels. Correlations with misorientation and Schmid factors are positive, indicating that stress

hotspots occur at grains with higher Schmid factors and larger misorientations.
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The conclusion related to correlations between misorientation and hotspots differs from what was found
in (Mangal and Holm, 2018a) due to different representations of misorientation. While (Mangal and
Holm, 2018a) used an average of misorientations of neighbor grains and assigns that to the entire grain,
the present work considers the local intergranular misorientation that accounts for the nonuniformity
across the GBs with dissimilar grain neighborhood. Negative correlations with Euclidean distances from
the GB features confirm the fact that hotspots form near the GBs, which agrees with the findings reported

in (Mangal and Holm, 2018a; Rollett et al., 2010b).
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Fig. 13. PCC correlation heatmaps for microstructural features hotspots under uniaxial tension for RVEs
with equiaxed grains and uniform texture: (a) Von Mises equivalent stress and (b) effective plastic strain.

While these heatmaps provide useful insights into linear positive/negative correlations, values far from

unity indicate the possibility of nonlinear correlations between microstructural features and
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micromechanical fields. In (Mangal and Holm, 2018a), a linear LASSO regularization regression
provided by Fealect method (Tibshirani, 1996; Zare, 2015) was used to select the most important
features. In the present work, we selected a random forest model within an SFS algorithm for feature
selection to identify nonlinear correlations and the relative importance of microstructural features

contributing to the formation of hotspots.

3.5 SHAP-based feature importance and random forest-based feature selection

The SFS function “SequentialFeatureSelector()” from Scikit-learn using random forest regression as the
ML core model and 5-fold cross-validation were used in the present study. The accuracy of random
forest regression with all features included was evaluated as a function of the number of decision trees
and the depth of tree search. The random forest regression function “RandomForestRegressor()” from
Scikit-learn (Pedregosa et al., 2011) was used to find the nonlinear correlations between microstructural
features and stress hotspots. The random forest model reached a maximum accuracy of R’ = 87% and
root mean square error of RMSE=0.09 by using 75 trees and a search depth of 35 as shown in Fig. 14.
Next, the optimum number of features resulting in the same accuracy was found by iteratively running
the SFS wrapper and selected features using a 5-fold cross-validation, varying from 1 to 10, saturating

after 4 features. A maximum score of R’ = 87% was obtained by using a subset of four selected features.
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Fig. 14. Accuracy of random forest model as a function of (a) tree depth, (b) the total number of decision
trees, and (c) accuracy of SFS as function of number of features selected by 5-fold cross validation. The

model reaches a maximum accuracy score of R’ = 87% and RMSE=0.09.

It is shown in the literature that the built-in permutation-based feature importance offered by random
forests is prone to bias due to the preferential selection of the features (Mangal and Holm, 2018a). To
avoid bias, the tree SHAP explainer, “shap.explainers.Tree()”, from the SHAP package (Strumbelj and
Kononenko, 2014) was used to interpret the random forest regression predictions using normalized
SHAP values. Fig. 15 shows the relative feature importance in formation of von Mises equivalent stress
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and effective plastic strain hotspots for an RVE with uniform texture and equiaxed grains under uniaxial
tension, biaxial tension and shear. More results as a function of grain morphology, texture, and mixed

deformation states are provided in the supplementary material (Fig. A2 and Fig. A3).

EO.S ";_,TO'S EO.S 044
Fo4 o5 S04 E 04
A .3 -9
< Z 031 <
03 0.3 03
(a) 5 5 3
o - -
g 0.2 ki 02 K 02 0.16
£0.1 ol £01
z z z
0‘%isnrienlation r 101 Schmid m 0'%isoricmation r 001 Schmid m O'Q\/lisoriemation r 111 Schmid m
—_ 30.5
2 E
£ 0. £04
s 2
= 0. =
(b)
go. go2
3 =
£0. E}
2\5 £ 0.1
0.0 00 “0.0

Schmid r 111 Misorientation 1M

Schmid r 111 Misorientation M Schmid r 111 Misorientation 1M

(i) (ii) (iii)
Fig. 15. Relative importance of top features described by normalized SHAP values responsible for the

formation of hotspots:(a) von Mises equivalent stress, and (b) effective plastic strain as a function of
deformation state: (i) uniaxial tension, (ii) biaxial tension, and (iii) simple shear.

Evaluating the SHAP values for a combination of stress and strain hotspots together, reveals that Schmid
factor, intergranular misorientation, m’, and Euclidean distances to IPF corners with [111] being
dominant are frequently selected as the top four contributing features in the formation of hotspots with
m’ having the least effect on both stress and strain hotspots. Note that crystals with orientation closer to
[111] directions exhibit higher Taylor factors and are stiffer grains. It is shown that the deviation of the
Taylor factor of a given grain with its first neighbors are important in influencing localizations (Knezevic
et al,, 2014). Intergranular misorientation is found to be the top feature responsible for stress
concentrations while Schmid factor is the top feature responsible for strain localizations. Therefore,

regions with high misorientations are candidates for higher stress localization while locations with high
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Schmid factors are more prone to micromechanical damage accumulation caused by plastic strain. It is
also important to recognize that misorientation effects become more important in stress localizations
under pure shear loading (much higher importance for this feature is observed under shear loading in
Fig. 15 (a)(ii1)). Additionally, Schmid factor becomes more dominant in strain localizations under
uniaxial loadings, and its relative importance compared to misorientation and Euclidean distance to [111]
directions reduces, with all four top features contributing nearly equally in simple shear. In conclusion,
the positive correlation between hotspots and intergranular misorientation, and the fact that intergranular
misorientations occur at GBs, suggest that harder grains with the highest Schmid factor and intergranular

misorientation, as well as regions near the GBs, are likely locations for damage nucleation and failure.

In summary, we find that the roles of m” and intergranular misorientations are more important in
governing stress/strain localizations than those of grain size, we find that under uniaxial tension, m' and
intergranular misorientations are more important in governing stress/strain localizations than grain size,
contrary to the findings reported in (Mangal and Holm, 2018b). Intergranular misorientations are also
found to be more important than Schmid factor which is another point of contrast. This may be due to
the fact that the present work uses a physics-based DD hardening law, while a phenomenological
hardening was used in (Mangal and Holm, 2018b), and it has been shown that the local distribution of
stresses and strains are strongly dependent on the selected hardening law (Patil et al., 2021) with
phenomenological laws obscuring the heterogeneity of spatial distributions and introducing spurious
grain-wise homogenizations. Additionally, the present study uses local definitions of grain boundary
descriptors that may be obscured if a grain neighborhood averaging scheme is used as in (Mangal and

Holm, 2018b).
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In addition to the above insights pertaining to uniaxial loading conditions, our work reveals the important
influence of non-uniaxial loading conditions on the formation of both stress and strain hotspots.
Intergranular misorientations become much more important than Schmid factor in identification of stress
hotspots where inelastic deformations under multiaxial loadings, including shear, are more dominant.
Schmid factor, intergranular misorientation, m’, and Euclidean distances to IPF corners with [111] all
become important under the condition of damage growth and failure resulted by high levels of
accumulated plastic strains. Grain size also becomes more important in cases of combined tension/shear

loading and high levels of accumulated plastic strains (see supplementary Fig. A4).

4. Summary and conclusions

In this work, we study the role that various microstructural features play in the formation of stress and
strain hotspots using a combination of physics-informed CPFFT simulations and ML techniques for data
analysis. The microstructures used for simulations varied in grain structure/morphology and
crystallographic texture. The intergranular misorientation and slip transmission were quantified locally
to describe heterogeneities in the vicinity of grain boundaries. To evaluate the effects of applied
deformation state on the formation of hotspots, a range of loading configurations with varying
combination of tension and shear were studied. An ensemble learning random forest regression model
was used to establish the nonlinear correlations between the microstructural features and hotspots with
an accuracy of R’ = 87% and RMSE = 0.09. To determine the most critical features corresponding to
stress and strain hotspots, the sequential feature selection wrapper method was used, with the relative
importance of the top selected features quantified by Shapley additive explanations. The present study

identifies the microstructural features responsible for stress and strain localizations that will be followed
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by micromechanical damage growth and failure. ML analysis of the data obtained from the stress and
strain hotspot locations for a wide range of microstructures deformed under complex loading conditions
reveals the following findings:

e Schmid factor, intergranular misorientation, m’, and Euclidean distance of a point to the [111]
directions were identified as the top four contributing features in the formation of stress and strain
hotspots.

e Regions within the microstructure with the following characteristics were identified to be more
prone to coincide with micromechanical stress and strain hotspots:

= Near grain boundaries,
= Crystals with higher Taylor and Schmid factors,
= Crystals with high intergranular misorientations.

e Intergranular misorientations are more responsible than Schmid factor in formation of stress
hotspots for all deformation states.

e Schmid factors take priority over the intergranular misorientations under high levels of plastic
strain localization for all deformation states.

¢ QGrain size becomes important with respect to the top features above only under combined tension

and shear and at high levels of accumulated plastic strains.
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4 Data availability

Data together with MATLAB and Python scripts supporting the findings of this study are provided in

the supplementary materials.
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