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ABSTRACT  

 

This project aims to establish a framework capable of efficiently predicting the properties of 

structural materials for service in harsh environments over a wide range of temperatures and over long 

periods of time. The approach is to develop and integrate high throughput first-principles calculations in 

combination with machine learning (ML) methods, perform high throughput CALPHAD (calculations of 

phase diagrams) modeling, and carry out finite element method (FEM) simulations. Relevant to high 

temperature service in fossil power system, nickel-based superalloys such as Inconel 740 and Haynes 

282 as well as the associated (Ni-Cr-Co)-Al-C-Fe-Mn-Mo-Nb-Si-Ti system, were investigated. 

The present framework was built on the concept of phase-based property data, in which properties 

of individual phases are modeled as a function of internal and external independent variables. This 

project established an open-source infrastructure with the following capabilities:  

• High throughput implementation of first-principles calculations at finite temperatures and 

variable compositions using both accurate phonon calculations and the efficient Debye model for 

thermodynamic properties, elastic constants, diffusion coefficients, vacancy formation, stacking and 

twin faults, and dislocation mobility; i.e., using the developed code DFTTK [1];  

• Machine learning capabilities to predict the above properties so that the number of first-

principles calculations can be significantly reduced; e.g., using the developed code SIPFENN [2]; 

• High throughput CALPHAD modeling of the above properties as a function of temperature and 

composition using our unique capability based on ESPEI and PyCalphad [3];  

• New capabilities to predict the stress-strain behavior of individual phases; and 

• New models for tensile strength prediction in common FEM software with the crystal plasticity 

finite element simulations (CPFEM).   
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1 EXECUTIVE SUMMARY 
 
The present project aims to establish a framework capable of the efficient prediction of properties 

of structural materials for service in harsh environments over a wide range of temperatures and over 
long periods of time, through developing and integrating high throughput first-principles calculations 
based on density functional theory (DFT) in combination with machine learning methods, high 
throughput CALPHAD modeling, and finite element method (FEM) simulations.    

This project was built on the expertise of the PIs and the state-of-the-art capabilities such as open-
source high throughput DFT-based predictions, CALPHAD modeling using various software (e.g.: 
atomate, PyCalphad, and ESPEI) and the machine learning methods in the community. Our ESPEI is 
capable of testing and developing new models with uncertainty quantifications. The multi-scale 
integration from electronic structures, phonon properties, phase stability, and phase transformation to 
macroscopic tensile property extends our early initiatives in the field, which enabled the PI Liu to coin 
and trademark the term Materials Genome®. Therefore, our technology can be expected to contribute 
to a developmental breakthrough for high throughput computational design of multicomponent alloy 
compositions and tensile properties at elevated temperatures for long-term service. Furthermore, the 
open-source strategy of our approaches and tools enable scientists and engineers in the community to 
adapt the framework and continue their own development of specific approaches and tools.  
Additionally, the incorporation of the state-of-the-art machine learning methods developed in the 
community into the proposed framework can significantly reduce the computing expense in DFT-based 
first-principles calculations. 

 
This project have six major achievaments in this project; as detailed in the following sections.  
 
First. Development of thermodynamic databases. The CALPHAD-based thermodynamic database 

for Ni-based alloys includes the key elmenets of Ni-Cr-Fe-Mo-Nb, and the DFT-based database for Ni-
, Fe-, and Co-based alloys includes the key elements of Al, B, C, Cr, Cu, Hf, La, Mn, Mo, N, Nb, O, P, 
Re, Ru, S, Si, Ta, Ti, V, W, Y, and Zr.  

Second. Development of simulation tools for high throughput DFT-based first-principles calculations 
at finite temperatures via DFTTK; for machine learning predictions of enthalpy of formation via 
SIPFENN; and for high throughput CALPHAD modeling via PyCalphad and ESPEI.  

Third. Development of ideal shear strength database for FEM simulations of Ni-based alloys based 
on first-principles calculations, including Ni3Al and the dilute Ni-X and Ni-X-Z alloys. 

Fourth. Development of DFT-informed FEM simulations to predict strain-stress curves, as applied 
for single and polycrystal Ni and Ni-X alloys. 

Fifth. Exploration of machine learning methodology to predict stacking fault energy and microscale 
features responsible for the formation of local stress and strain hotspots within the grains and near the 
grain boundaries.  

Sixth. Application of thermodynamic and kinetic database to explore critical Al concentration to form 
external Al2O3 scale on Ni-Al alloys. 

  
The above six achievaments make it possible to establish a framework capable of the efficient 

prediction of properties of structural materials for service in harsh environments over a wide range of 
temperatures and over long periods of time through an integration of high throughput DFT-based 
simulations, high throughput CALPHAD modeling, machine learning, and FEM simulations.  
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2 ACTUAL ACCOMPLISHMENTS COMPARED WITH PROJECT 
OBJECTIVES 

 
Objectives set in the proposed project: 

“The proposed computational framework will establish an open-source infrastructure in the Python 
environment including the following specific capabilities: 

• High throughput implementation of first-principles calculations at finite temperatures and 
variable compositions using both the accurate phonon calculations and the efficient Debye model for 
thermodynamic properties, elastic constants, diffusion coefficients, vacancy formation, stacking and 
twin faults, grain boundary and interfacial energy, and dislocation mobility;  

• Exploration of machine learning methods to predict the above properties so that the amount of 
first-principles calculations can be significantly reduced; 

• High throughput CALPHAD modeling of the above properties as a function of temperature and 
composition using our unique capability based on pycalphad and ESPEI;  

• New capabilities to be developed in the proposed project to predict the stress-strain behavior of 
individual phases with dislocations and cohesive strength of grain boundary and interfaces; and  

• New models for tensile strength prediction in common finite element method (FEM) analysis 
software.” 

 
Acutal accomplishments with respect to the check points set in the proposal: ALL DONE;  see 
below the decision points, and more details in Section 3: Report Details.   
 

Decision point 1: High throughput implementation of first-principles calculations   
Criteria for success: Development of Python-based software for high throughput DFT-based first-
principles calculations   
 
Acutal accomplishment w.r.t. decision point 1: DONE. 
Software DFT Tool Kit (DFTTK) has been developed [1], see also https://www.dfttk.org 
 
Decision point 2: Exploration of machine learning (ML) methods to predict properties 
Criteria for success: Development of Python-based software and exploration of ML methods. 
 
Acutal accomplishment w.r.t. decision point 2: DONE. 

   Software SIPFENN [2] has been developed to predict enthalpy of formation, and ML methods have 
been explored to predict stacking fault energy [4] and to reveal the microscale features responsible 
for the formation of local stress and strain hotspots within the grains and near the grain boundaries 
[5]. 
 
Decision point 3: High throughput CALPHAD modeling and improvement of PyCalphad/ESPEI 
Criteria for success: PyCalphad and ESPEI are further improved and Ni-based thermodynamic 
database are generated.  
 
Acutal accomplishment w.r.t. decision point 3: DONE. 
ESPEI/PyCalphad were developed, see details in https://espei.org  and https:/pycalphad.org. In 
addition, the Ni-Cr-Fe-Mo-Nb database was generated.  

 

Decision points 4 and 5: Development of finite element method (FEM) for strain-stress predictions  
Criteria for success: Novel CPFEM is developed to predict strain-stress curves.  
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Acutal accomplishment w.r.t. decision points 4 and 5: DONE. 
DFT-informed FEM simulations were developed to predict strain-stress curves as applied for single 
and polycrystal Ni and Ni-X alloys [6–8] 
 

The milestone status is listed in Table 1.  

Table 1: Milestone status report. 
Milestone title 
/Description 

Planned 
completio

n date 

Actual 
completio

n date 

Verification 
method 

Comments 

Milestone 1: Completion of literature 
survey of thermodynamic and other 
properties in the (Ni-Cr-Co)-Al-C-Fe-
Mn-Mo-Nb-Si-Ti system relevant to 
the prediction of tensile properties. 

3/31/2018 4/30/2018 Literature 
report. 
Found practice 
methods to 
predict CRSS. 

Done. 

Milestone 2: DFT calculations and 
CALPHAD modeling of 
thermodynamic and other properties 
for all binary phases in (Ni-Cr-Co)-Al-
C-Fe-Mn-Mo-Nb-Si-Ti. 

12/31/2018 9/30/2021 Database and 
publications 

Done 

Milestone 3: DFT calculations of 

tensile properties for -phase and TC-
PRISMA simulations of phase 
distribution and implementation of 

tensile strength model for -phase 

7/31/2019 9/30/2021 Database and 
publications 

Done 

Milestone 4: Development of 
properties database including all 
phases by CALPHAD modeling 

5/31/2019 9/30/2021 Properties 
database 

Done 

Milestone 5: DFT calculations and 

modeling of tensile properties for ’-
phase; TC-PRISMA simulations of 
phase distributions; open-source 
code to prepare input for FEM 
simulations; and results from 
experimental validations 

6/30/2020 6/30/2022 Database, 
publications. 
and open-
source code 
(DFTTK) 

Done 
 

Milestone 6: Open-source code for 
high-throughput DFT calculations 

8/31/2020 9/30/2021 Open-source 
code 

Done.  
DFTTK 
released.  

Milestone 7: Open-source code to 
high-throughput CALPHAD modeling 
for the properties of interest in the 
proposed project, i.e., the PyCalphad 
code 

9/30/2020 9/30/2021 Open-source 
code 
 

Done. 
ESPEI and 
PyCalphad. 
Released and 
improved. 

Milestone 8: A complete FEM model 
to predict tensile properties of real 
alloys together with validation from 
experiments 

10/31/2020 9/30/2022 Publications Done. 

Milestone 9: Final report together 
with the complete open-source codes 
for high throughput DFT, high 
throughput CALPHAD, and FEM 
simulations 

12/31/2020 12/31/2022 Final report, 
open-source 
codes 

Done. This 
report. 

* TCP represents “topologically closed packed” 
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3 REPORT DETAILS 
 

Aiming to establish a high throughput computational framework capable of the efficient prediction of 
properties of structural materials for service in harsh environments over a wide range of temperatures 
and over long periods of time, we developed high throughput DFT-based first-principles calculations in 
combination with machine learning (ML) methods, high throughput CALPHAD modeling, and finite 
element method (FEM) simulations. The present project has the following key accomplishments within 
five years (including no cost extension of two years). For each of the accomplishments, we show the 
key details, results and discussion, and conclusions. Also we refer to our publications and our websites 
for each accomplishment when available:   

• Development of open-source software for DFT, ML, and CALPHAD calculations 

• Development of thermodynamic database and its applications 

• DFT-based pure shear deformation to predict ideal shear strength and stacking fault energy 

• DFT-informed FEM simulations 
 

3.1 Development of open-source software packages 

3.1.1 Machine learning for thermodynamic properties  

We developed a user-friendly open-source tool (SIPFENN) for predicting the formation enthalpy of 
any atomic structure on the millisecond timescale based on a structure file (POSCAR/CIF/etc.) or on 
the microsecond timescale if the descriptor has been calculated.  

Unlike the vast majority of other reported models, SIPFENN does not require any intensive model 
training from the user but is delivered ready to use on a desktop PC or a laptop. SIPFENN does not 
require any input other than structure files, what allows effortless integration into any CALPHAD study 
within minutes. On the computational end, pymatgen (www.pymatgen.org) converts structure data into 
a unified form, and if needed, performs an additional project-specific analysis. Descriptors are 
generated with Magpie and then passed through one of the trained neural networks to predict the values 
of formation energy. Our code is built to allow easy switch of the neural network, which is encoded in a 
popular open-source format of MXNet. We leverage that by making it easy for others to re-train the 
network to include new data into the model at a fraction of computational cost (transfer learning). The 
model itself is built using a structure-informed descriptor, open DFT databases, and new neural network 
architectures designed by us. On a random 5% subset of the OQMD (www.oqmd.org), we achieve a 
mean absolute error (MAE) of 28 meV/atom. In addition to trivial cross-validation, we also tested our 
model on a few special quasirandom structures (SQS’s) and 243 endmembers of 5-sublattice model of 

Fe-Cr-Ni -phase, getting very similar results in both cases.   
 
This work was published in Computational Materials Science [2]: 

• A.M. Krajewski, J.W. Siegel, J. Xu, Z.-K. Liu, Extensible Structure-Informed Prediction of 
Formation Energy with improved accuracy and usability employing neural networks, 
Comput. Mater. Sci. 208 (2022) 111254.  

 
Figure 1 shows the SIPFENN schematic description of operation [2]; see also our website for more 

details: https://www.phaseslab.com/sipfenn. 

https://www.phaseslab.com/sipfenn


 8 

 

Figure 1. SIPFENN schematic description of operation [2]. 

 

 
Figure 2. Schematic DFTTK workflow with FW (firework) for job control and ISIF for structure 

relaxations in VASP (www.vasp.at); see details in [1]. 
 

3.1.2 DFTTK for high throughput first-principles calculations 

We developed the DFT Tool Kit (www.dfttk.org) and published a paper about DFTTK in the journal 
of CALPHAD : 

http://www.vasp.at/
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• Y. Wang, M. Liao, B.J. Bocklund, P. Gao, S.-L. Shang, H. Kim, A.M. Beese, L.-Q. Chen, Z.-

K. Liu, DFTTK: Density Functional Theory ToolKit for high-throughput lattice dynamics 

calculations, Calphad. 75 (2021) 102355.  

In this paper, we present a software package in Python for high-throughput first-principles 
calculations of thermodynamic properties at finite temperatures, which we refer to as DFTTK (Density 
Functional Theory Tool Kit).  

DFTTK is based on the atomate package and integrates our experiences in the last decades on the 
development of theoretical methods and computational software; see its workflow in Figure 2. It includes 
task submissions on all major operating systems and task execution on high-performance computing 
environments. The distribution of the DFTTK package comes with examples of calculations of phonon 
density of states, heat capacity, entropy, enthalpy, and free energy under the quasiharmonic phonon 
scheme for the stoichiometric phases of Al, Ni, Al3Ni, AlNi, AlNi3, Al3Ni4, Al3Ni5, and the fcc solution 
phases treated using the special quasirandom structures at the compositions of Al3Ni, AlNi, and AlNi3. 

 

3.1.3 ESPEI/PyCalphad for high throughput CALPHAD modeling 

ESPEI (www.espei.org) or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for 
thermodynamic database development within the CALPHAD method. It uses PyCalphad 
(www.pycalphad.org) for calculating Gibbs energies of thermodynamic models. PyCalphad is a Python 
library for computational thermodynamics using the CALPHAD method.  

In this project, ESPEI was updated to use site fraction to model phase diagrams. In the previous 
version of ESEPI, site fraction data cannot be considered as a direct input for CALPHAD modeling due 
to the complexity of site fraction calculations. However, with Bayesian parameter estimation in ESPEI, 
site fraction data together with other thermochemical and phase equilibrium data can be directly used 
to be fitted with Gibbs energy parameters by Markov Chain Monte Carlo (MCMC) optimization in ESPEI. 
For example, the experimental data of site fraction by Joubert [9] were used to modify the mu phase 
(another TCP phase) in the Nb-Ni system [10]. The comparison between site fraction of Chen’s paper 
(Figure 3a) and the site fraction of the present work (Figure 3b) shows that after taking site fraction data 
as direct input for CALPHAD modeling, the discrepancy between simulation results and experimental 
data become much smaller.  

 

 
Figure 3. Site fraction of Nb in  phase in Nb-Ni: (a) This work and (b) Chen’s work [11]. 

 
 

(a) (b) 
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In addition to implementation of site fraction, more updates of PyCalphad and ESPEI were listed in 
their websites: 

• www.espei.org  

• www.pycalphad.org 
 

3.2 Development of thermodynamic database and its applications 

3.2.1 DFT-based thermodynamic database and its applications 

Based on mainly the developed DFTTK code [12] and the quasiharmonic phonon calculations using 
our code YPHON [13], we performed high-throughout DFT calculations at finite temperatures for over 
3000  structures for the systems made of 26 elements, namely, Ni, Fe, and Co alloyed with Al, B, C, Cr, 
Cu, Hf, La, Mn, Mo, N, Nb, O, P, Re, Ru, S, Si, Ta, Ti, V, W, Y, and Zr.  

 

Figure 4. (a) Phase fractions of IN718 calculated by DFT (lines) without considering grain boundary 
constraint compared those calculated based on commercial database TCNI9 (symbols, 
www.thermocalc.com).  (b) Phase fractions for IN718 calculated by DFT (lines) with considering grain 
boundary constraint. (c) Fe-Ni binary phase diagram (Courtesy of Yang et al. [14,15]). (d) T-T-T diagram 
for IN718 (Courtesy of Oradei-Basile and Radavich [16]). 

This work aims to provide reliable thermochemical data that are mostly unavailable from 
experiments. Accordingly, a computational procedure was developed for predicting morphology 
evolutions as functions of temperature and composition. The applicability of this database was 
demonstrated using the AM Ni-based superalloy IN718 by monitoring the formations of various phases 
and their evolution during the heating-cooling cycles. Furthermore, to support the theoretical approach, 
a series of transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) 
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measurements of AM IN718 samples were performed to obtain spatial elemental distribution data. The 
procedure was verified by the successful predictions of the formations of various phases at low 

temperatures [L10-FeNi,  ’-Ni3(Fe,Al), α-Cr, -Ni3(Nb,Mo), ”-Ni3Nb , and η-Ni3Ti], intermediate 

temperatures [γ’-Ni3Al, δ-Ni3Nb, ”-Ni3Nb, α-Cr, and γ-Ni(Fe,Cr,Mo)], and high temperatures [δ-Ni3Nb 
and γ-Ni(Fe,Cr,Mo)]. For example, Figure 4 shows the presently predicted phases in Ni-based Inconel 
718 (IN718) in comparison with experimental Fe-Ni phase diagram [14,15] and the TTT (time-
temperature-transformation) diagram for IN718 [16]. Figure 4 shows the presently predicted enthalpies 
of IN718 as a function of temperature in comparison with the results from commercial database TCNI9 
(c.f., www.thermocalc.com) and experimental data [17,18]. It shows that the present results are in good 
agreement with experiments.  

Currently this work was published:  

• Y. Wang, F. Lia, K. Wang, K. McNamara, Y. Ji, X. Chong, S.-L. Shang, Z.-K. Liu, R.P. 
Martukanitz, L.-Q. Chen, A thermochemical database from high-throughput first-principles 
calculations and its application to analyzing phase evolution in AM-fabricated IN718, Acta Mater. 
240 (2022) 118331. 
 

3.2.2 CALPHAD-based thermodynamic database and its applications 

As a model system to examine Ni-based Inconel alloys (e.g., 625 and 718), a thermodynamic 
database of the Ni-Cr-Fe-Mo-Nb system was established based on our DFT-based first-principles 
results for the topologically close pack (TCP) phases. We used the high throughput CALPHAD modeling 
software packages ESPEI and PyCalphad [19] to adjust phase boundaries with respect to experimental 
data. The adopted sublattice models for the key TCP phases are as follows: 

•  (5-sublattice to represent 5 Wyckoff positions) 

•  (5-sublattice to represent 5 Wyckoff positions) 

• C14-laves (3-sublattice to represent 3 Wyckoff positions) 

•  (3-sublattice to represent 3 Wyckoff positions) 

• ’ (2-sublattice to represent 2 Wyckoff positions), and  

• ’’ (3-sublattice to represent 3 Wyckoff positions). 

 
One of the examples is the Ni-Nb system shown in Figure 5 [10]. Figure 5 (a) is the phase diagram 

from the TCNI9 commercial database developed by Thermo-Calc [20], Figure 5(b) is the phase diagram 
calculated by the present database. It can be seen from Figure 5(b), a better fitting with experimental 

data is achieved for  phase around compositions of 23.5 – 26.5 at. % Nb, and also a better agreement 

for  phase around 49.8 - 58.3 at. % Nb. At the same time, Figure 5 (c-d) shows the Gibbs energy 

surface of  phase calculated by PyCalphad [19]. Note that the three-sublattice model based on the 

Wyckoff positions are applied for the  phase (Figure 5 (d)) instead of the two-sublattice model used by 
the TCNI9 (Figure 5 (c)). With the presently updated sublattice, it allows the CALPHAD model to actually 
describe the Gibbs energy by incorporating more endmembers (the edges in the Gibbs energy surface) 
as show in Figure 5 (d), which give a better description of thermochemical properties like site fractions 
shown in Figure 3 and reduce the limitation to model multi-component system. 

The ternary systems (such as Ni-Fe-Mo, Ni-Fe-Nb, Ni-Mo-Nb, and Fe-Mo-Nb) were also optimized 
based on thermochemical and phase boundary data after all the binary systems were finished. For 
example, the isothermal section of Fe-Nb-Ni at 1373 K from the TCNI 9 database (Figure 6 (a)) and the 
present database (Figure 6 (b)) shows that the calculations from the present database has a better 

match with experimental data of the C14-laves phase. For the  phase region, two databases both 

shows a good agreement with experimental data, while the present database indicates that the  phase 
region is wider with increasing Fe. The isothermal section of Fe-Mo-Nb at 1373 K from TCNI 9 database 

http://www.thermocalc.com/
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(Figure 6 (c)) and the present database (Figure 6 (d)) shows that the present database has a better 

agreement with experimental data for the C14-laves region and the  phase region. 
Currently we published one CALPHAD modeling work of Ni-Hf [21] and are preparing more 

manuscripts to report the above modeling results.  

 

 

Figure 5. Nb-Ni phase diagram with experimental data and Gibbs energy surface of  phase. (a) Nb-Ni 
phase diagram of TCNI 9 database. (b) Nb-Ni phase diagram of the present database. (c) Gibbs surface 

energy of   from TCNI 9 database. (d) Gibbs surface energy of   from the present database. 
  

 

(a) (b) 

(c) (d) 
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Figure 6. Isothermal section of Fe-Nb-Ni at 1373K from TCNI 9 (a) and the present database (b) and 
isothermal section of Fe-Mo-Nb at 1373 K from TCNI 9 (c) and the present database (d).  

 

3.3 DFT-based pure shear deformation and its applications 
Shear deformation and associated properties such as stacking fault energy, , ideal (or theoretical) 

shear strength, IS, and critical resolved shear stress (CRSS), CRSS, are fundamental for understanding 
and modeling a vast number of materials properties and phenomena related to dislocations, plastic 

deformation, crystal growth, and phase transitions. Notably, IS is a key parameter to estimate the 

Peierls stress − the force required to move an individual dislocation. The Peierls stress, P, is 

approximately equal to CRSS at 0 K. For the case of a wide dislocation and according to Joós and 
Duesbery [22],   

𝜏P =
𝐾𝑏

𝑎
exp⁡(−2𝜋/𝑎) Eq. 2 

where b is the Burgers vector, a the row spacing of atoms within the slip plane, K an elastic factor, and 

 the half-width of the dislocation with  =
𝐾𝑏

4𝜋𝜏IS
.   For an isotropic crystal, 𝐾𝑖𝑠𝑜 = 𝜇(

𝑠𝑖𝑛2𝜃

1−𝜈
+ 𝑐𝑜𝑠2𝜃) with  

being shear modulus,  Poisson’s ratio, and 𝜃 the angle between the dislocation line and its Burgers 

vector. To predict the IS values, we adopted the DFT-based alias shear deformation scheme. For 

(a) (b) 

(c) 
(d) 
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example of Ni and Ni3Al, estimates of the Peierls stresses using IS and elastic properties suggest the 
prevalence of edge dislocations in Ni and screw dislocations in Ni3Al, agreeing with experimental 
observations regarding the dominance of edge dislocations in the first stage of crystal deformation in 
fcc metals and the yield-strength anomaly related to screw dislocations in Ni3Al; see Figure 7.   

In addition to Ni3Al, we also predicted the effect of alloying elements (denoted X) on the ideal shear 
strength for 26 dilute Ni-based alloys, Ni11X, as determined by first-principles calculations of pure alias 
shear deformations; see Figure 8. We found that the variations in ideal shear strength are quantitatively 
explored with correlational analysis techniques, showing the importance of atomic properties such as 
size and electronegativity. The shear moduli of the alloys are affirmed to show a strong linear 
relationship with their ideal shear strengths, while the shear moduli of the individual alloying elements 
were not indicative of alloy shear strength. 
 

 
Figure 7. Calculated Peierls stresses at 0 K for four cases of edge (e) and screw (s) dislocations using 
elastic factors for isotropic (iso) and anisotropic (aniso) crystals in comparison with experimental CRSS 
values at room temperature for Ni3Al and Ni. 
 

 
 
Figure 8. Calculated ideal shear strengths for 26 alloying elements and pure Ni (i.e., Ni11X) in units of 
GPa. The “pv” and “sv” listed after an atomic symbol indicates that the DFT calculations were performed 
while treating p or s states as valence states. Warmer colors indicate a higher value of ideal shear 
strength (blue = low, yellow = middle, red = high). 
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Currently we published two papers and one will be published soon.  

• S.L. Shang, J. D. Shimanek, S. Qin, Y. Wang, A.M. Beese, Z.K. Liu, Unveiling dislocation 
characteristics in Ni3Al from stacking fault energy and ideal strength: A first-principles study via 
pure alias shear deformation, Phys. Rev. B. 101 (2020) 024102. 

• J. D. Shimanek, S.-L. Shang, A.M. Beese, Z.-K. Liu, Insight into ideal shear strength of Ni-
based dilute alloys using first-principles calculations and correlational analysis, Comput. Mater. 
Sci. 212 (2022) 111564. 

• S. Lin, S. Shang, J.D. Shimanek, Y. Wang, A.M. Beese, Z. Liu, Predicting ideal shear strength 
of dilute multicomponent Ni-based alloys by an integrated first-principles calculations, 
CALPAHD modeling approach and correlation analysis, (2023) To be published and attached in 
this final report. 

 
 

3.4 DFT-informed FEM simulations 
To reduce reliance on experimental fitting data within the crystal plasticity finite element method 

(CPFEM), an approach is proposed that integrates first-principles calculations based on density 
functional theory (DFT) to predict the strainhardening behavior of pure Ni single crystals; see Figure 9. 
Flow resistance was evaluated through the Peierls–Nabarro equation using the ideal shear strength 
and elastic properties calculated by DFT-based methods, with hardening behavior modeled by imposing 
strains on supercells in first-principles calculations. Considered alone, elastic interactions of pure edge 
dislocations capture hardening behavior for small strains on single-slip systems. For larger strains, 
hardening is captured through a strain-weighted linear combination of edge and screw flow resistance 
components. The rate of combination is not predicted in the present framework, but agreement with 
experiments through large strains (~0.4) for multiple loading orientations demonstrates a possible route 
for more predictive crystal plasticity modeling through incorporation of analytical models of mesoscale 
physics.  

In addition to pure Ni, we also predicted the strain-stress curves of dilute Ni11X alloys using the same 
method, where the alloying elements X = Fe, Co, Cr, Al, V, Ti, and Nb [7].  

 

 
Figure 9. A schematic of the overall approach proposed in the current work, showing the transfer of 
information from the atomic scale ideal shear process to a mesoscale description of hardening on a slip 
system level to, finally, a description of macroscale deformation of single crystal samples.  

 
 We also used a full-field crystal plasticity model with a DFT-informed dislocation density (DD) 

hardening law to identify the key microstructural features correlated with micromechanical fields 
localization, or hotspots, in polycrystalline Ni. An ensemble learning approach to machine learning 
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interpreted with Shapley additive explanation was implemented to predict nonlinear correlations 
between microstructural features and micromechanical stress and strain hotspots; see Figure 10.  

Results reveal that regions within the microstructure in the vicinity of the grain boundaries, 
higher Taylor and Schmid factors, and high intergranular misorientations, are more prone to being 
micromechanical hotspots. Additionally, under combined loading, intergranular misorientations are 
more responsible than Schmid factor in formation of stress hotspots while Schmid factors take 
precedence under high plastic strain localizations. The present work demonstrates a successful 
integration of physics-based crystal plasticity with DD-based hardening into machine learning 
models to reveal the microscale features responsible for the formation of local stress and strain 
hotspots within the grains and near the grain boundaries, as function of applied deformation states, 
grain morphology/size distribution, and microstructural texture, providing insights into 
micromechanical damage initiation zones in polycrystalline metals (Figure 10). 

 

 
Figure 10. A schematic of the overall approach of physics-based crystal plasticity with DD-based 
hardening into machine learning models to reveal the microscale features responsible for the formation 
of local stress and strain hotspots within the grains and near the grain boundaries.  

 
Currently we published three papers and one will be published soon to demonstrate the DFT-

informed FEM simulations.  

• J.D. Shimanek, S.-L. Shang, A.M. Beese, Z.-K. Liu, Insight into ideal shear strength of Ni-based 
dilute alloys using first-principles calculations and correlational analysis, Comput. Mater. Sci. 
212 (2022) 111564. 

• J.D. Shimanek, S. Qin, S.-L. Shang, Z.-K. Liu, A.M. Beese, Predictive Crystal Plasticity Modeling 
of Single Crystal Nickel Based on First-Principles Calculations, JOM. 74 (2022) 1423–1434. 

• A. Eghtesad, J.D. Shimanek, S.-L. Shang, R. Lebensohn, M. Knezevic, Z.-K. Liu, A.M. Beese, 
Density functional theory-informed dislocation density hardening within crystal plasticity: 
Application to modeling deformation of Ni polycrystals, Comput. Mater. Sci. 215 (2022) 111803.  

• A. Eghtesad, Q. Luo, S. Shang, R. Lebensohn, M. Knezevic, Z. Liu, A.M. Beese, Machine 
learning-enabled identification of micromechanical stress and strain hotspots predicted via 
dislocation density-based crystal plasticity simulations, (2023) To be published.  
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2. GRAPHICAL MATERIALS LIST(S) 
 

(a) Logos of our software tools: DFTTK, PyCalphad, and ESPEI 

 
 

(b)  

 
 

(c)  

 
 

 
Figure 11. Key graphical materials for this project (a) the logos of our software tools: DFTTK, Pycalphad, 
and ESPEI, (b) the idea of CALPHAD modeling, and (c) the DFT-informed FEM simulations. 

 

3. LIST OF KEY ACRONYMS AND ABBREVIATIONS  
 

ABBREVIATIONS EXPLANATIONS 

CALPHAD  Calculations of phase diagram 

DFT Density functional theory 

DFTTK Density functional theory based tool kit 
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ESPEI Extensible, self-optimizing phase equilibrium computer program 

PyCalphad Python based CALPHAD modeling code  

SIPFENN Extensible structure-informed prediction of formation energy by maching 
learning  

FEM Finite element method 

CPFEM Crystal plasticity finite element simulations 

 

4. PRODUCTS 
4.1. Two Ph.D. students graduated with two theses published 

• Shipin Qin, “Influence of microstructure on the multiaxial plasticity and fracture of dual phase 
steels: experiments and multiscale computational modeling”, Pennsylvania State University, 
Ph.D. thesis, 2020. https://etda.libraries.psu.edu/files/final_submissions/21517  
 

• Brandon Bocklund, “Computational design of additively manufactured functionally graded 
materials by thermodynamic modeling with uncertainty quantification”, Pennsylvania State 
University, Ph.D. thesis, 2021. https://etda.libraries.psu.edu/catalog/21192bjb54  
 

4.2. Three Ph.D. students and one postdoc partially supported  

• Shuang Lin (Ph.D. student, to be graduated within 2 years)  

• Hui Sun (Ph.D. student, to be graduated within 1 year)  

• John Shimanek (Ph.D. student, to be graduated within 1 year) 

• Adnan Eghtesad (Postdoc)  

 

4.3. Twenty publications (17 papers published and 3 to be published and attached) 

• Fundamentals of thermodynamics (3 papers published)  
o Review of thermodynamics and its applications in 2020 by Liu [23]  
o Entropy and critical phenomena in 2019 by Liu et al. [24] 
o Theory of cross phenomena in 2022 by Liu (cited this project but indirectly) [25]  

• Software tools development  (3 papers published or to be published) 
o DFTTK in 2019 by Wang et al. [1] 
o SIPFENN in 2022 by Krajewski et al. [2] 
o ESPEI in 2022 by Hui et al. (to be published, attached) [10] 

• Thermodynamic databases development (3 papers published or to be published) 
o DFT-based database in 2022 by Wang et al. [26] 
o CALPHAD-based thermodynamic modelings of the Ni-Hf [21] and Nb-Ni [10] systems 

• Applications of thermodynamics and kinetics (1 paper published) 
o Predict critical Al concentration to form external Al2O3 scale in Ni-Al alloy in 2022 by 

Ross et al. [27] 

• Ideal shear deformation and associated properties (e.g., input for DFT-informed FEM, 3 
papers published or to be published) 

o Ni3Al in 2020 by Shang et al. [28] 
o Dilute Ni-X alloys in 2022 by Shimanek et al. [7] 
o Dilute Ni-X-Z by Lin et al. (to be published, attached) [29] 

• DFT-informed FEM (or ML-informed FEM) (4 papers published or to be published) 

https://etda.libraries.psu.edu/files/final_submissions/21517
https://etda.libraries.psu.edu/catalog/21192bjb54
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o Single crystal Ni [6] and dilute Ni-X alloys [7] 
o Ni polycrystal [8]  
o Hotspots by ML (to be published, attached) [5] 

• Machine learning with input data from DFT-based calculations (2 papers published or to be 
published) 

o Stacking fault energy [4] 
o Hotspots by ML (to be published, attached) [5] 

• Experimental work of AM (1 paper published) 
o Inconel 625 manufactured by laser powder bed fusion [30]  

• Other works indirectely related to this project (3 papers published) 
o Partially supported by this project to study strain-controlled antiferromagnetic memory 

[31]; to study synergetic effects of solute and strain in biocompatible Zn-based and Mg-
based alloys [32]; and to study zentropy theory for positive and negative thermal 
expansion [33] 

 
 

4.4. Websites related to the results of this project  

• http://espei.org for ESPEI (Extensible Self-optimizing Phase Equilibria Infrastructure): A tool for 

automated thermodynamic database development within the CALPHAD method. 

• https://pycalphad.org for pycalphad code: A Python library for computational thermodynamics 

using the CALPHAD method. 

• https://www.dfttk.org for DFTTK: Density functional theory (DFT) workflows for finite temperature 

thermodynamics based on the atomate (atomate.org) workflows. 

• https://www.phaseslab.com/sipfenn for SIPFENN: Structure-Informed Prediction of Formation 

Energy using Neural Networks. 

• https://www.phaseslab.com/MPDD for the Material-Property-Descriptor Database. 
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Abstract 

 

The Nb-Ni system is remodeled with uncertainty quantification (UQ) using the upgraded software 

tools of PyCalphad and ESPEI with new capability by modeling site occupancy of Wyckoff 

position for the phases of interest. Specifically, the five- and three-sublattice models are used to 

model the topologically close pack (TCP) phases of -Nb7Ni6 and 𝛿-NbNi3 according exactly to 

their Wyckoff positions. The inputs for CALPHAD-based thermodynamic modeling include the 

predicted thermochemical data as a function of temperature by density functional theory (DFT) 

based first-principles and phonon calculations together with phase equilibrium and site occupancy 

data in the literature. In addition to phase diagram and thermodynamic properties, the CALPHAD 

predictions of site occupancies agree well with experimental data, namely the measured site 

occupancies of Nb in -Nb7Ni6. In addition, the UQ values estimated using the Markov Chain 

Monte Carlo (MCMC) method as implemented in ESPEI make it possible to quantify uncertainties 

in the Nb-Ni system, for example, site occupancy in -Nb7Ni6 and enthalpy of mixing in liquid. 

 

Highlights  

• New capability implemented into PyCalphad and ESPEI to model site occupancy 

• TCP phases (-Nb7Ni6 and δ-NbNi3) modeled well using sublattice models according 

exactly to their Wyckoff positions 

• The Nb-Ni system remodeled with uncertainty quantification 

• Finite-temperature thermochemical properties predicted by DFT-based first-principles 

and phonon calculations 

 

 

Keywords: CALPHAD modeling; Nb-Ni; PyCalphad and ESPEI; First-principles and phonon 

calculations; Site occupancy; TCP phases; Uncertainty quantification. 
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1     Introduction 

The topologically close pack (TCP) phases, also known as the Frank-Kasper phases [1], are 

intermetallic compounds with complex crystalline structures, which are frequently observed in Ni-

based superalloys, for example, the 𝜎, 𝜒, 𝑃, 𝑅, 𝛿, 𝜇, 𝑀, A15, and Laves phases [2]. TCP phases are 

usually brittle and detrimental, and hence, their type, amount, and distribution are of great 

importance for the performance of Ni-based superalloys [3]. For example, when Ni-based 

superalloys are highly alloyed with refractory elements (e.g., Cr, Mo, Nb, Ta, W, and Re) to 

achieve better strengths at high temperatures, the TCP phases will be formed and produce 

detrimental effects on the properties of superalloys by draining refractory elements from the matrix 

to reduce the solid solution strengthening like the  phase with the FCC lattice in Ni-based 

superalloys [4] or the strengthening phase like the ’ phase with the L12 lattice in Co-based 

superalloys [5].  

 

Relevant to the present work, the TCP phases in the Nb-Ni system are δ-NbNi3 and -Nb7Ni6, 

which are deleterious to the performance of Ni-based superalloys since their formations will drain 

alloying element Nb from the matrix [6]. For example, the formation of a 10% volume fraction of 

δ-NbNi3 can lower 40% of elongation in Ni-based superalloy of Inconel 718 [7]. The formation of 

around 10 vol.% of δ-NbNi3 after stress relief heat treatment resulted in a 9% increase of the 

ultimate tensile strength but a 45% decrease of the fracture strain in Inconel 625 [8]. Similarly, -

Nb7Ni6 also shows an undesirable influence on mechanical properties, for example, the 

precipitation of -Nb7Ni6 in the Ni-Mo-Cr alloy decreased its room temperature impact roughness 

by 100 joules in the Charpy test [9]. Therefore, an accurate thermodynamic description of the TCP 

phases in the Nb-Ni system is critical for a better understanding of their formations through 

thermodynamic calculations, so that the TCP phases can be avoided through designing chemistry 

and/or manufacturing process of superalloys. 

 

In general, the TCP compounds are complex intermetallic phases with different elements in one 

or more of their Wyckoff sites. For example, δ-NbNi3 includes three Wyckoff sites (2a, 2b, and 

4e) with space group Pmmn (No. 59) [10] as shown in Table 1, while -Nb7Ni6 has five Wyckoff 

sites (3a, 6c(1), 6c(2), 6c(3), and 18h) with space group R3̅m (No. 166) [11]  as shown in Table 1. 
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The crystallographic information of Wyckoff sites indicates that a three-sublattice model is 

expected for a complete description of δ-NbNi3 and a five-sublattice model for -Nb7Ni6. 

However, the previous CALPHAD modeling works of Nb-Ni [12–15] cannot capture well the 

change of site occupancies in TCP phases, i.e., the occurrence of a given kind of atoms (or 

vacancy) in a given Wyckoff position; for example, Nb in Wyckoff sites of -Nb7Ni6 measured 

by Joubert et al. [16], since -Nb7Ni6 was described by the simplified sublattice models like 

(Ni)0.47(Nb)0.53[17], (Nb, Ni)7(Nb)6 [13], and (Nb, Ni)1Ni4(Nb, Ni)2Nb6 [14]; see details in Table 2 

which summarizes the previous thermodynamic models for -Nb7Ni6 and δ-NbNi3. It shows that 

Kaufman and Nesor [17] modeled -Nb7Ni6 and δ-NbNi3 as stoichiometric compounds using 

(Ni)0.47 (Nb)0.53 for -Nb7Ni6, (Ni)0.75(Nb)0.25 for δ-NbNi3, while Kejun et al. [14] used a four-

sublattice model (Nb, Ni)1Ni4(Nb, Ni)2Nb6 for -Nb7Ni6 and a two-sublattice model (Nb, Ni)3(Nb, 

Ni)1 for δ-NbNi3. Bolcavage and Kattner [13] used the model (Nb, Ni)7(Nb)6 for -Nb7Ni6. Note 

that Joubert et al. [18] adopted a five-sublattice model for -Nb7Ni6, i.e., (Nb, Ni)1Nb2Nb2(Nb, 

Ni)2(Nb, Ni)6, which gives a better description of solubility and site occupancy in -Nb7Ni6. 

However, two of the sublattices in Joubert et al.’s model [18] include only one element Nb instead 

of two elements of Nb and Ni, in which the absence of all possible elements limits its model for 

further application in higher order systems. Most recently, Chen et al. [15] remodeled the Nb-Ni 

system with the (Nb, Ni)1Nb4(Nb, Ni)2(Nb, Ni)6 model for -Nb7Ni6 and the (Nb, Ni)3(Nb, Ni)1 

model for δ-NbNi3. Table 2 summarizes that none of the previous thermodynamic models of -

Nb7Ni6 were based exactly on Wyckoff positions, resulting in a discrepancy regarding site 

occupancy between CALPHAD modeled results and experiments. The less accurate descriptions 

of TCP phases, especially their site occupancies, in the Nb-Ni system motivate the present 

CALPHAD remodeling. The sublattice model with all possible elements in each sublattice is 

needed to accurately describe the distribution of elements in different sublattices, which will be 

used to compare with other models and experimental data, and further benefit the model of multi-

component systems. 

 

It is worth mentioning that an arbitrary value of 5000 J/mol-atom was assigned as the enthalpy of 

formation for nonstable endmember compounds of TCP phases in Nb-Ni by Chen et al. [19], which 

is less reliable. To address this issue, in the present work, density functional theory (DFT) based 
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first-principles calculations (and phonon calculations for stable endmembers) are used to 

determine thermodynamic properties at 0 K (or as a function of temperature for stable 

endmembers) for all endmembers of -Nb7Ni6 and δ-NbNi3. 

 

In summary, the present work aims to remodel the Nb-Ni system in terms of the CALPHAD 

approach with UQ using the open-source tools of ESPEI (the Extensible, Self-optimizing Phase 

Equilibria Infrastructure) for database development [20], and PyCalphad for equilibrium 

thermodynamic calculations [21]. Here, the input for CALPHAD modeling includes the present 

first-principles and phonon calculations, and experimental data in the literature with an emphasis 

on site occupancy data. Note that ESPEI has been upgraded in the present work, making it possible 

to model site occupancies with UQ for Wyckoff sites.  

 

2 Literature Review of Thermodynamic properties in Nb-Ni 

2.1  The previous CALPHAD modeling  

The Nb-Ni system has six phases including three solution phases (BCC, FCC, and liquid) and three 

intermetallic compounds (-Nb7Ni6, δ-NbNi3, and NbNi8) based on the summary by Chen et al. 

[19]. The Nb-Ni system has been modeled several times in terms of the CALPHAD approach [12–

15]. Kaufman and Nesor [17] provided a modeled Nb-Ni phase diagram by considering -Nb7Ni6 

and δ-NbNi3 as stoichiometric compounds as shown in Table 2, which didn’t match with 

experimental observations of Nb solubilities in these two phases measured by Murametsu et al.  

[22], Duerden et al. [23], and Chen et al. [24].   Kejun et al.’s modeling work [14] adopted the 

model of (Nb, Ni)1Ni4(Nb, Ni)2Nb6 for -Nb7Ni6, which cannot describe well the solubilities of 

Nb in the composition range of 50 – 54 at. % Nb around 1100℃ measured by Duerden et al. [23]. 

In addition, the enthalpies of formation of -Nb7Ni6 from Kejun et al.’s modeling show a large 

discrepancy around 13 kJ/mol-atom compared with experiments by Argent et al. [25]. In the 

modeling work by Bolcavage and Kattner [13], they did not consider the NbNi8 compound because 

of the lacking of experimental data at that time. The predicted liquidus in the Nb-rich region is 

higher around 200 – 300 K than experimental data from Wicker et al. [26]. Joubert et al. [18] 

considered NbNi8 in their modeling work. However, an arbitrary value of 5000 J/mol-atom was 

used to describe the enthalpy of formation for the pure element endmembers in the TCP phases. 
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This value is too positive to describe correctly the partially occupied Wyckoff sites in -Nb7Ni6  in 

comparison with experimental data by Joubert et al. [16].  

 

The most recent modeling work was done by Chen et al. [19], which was widely used in 

thermodynamic modeling of ternary systems such as Fe-Nb-Ni [27], Nb-Ni-Zr [28], and Nb-Ni-

Ti [29]. Chen et al.’s work [19] contains the NbNi8 phase but fails to depict accurate phase 

boundaries between -Nb7Ni6 and δ-NbNi3 and between -Nb7Ni6 and BCC measured by 

Murametsu et al. [22]. In addition, Chen et al.’s modeling didn’t consider experimental liquidus 

temperatures with respect to BCC by Wicker et al. [26] and the enthalpies of mixing for the liquid 

at 1823 K by Chistyakov et al. [30].  

 

Due to the limitation of the aforementioned sublattice models of TCP phases to describe well phase 

boundaries and thermochemical properties in the Nb-Ni system, an appropriate sublattice model 

derived from crystallographic information is needed to precisely describe the TCP phases. To this 

end, the sublattice model of (Nb, Ni)1(Nb, Ni)1(Nb, Ni)2 is adopted to model δ-NbNi3 and (Nb, 

Ni)1(Nb, Ni)2(Nb, Ni)2(Nb, Ni)2(Nb, Ni)6 is used to describe -Nb7Ni6 in the present work, 

corresponding exactly to their Wyckoff positions as shown in Table 1. 

 

2.1  Thermodynamic properties 

2.1.1  Phase diagram data 

Phase boundaries between FCC and liquid (0 – 15 at. % Nb) were measured using thermal analysis 

via heating curves by Duerden et al. [23], Pogodin et al. [28], and Grube et al. [32]; using 

differential thermal analysis (DTA) by Chen et al. [24] and Kajikawa [33]; and using the solid-

liquid diffusion couple method (DCM) by Kajikawa [33]. All these measurements show good 

agreement, e.g., the temperature variation at each fixed composition is less than 40 K. All these 

data are hence used in the present CALPHAD modeling of the Nb-Ni system. 

 

Phase boundaries between FCC and δ-NbNi3 (0 – 15 at. % Nb) were measured by Pogodin et al. 

[31] and Grube et al. [32] by thermal analysis from heating curves. Chen et al. [24] used DFT 

results to analyze the FCC to δ-NbNi3 transition at 1322 K, while Guseva et al. [34] detected the 
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FCC to δ-NbNi3 transition using X-ray powder diffraction (XRD) at 1073 – 1473 K. Joubert et al. 

[18] assessed the homogenous regions of δ-NbNi3 using electron probe micro-analysis (EPMA). 

All these measurements show good agreement with each other, e.g., the composition change is 

only 5 at. % Nb from 1000 K to 1500 K, and we hence use all these data in the present CALPHAD 

modeling. 

 

The NbNi8 phase was first observed using transmission electron microscopy (TEM) by Quist et al. 

in 1969 [35]. It was confirmed by Joubert et al. [18] that NbNi8 is a stable phase by examining 

samples annealed at 723 K for 76 days using XRD. Wekken et al. [36] used the changes in 

electrical resistivity to detect the existence of NbNi8, showing that NbNi8 forms at 10.3 at. % Nb 

at 853 K. Chen et al. [24] also detected NbNi8 with differential scanning calorimetry (DSC). 

Therefore, NbNi8 is considered as a stable phase in the present work. 

 

The Nb2Ni phase was observed by Zhao et al. [37] by using the TEM method for sample annealing 

at 1523 K for 5h. However, this phase was not confirmed further using samples with a longer 

annealing time. The Nb2Ni phase is hence excluded in the present modeling work.  

 

Regarding solubility of Nb in δ-NbNi3, Murametsu et al. [22] observed 24.0 – 26.6 at. % Nb in δ-

NbNi3 in the temperature range of 1023 K – 1303 K by EPMA. Chen et al. [24] reported the phase 

boundary around 23.4 – 25.7 at. % Nb by DTA at 1323 K for 336h. Duerden et al. [23] estimated 

the phase boundary around 23.5 – 26.5 at. % Nb using XRD at 1273 K.  The phase boundaries of 

δ-NbNi3 between δ-NbNi3 and liquid were measured by Grube et al. [32], Duerden et al. [20], and 

Svechnikov et al. [38] using heating curves of thermal analysis, and by Chen et al. [24] using DTA. 

All these data are included in the present CALPHAD modeling.  

 

Regarding solubility of Nb in -Nb7Ni6, Duerden et al. [23] estimated 50 – 54 at. % Nb in -

Nb7Ni6 around 1373 K using the optical microscopy method. Svechnikov et al. [38] reported 49.8 

- 58.3 at. % Nb in -Nb7Ni6 by using the heating curves of thermal analysis. Murametsu et al. [22] 

reported 48.6 - 56.2 at. % Nb in -Nb7Ni6 around 1023 K – 1303 K by EPMA. Joubert et al. [16] 

reported 49.6 - 56.9 at. % Nb in -Nb7Ni6 at 1273 K by EPMA. Chen et al. [24] estimated 49.5 – 

56.3 at. % Nb in -Nb7Ni6 around 1273 K – 1303 K by EPMA.  The phase boundaries of -Nb7Ni6 
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between -Nb7Ni6 and liquid were measured by Duerden et al. [23] and Svechnikov et al. [38] 

using the heating curves of thermal analysis and by Chen et al. [24] using DTA. All these data are 

included in the present CALPHAD modeling.  

 

The measured temperatures of invariant reactions between liquid, δ-NbNi3, and FCC phase agree 

well with each other from 1170 K to 1175 K by Chen et al. [24] using DTA, and by Duerden et al. 

[28] and Svechnikov et al. [39] using the heating curves of thermal analysis. However, the invariant 

temperatures between liquid, δ-NbNi3, and -Nb7Ni6 have large uncertainties (from 1290 to 1320 

K) measured by Duerden et al. [28] and Wicker et al. [26]. Nevertheless, all these data are included 

in the present CALPHAD modeling.  

 

For phase boundaries between liquid and BCC, Svechnikov et al. [39] and Wicker et al. [26] 

measured them by quenching the samples, and Duerden et al. [23] measured them by heating, 

cooling, and quenching. Albeit these measurements exhibit noticeable discrepancies, as much as 

300 K, the present modeling work considers all these experimental data.  

 

2.1.2  Thermochemical data 

The enthalpies of formation for the Nb-Ni system were measured by Argent et al. [25] through the 

calorimetry method with an error around 4 kJ/mol-atom from 12.5 – 75.0 at. % Nb. On the other 

hand, electromotive force (emf) measurements were adopted by Sokolvskaya et al. [40], Alekseev 

et al. [34], and Lyakishev et al. [42] to determine the enthalpies of formation for intermediate 

phases at 25.0 at. % Nb and 50.0 at. % Nb. However, the results from Alekseev et al. [41] and 

Sokolvskaya et al. [40] show great discrepancies around 8 kJ/mole-atom at 25.0 at. % Nb with 

respect to those from Argent et al. [25] as shown in Fig. 1. Compared with the DFT results from 

the Materials Project [43] and the Open Quantum Materials Database (OQMD) [44] as shown in 

Fig. 1, the DFT calculations using the generalized gradient approximation (GGA) are higher than 

experiments data by around 10%; agreeing with the general trends of higher enthalpies of 

formation from DFT-based calculations in comparison with those from experimental 

measurements [45]. The enthalpies of formation data from Argent et al. [25] are higher by around 

3.4 kJ/mol-atom for compositions of 25.0 at. % Nb, but still compatible with the results from DFT-
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based predictions [45]. Therefore, the data from Argent et al. [25] are more reliable than those 

from Sokolvskaya et al. [40] and hence adopted in the present CALPHAD modeling.  

 

Two sets of measurements about enthalpy of mixing were available for the Ni-rich liquid phase. 

As shown in Fig. 2, the data from Schaefers et al. [46] at 1927 K and 2000 K show a larger 

difference around 15 kJ/mol-atom at 30.0 at. % Nb compared with those from Chistyakov et al. 

[30] at 2096 K and Sudavtsova et al. [40] at 2148 K. In general, the enthalpies of mixing for liquids 

and solids should be compatible with each other in the same alloy system. For example, in the Al-

Cu system [47] the difference between the enthalpy of mixing in liquid and the enthalpy of 

formation in solid is around 4 kJ/mole-atom at 40.0 – 60.0 at. % Cu, and in the Fe-Ni system [48] 

the difference is around 5 kJ/mole-atom at 50.0 – 75.0 at. % Ni. The enthalpies of formation of 

solids in the Nb-Ni system are around 30 kJ/mole-atom at 25.0 at. % Nb, which is closer to the 

data of liquid (around 25 kJ/mole-atom) measured by Chistyakov et al. [30] and Sudavtsova et al. 

[40]. Since all the experiments were measured using the calorimetry method, the results from 

Chistyakov et al. [30] and Sudavtsova et al. [40] are adopted in the present work, while the 

experimental data of liquid from Schaefers et al. [46] is excluded because the difference is too 

large (up to 15 kJ/mole-atom at 25.0 at. % Nb) comparing with the enthalpies of formation of 

solids in the Nb-Ni system.  

 

Experimental data of site occupancy are only available for Nb in -Nb7Ni6 by Joubert et al. [16] 

measured by EPMA at 1273 K. With the present upgrade of the ESPEI code (see details in 

Sec.3.2.2), these data are included in the present CALPHAD modeling.  

 

3 Methodology 

3.1 First-principles thermodynamics  

DFT-based first-principles calculations can be used to predict Gibbs (and Helmholtz) energy of 

solid phase as a function of temperature. The expression for Gibbs energy under zero external 

pressure (𝑃 = 0 GPa, i.e., the Helmholtz energy) within the quasiharmonic approach is [49], 

𝐺 = 𝐹(𝑉, 𝑇)|𝑃=0 + 𝑃𝑉|𝑃=0 = 𝐸0(𝑉) + 𝐹𝑣𝑖𝑏(𝑉, 𝑇) + 𝐹𝑒𝑙(𝑉, 𝑇) Eq. 1 

https://www.sciencedirect.com/topics/materials-science/calorimetry
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where 𝐹 is the Helmholtz energy, 𝑉 is the volume, 𝑇 is the absolute temperature, and 𝑃 is the 

pressure. 𝐸0(𝑉) is the static energy at 0 K without vibrational contribution. 𝐹𝑣𝑖𝑏 is the contribution 

of lattice vibrations and 𝐹𝑒𝑙 the contribution by thermal electrons, and both are functions of V and 

T. 

 

The energy versus volume (E-V) curves for each phase (or endmember) at 0 K were predicted by 

DFT-based first-principles calculations, usually employing 7 data points. The 𝐸0(𝑉) curves were 

fitted by the following 4-parameter Birch-Murnaghan (BM4) equation of state (EOS) [49],  

𝐸0(𝑉) = 𝑘1 + 𝑘2𝑉−2/3 + 𝑘3𝑉−4/3 + 𝑘4𝑉−2 Eq. 2 

where 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are fitting parameters. This EOS will result in four equilibrium properties 

at 𝑃 = 0 GPa, including equilibrium energy 𝐸0, volume V0, bulk modulus B0, and the pressure 

derivative of bulk modulus B. The vibrational contribution 𝐹𝑣𝑖𝑏 can be predicted by the frequency-

dependent phonon density of states (DOS) [50], 

𝐹vib(𝑇, 𝑉) = 𝑘𝐵𝑇 ∫ ln [2 sinh
ℏ𝜔

2𝑘𝐵𝑇
] 𝑔(𝜔) 𝑑𝜔

∞

0

 
Eq. 3 

where 𝑔(𝜔) is the phonon DOS as a function of 𝑉  and frequency 𝜔 . The thermal electronic 

contribution 𝐹𝑒𝑙 can be predicted by Mermin statistics through 𝐹𝑒𝑙 = 𝐸𝑒𝑙 − 𝑇𝑆𝑒𝑙, where  𝐸𝑒𝑙 is the 

internal energy at 𝑉 and 𝑇, and 𝑆𝑒𝑙 the bare electronic entropy [51]. 

 

3.2 Details of first-principles calculations 

DFT-based first-principles calculations were performed for BCC Nb and FCC Ni as reference 

states and the two TCP phases of δ-NbNi3 and -Nb7Ni6 in the Nb-Ni system. δ-NbNi3 was 

modeled by a three-sublattice model with a total of 8 endmembers; and -Nb7Ni6 was modeled by 

a five-sublattice model with 32 endmembers. Phonon calculations were performed for BCC Nb 

and FCC Ni and the stable endmembers of δ-NbNi3 and -Nb7Ni6 including Nb2Ni2Ni4 and 

Nb2Ni2Ni4 of δ-NbNi3, and Nb6Ni6Nb6Ni18Nb3, Nb6Nb6Nb6Ni18Nb3, Nb6Nb6Nb6Ni18Ni3, and 

Nb6Nb6Ni6Ni18Ni3 of -Nb7Ni6. Note that the crystal structures of -Nb7Ni6 and δ-NbNi3 can be 

found in such as the Materials Project [43]. 
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The Vienna ab initio Simulation Package (VASP) [52] was adopted for DFT-based first-principles 

and phonon calculations in the present work. The projector augmented wave (PAW) method was 

used to describe the ion-electron interaction [53], while the generalized gradient approximation 

(GGA) by Perdew, Burke, and Ernzerhof (PBE) was used to describe the exchange-correlation 

functional [54]. The plane-wave cutoff energy was set to be 367.945 eV for structural relaxations 

and phonon calculations, and 520 eV for the final static calculations to get accurate E-V data points 

and electron DOS’s. The convergence criterion of electronic self-consistency was set as 6×10-5 

eV/atom for relaxations, static calculations, and phonon calculations, while k-points meshes of 

(8×8×7) were used for relaxations and static calculations of δ-NbNi3 and (5×5×1) for relaxations 

and static calculations of -Nb7Ni6. For phonon calculations, k-points meshes of (2×2×2) were 

adopted for δ-NbNi3 and (1×1×1) for -Nb7Ni6. The selected electronic configurations include 5 

charge valences for Nb and 10 for Ni, which are the same as those used by the Materials Project 

[43].  

 

3.2 CALPHAD modeling 

3.2.1  Thermodynamic models 

There are three types of phases in the Nb-Ni system, i.e., the solution phases of BCC, FCC, and 

liquid, the stoichiometric compound of NbNi8, and the non-stoichiometric TCP phases of δ-NbNi3 

and -Nb7Ni6. For the solution phases, the Redlich-Kister polynomial [55] was adopted to describe 

Gibbs energy, 

𝐺𝑚
𝛼 = 𝑥𝑁𝑏𝐺𝑁𝑏

𝛼 + 𝑥𝑁𝑖𝐺𝑁𝑖
𝛼 + 𝑅𝑇(𝑥𝑁𝑏𝑙𝑛𝑥𝑁𝑏 + 𝑥𝑁𝑖𝑙𝑛𝑥𝑁𝑖)

+ 𝑥𝑁𝑏𝑥𝑁𝑖 ∑ 𝐿𝑁𝑏,𝑁𝑖(𝑥𝑁𝑏 − 𝑥𝑁𝑖)𝑘𝑘

𝑘=0

 

Eq. 3 

where 𝑥𝑁𝑏 and 𝑥𝑁𝑏 are the mole fractions of Nb and Ni in phase 𝛼. 𝐺𝑁𝑖
𝛼  and 𝐺𝑁𝑏

𝛼  are the Gibbs 

energies of pure elements, Ni and Nb, with respect to their standard element reference (SER) states 

at P = 1 bar and T = 298.15 K, obtained from the Scientific Group Thermodata Europe (SGTE) 

database [56]. 𝑅 is the gas constant, 𝑇 the temperature, and 𝐿𝑁𝑏,𝑁𝑖
𝑘  the kth interaction parameter 

between Nb and Ni, 

𝐿𝑁𝑏,𝑁𝑖
𝑘 = 𝑎 + 𝑏𝑇 Eq. 4 

where a and b are model parameters.  
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NbNi8 is treated as a stoichiometric compound with its Gibbs energy described by, 

𝐺𝑁𝑏:𝑁𝑖
𝑁𝑏𝑁𝑖8 = 𝐺𝑁𝑏

𝐵𝐶𝐶0 + 8 𝐺𝑁𝑖
𝐹𝐶𝐶0 + 𝐴 + 𝐵𝑇 Eq. 4 

where 𝐴 and 𝐵 are model parameters. 𝐺𝑁𝑏
𝐵𝐶𝐶0  and 𝐺𝑁𝑖

𝐹𝐶𝐶0  are the Gibbs energies of pure Nb and 

Ni in their stable structures, i.e., BCC and FCC, respectively. The values of 𝐺𝑁𝑏
𝐵𝐶𝐶0  and 𝐺𝑁𝑖

𝐹𝐶𝐶0  are 

taken from the SGTE database [56]. 

 

For non-stoichiometric compounds, the compound energy formalism (CEF) is used to describe the 

phase with its sublattices corresponding to its Wyckoff sites, see Table 1 [57]. In the CEF, the 

Gibbs energy for the phase of interest is described as follows,  

𝐺𝑚𝑓 = 𝐺𝑚𝑓
0 + 𝑅𝑇 ∑ 𝑎𝑡

𝑡
∑ 𝑦𝑖

𝑡𝑙𝑛𝑦𝑖
𝑡

𝑖
+ 𝐺𝑚𝑓

𝐸  Eq. 5 

where 𝐺𝑚𝑓
0  is the Gibbs energy contribution of each endmember, 𝑅 the gas constant, and T the 

temperature. ∑ 𝑎𝑡
𝑡 ∑ 𝑦𝑖

𝑡𝑙𝑛𝑦𝑖
𝑡

𝑖  is sublattice ratio 𝑎𝑡 in the sublattice 𝑡 times the ideal mixing in this 

sublattice, which is calculated by the site fraction 𝑦𝑖
𝑡 and site fraction 𝑦𝑖

𝑡. 𝐺𝑚𝑓
𝐸  is the excess Gibbs 

energy which contains the contributions from the mixing in one sublattice where all other 

sublattices only contain one component; and from the mixing in more than one sublattice where 

more than one sublattices contain two or more components.  

 

3.2.2  CALPHAD modeling by the upgraded ESPEI and PyCalphad 

The open-source software tools, PyCalphad [21] and ESPEI [58], were employed in the present 

work to remodel the Nb-Ni system. PyCalphad is a Python-based code for computational 

thermodynamics using the CALPHAD method, focusing on calculating phase diagrams, 

investigating thermodynamic properties, and designing new materials [58]. ESPEI is a tool for 

database development using the CALPHAD approach [58], which uses PyCalphad as 

computational engine to perform thermodynamic calculations. ESPEI has two major features. First, 

ESPEI uses thermochemical data to choose and evaluate parameters to model Gibbs energy of 

individual phases. Second, ESPEI optimizes and quantifies uncertainties of model parameters 

using both thermochemical and phase equilibrium data through Bayesian parameter estimation via 

an ensemble Markov Chain Monte Carlo (MCMC) [59–61]. However, in the previous versions of 

ESPEI, the site occupancy data cannot be used as input for CALPHAD modeling. 
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In the present work, a new function that uses site occupancy data as input to optimize model 

parameters and quantify their uncertainties is implemented in ESPEI. ESPEI uses Bayesian 

parameter estimation to optimize model parameters, in which the acceptance of parameters is 

based on the posterior probability 𝑝(𝜃/𝐷) of the model parameters 𝜃  under the data 𝐷 . The 

posterior probability 𝑝(𝜃/𝐷) can be calculated by the likelihood 𝑝(𝐷/𝜃), the prior 𝑝(𝜃), and the 

evidence 𝑝(𝐷), i.e., 𝑝(𝜃/𝐷)  =  𝑝(𝐷/𝜃) ∗ 𝑝(𝜃)/𝑝(𝐷). The likelihood 𝑝(𝐷/𝜃) is related to how 

experimental data are described by the proposed parameters, and the prior 𝑝(𝜃) is the probability 

distribution of each parameter. The flowchart of the present implementation is illustrated in Fig. 

3, showing that ESPEI can take site occupancy as input using the JavaScript Object Notation 

(JSON) data format, propose new parameter values from the MCMC method, and calculate the 

log-type posterior probabilities from the prior and likelihood of site occupancy and other 

experimental data from the fixed temperature, pressure, and the number of moles. Then, the 

acceptance of the new parameters is decided by the Metropolis-Hastings criteria [61], comparing 

the posterior probabilities calculated from the new parameters with those from the current 

parameters. The JSON files that contain data about site occupancy are proposed and the codes to 

calculate the posterior probability of site occupancy are implemented into the error functions of 

ESPEI. To be consistent with the weighting of error from different types of data like activity, phase 

boundary, and thermochemical data, the likelihood for site occupancy data is normalized by the 

standard deviation of the error. The default value of the standard deviation of the site occupancy 

is set to be 0.01. After this implementation, the site occupancy data can be considered together 

with thermochemical and phase equilibrium data to fit all model parameters simultaneously, 

enabling the uncertainty propagation of site occupancies. In the present work, experimental data 

of site occupancy by Joubert et al. [16] were used to remodel -Nb7Ni6 in the Nb-Ni system as 

shown in Sec. 4.2. 

 

Uncertainty quantification (UQ) in ESPEI can quantify uncertainties of model parameters using 

the possible values during the MCMC sampling process [61]. The UQ in ESPEI adopts the samples 

from different Markov chains in the MCMC optimization and leverages them to estimate the 

uncertainties for thermodynamic properties of interest. In the present work, the UQ of site 

occupancy is implemented into ESPEI, which allows the analysis of site occupancy from modeling 

parameters. For example, the uncertainties of site occupancy of -Nb7Ni6 and enthalpy of mixing 
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of liquid were used to show the possible range from the MCMC optimization. Note that four chains 

for each parameter were used during the MCMC optimization for 1000 steps which is enough to 

gain convergent results based on our tests. The standard deviation was set to be 0.01 in the 

initialization of chain values using the Gaussian distribution.  

 

 

4     Results and discussion 

4.1 Thermodynamic properties by first-principles calculations  

Table 4 summarizes the space group and the predicted properties of V0, B0 , and B’0 for the phases 

of BCC-Nb, FCC-Ni, δ-NbNi3, and -Nb7Ni6 at 0 K using Eq. 2, in comparison with available 

experimental data [10,11,62,63].The δ-NbNi3 has the highest bulk modulus (207.7 GPa), followed 

by -Nb7Ni6 (200.0 GPa), FCC-Ni (195.9 GPa), and BCC-Nb (173.5 GPa), indicating that the 

bonding in δ-NbNi3 is strongest. The B’ values increase from BCC-Nb (3.86), -Nb7Ni6 (4.48), δ-

NbNi3 (4.65), to FCC-Ni (4.81). For B0 values from DFT-based predictions, both BCC-Nb and 

FCC-Ni show good agreement with experimental data [62,63]. BCC-Nb shows only a 1.0% 

difference and FCC-Ni has a 5.0% difference when compared with experiments. Table 4 shows 

that V0 increases from BCC-Nb, -Nb7Ni6, FCC-Ni, to δ-NbNi3. The difference of V0 between 

DFT-based calculations and experiments is about 1.72%. Note that these differences are due 

mainly to the exclusion of vibrational contribution to DFT calculations and the uncertainty of 

exchange-correlation functional used in the calculations [45].  

 

Fig. 4 shows the predicted values of entropy and enthalpy of BCC Nb as a function of 

temperature from the present DFT calculations using Eq. 1, which are in good agreement with 

the SGTE data [56] with an average difference of 4.83% as well as the standard deviation of 0.49 

for entropy; and an average difference of 5.79% as well as the standard deviation of 0.97 for 

enthalpy. Similarly,  
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Fig. 5 presents the predicted entropy and enthalpy of FCC Ni as a function of temperature from 

present DFT calculations using Eq. 1, showing a good agreement with the SGTE database [56] 
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(with magnetism) with the average difference of  3.24% and the standard deviation of 1.21 for 

entropy; and the average difference of 6.44% and the standard deviation 2.42 for enthalpy. 

a 

b 

 

 

 

Table 5 exhibits the predicted enthalpy of formation (Hform) values of δ-NbNi3 and -Nb7Ni6 

from DFT-based first-principles calculations at both 0 K and room temperature, which are in good 

agreement with experiments [25], with a difference less than 3.3  kJ/mol-atom. The configurations 

on the convex hull around the compositions of 25 at. % Nb and 50 at. % Nb were chosen to 

represent the Hform for δ-NbNi3 (Ni1Nb1Ni2) and -Nb7Ni6 (Nb2Nb2Nb2Ni6Ni1). The predicted 

Hform value of δ-NbNi3 (Ni1Nb1Ni2) is -28.4 kJ/mol-atom at 0 K (and -28.5 kJ/mol-atom at room 

temperature). The difference between the predicted Hform value and experimental result (-31.8 

kJ/mol-atom) is 3.2 kJ/mol-atom at 0 K (and 3.3  kJ/mol-atom at room temperature), which is 

within the reported error (4.73 kJ/mol-atom) of measurements by Argent et al. [25] using the 

calorimetry method for three samples at 25 at. % Nb. While the predicted Hform value of -Nb7Ni6 

(Nb2Nb2Nb2Ni6Ni1) is -20.6 kJ/mol-atom at 0 K (and -20.4 kJ/mol-atom at room temperature). 

The difference between the predicted Hform and experimental value (-22.6 kJ/mol-atom) is 2 

kJ/mol-atom at 0 K (and 2.2  kJ/mol-atom at room temperature), which is also within the reported 

error (6.82 kJ/mol-atom) of measurements by Argent et al. [25] using the calorimetry method for 

six tests at 50 at. % Nb.  

 

Fig. 6 shows the predicted phonon DOS curves at the equilibrium volumes of BCC Nb, FCC Ni, 

δ-NbNi3, and -Nb7Ni6. The phonon DOS’s of BCC Nb and FCC Ni show a good agreement with 

experimental data [64] as shown in Supplemental Fig. 12. Fig. 6 indicates that BCC Nb exhibits a 

higher phonon DOS at the lowest frequency region (e.g., < 5 THz) compared with those from FCC-

Ni, -Nb7Ni6, and δ-NbNi3; indicating phonon of BCC Nb has a larger contribution to Helmholtz 

energy due to vibrational entropy (Svib) since 𝑆𝑣𝑖𝑏 ∝  − ∫ 𝑔(𝜔) ln (𝜔)d 𝜔 [65]. The phonon DOS 

of -Nb7Ni6 is higher at the highest frequency region (e.g., > 8 THz), causing a smaller 

contribution to vibrational entropy (as well as Helmholtz energy). This trend is in accordance with 

bulk moduli predicted from DFT and observed from experiments [62,63]: in general the higher the 
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bulk modulus, the smaller the contribution to entropy will be, for example, B0 = 173.5 GPa of BCC 

Nb and B0 = 207.7 GPa of δ-NbNi3; see Table 4.  

 

4.2 Thermodynamic modeling by ESPEI/PyCalphad 

 

The present model parameters are summarized in the thermodynamic database (TDB) file in the 

Supplemental Material. Fig. 1 illustrates the predicted Hform values for the stable compounds 

(endmembers) in the Nb-Ni system at 298 K from the present CALPHAD modeling, agreeing 

reasonably well with the predictions by the present first-principles calculations and those in the 

literature (e.g., Materials Project [43] and OQMD [44]) and experimental data by Argent et al. 

[25]. As shown in a 

b 

 

 

 

Table 5, the predicted Hform values at 25.0 at. % Nb from both 0 K and room temperature show a 

good agreement with experimental data [25] for δ-NbNi3 (at 25 at. % Nb) with the difference of 

less than 3.4 kJ/mol-atom, which is in the range of experimental error (4.73 kJ/mol-atom). For -

Nb7Ni6, the predicted Hform values at 46.0 at. % Nb from both 0 K and room temperature show a 

good agreement with experimental data [25] for -Nb7Ni6 (at 50 at. % Nb) with a difference less 

than 2.2 kJ/mol-atom (experimental error is 6.82 kJ/mol-atom). As shown in Fig. 1, the predicted 

Hform values from the present CALPHAD modeling show less than 6.5 kJ/mol-atom difference 

with those measured by Argent et al. [25] from 12.2 – 75.0 at. % Nb, which is slightly higher than 

the error bar (around 4 kJ/mol-atom) given by Argent et al. [25]. However, Argent et al. [25]’s 

Hform values at 50 at. % Nb (-22.4 kJ/mol-atom) have a difference of 6.8 kJ/mol-atom using six 

experiments. The predicted Hform value from CALPHAD modeling is -28.9 kJ/mol-atom at 50 at. 

% Nb, causing a 6.5 kJ/mol-atom difference in Hform which is comparable with experimental 

error (6.8 kJ/mol-atom [25]). Note that Sokolvskaya et al. [40]’s data were not considered in the 

present CALPHAD modeling, since their Hform value (-41.6 kJ/mol-atom at 50 at. % Nb) shows 

a 19.2 kJ/mol-atom lower than the one (-22.4 kJ/mol-atom) by Argent et al. [25]. Therefore, we 
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conclude that the present Hform value at 50 at. % Nb (-28.9 kJ/mol-atom) agree reasonably well 

the experiments (-22.4 kJ/mol-atom) by Argent et al. [25]. 

 

Fig. 2 plots the presently predicted enthalpy of mixing (Hmix) curve of liquid at 1823 K in 

comparison with experiments data measured by Schaefers et al. [46] at 1927 K and 2000 K, by 

Chistyakov et al. [30] at 2096 K, and by Sudavtsova et al. [40] at 2148 K. Fig. 2 shows that the 

Hmix decreases with increasing the composition of Nb until 30.0 at. % Nb, then increases with 

increasing the composition of Nb. It is seen that the presently calculated results show a good 

agreement those by Chistyakov et al. [30] and Sudavtsova et al. [40] with an average difference of 

2 kJ/mol-atom. As mentioned in Sec. 2, the present CALPHAD modeling excluded Schaefers et 

al. [46]’s data. 

 

Table 6 summarizes the invariant reactions from the present modeling. It shows a good agreement 

with experiments [23,66] with the difference in compositions less than 2.3 at. % Nb, and the 

variance of the reaction temperature is less than 46 K. For example, the eutectic reaction from 

liquid to FCC and δ-NbNi3, from experimental observation [23] the reaction composition is 16.0 

at. % Nb for liquid phase, 12.7 at. % Nb for FCC, and 22.6 at. % Nb for δ-NbNi3; and the reaction 

temperature is 1555 K. From the present predictions, these values are 14.7 at. % Nb, 12.8 at. % 

Nb, 23.3 at. % Nb, and 1547 K, respectively.  

 

Fig. 7 shows the calculated phase diagram based on the present CALPHAD modeling, agreeing 

reasonably well with experimental data [16,18,19,22–24,26,38]. The present phase boundaries of 

δ-NbNi3 between FCC and δ-NbNi3 are predicted from 23.8 to 23.3 at. % Nb at 790 K – 1547 K, 

matching well with experimental data from Chen et al. [24] (around 23.5 at. % Nb at 1323 K), 

Joubert et al. [18] (23.6 at. % Nb at 1280 K), Duerden et al. [23] (23.6 – 23.6 at. % Nb at 1273 K 

- 1420K), and Murametsu et al. [22] (24.1 – 24.1 at. % Nb from 1070 - 1240 K). The phase 

boundaries of δ-NbNi3 between -Nb7Ni6 and δ-NbNi3 are predicted from 25.7 to 28.4 at. % Nb 

at 1000 K – 1494 K, agreeing well with experimental data by Chen et al. [24] (25.6 at. % Nb at 

1323 K), Duerden et al. [23] (26.5 to 26.6 at. % Nb at 1273 K - 1420K), and Murametsu et al. [22] 

(26.5 at. % Nb at 1170 K). Phase boundaries of -Nb7Ni6 between -Nb7Ni6 and BCC were 

predicted as 57.2 – 56.6 at. % Nb at 1000 K -1400 K, matching well with measurements by 
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Duerden et al. [23] (54.0 at. % Nb at 1273K), Chen et al. [24] (56.3 at. % Nb at 1323K), Murametsu 

et al. [22] ( 56.2 – 56.2 at. % Nb at 1070 - 1240 K), Svechnikov et al. [38] (58.2 – 58.2 at. % Nb 

at 1074 -1276 K), and Joubert et al. [16] (56.9 at. % Nb at 1273K).  

 

The comparison between the present modeling and the previous modeling work by Chen et al. [19] 

is shown in Fig. S2, showing that the present model has a better fit with experimental data on the 

phase boundaries of -Nb7Ni6 between -Nb7Ni6 and δ-NbNi3, and the phase boundaries between 

liquid and BCC. Phase boundaries between liquid and BCC measured by Wicker et al. [26] were 

considered in the present work besides the heating, cooling, and quenching measurements by 

Duerden et al. [23]. From the present work, the phase boundaries between liquid and BCC show 

around 200 K lower than those from Chen et al.’s modeling work [19] at 50.0 – 85.0 at. % Nb, 

which gave a better match (with an average difference around 100 K) with the measured data by 

Wicker et al. [26]. The phase boundaries of -Nb7Ni6 between -Nb7Ni6 and δ-NbNi3 are predicted 

around 48.3 – 49.3 at. % Nb at 1000 K – 1494 K in present work while those in Chen et al. [19] 

are 51.6 – 51.7 at. % Nb at 1000 K – 1458 K. The phase boundaries of -Nb7Ni6 between -Nb7Ni6 

and δ-NbNi3 from the present work match better with experimental data including from 

Murametsu et al. [22] (48.6 at. % Nb at 1240 K),  Svechnikov et al. [38] (49.7 at. % Nb at 1276 

K), and Chen et al. [24] (49.5 at. % Nb at 1273K), while Chen et al. [19] modeling work has a 

good agreement with experiments by Svechnikov et al. [38] (51.8 at. % Nb at 1074 K).   

 

Fig. 9 shows the predicted site occupancy curves of Nb in -Nb7Ni6 from the present modeling 

compared with measured data by Joubert et al. [16]. It can be seen that the present CALPHAD 

predictions of site occupancy regarding Nb in -Nb7Ni6 agree well with experiments with an 

absolute error less than 0.062, especially when compared with site occupancy of Nb in -Nb7Ni6 

predicted by Chen et al. [19] using a four-sublattice model, cf., Table 7. Therefore, the sites 6c2 

and 6c3 have the same site occupancy values from Chen et al. [19]’s model, causing the mean 

absolute error (MAE) with experiments [16] up to 0.044 in site 6c2 which is much higher than that 

from the present model (0.008 in site 6c2). At the same time, the MAE values compared with 

experiments are 0.128 at site 6c1, 0.032 at site 6c3, 0.088 at site 18h, and 0.086 at site 3a from Chen 

et al. [19] modeling, while the MAE values from the present model are 0.006 at site 6c1, 0.032 at 

site 6c3, 0.024 at site 18h, and 0.002 at site 3a. The standard deviations from the present work are 
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also smaller than those from Chen et al. [19]’s modeling, with the difference of standard deviation 

being 0.151 at site 6c1, 0.043 at site 6c2, 0.0 at site 6c3, 0.094 at site 18h, and 0.112 at site 3a. 

Therefore, with the present sublattice models based on Wyckoff sites of -Nb7Ni6 and δ-NbNi3 

and the new function in ESPEI to consider site occupancy data into modeling, these two TCP 

phases can be modeled well. 

 

Fig. 10 shows the 95 % credible interval uncertainty propagation regions of site occupancy of each 

Wyckoff site concerning Nb in -Nb7Ni6 predicted by the parameters in the MCMC method as 

implemented in ESPEI during CALPHAD modeling, showing a good agreement with the 

uncertainty of experimental data [16]. It is seen that the uncertainty range of Nb in the first 

sublattice is around 0.2, corresponding to Wyckoff position 6c1. The shadow region in Fig. 10 

covers all experimental data [16] except for the one at 49.6 at. % Nb that has a 0.2 difference with 

respect to the data point at 51.8 at. % Nb, which means the uncertainty of site occupancy at site 

6c1 includes most of the uncertainty of experiments at site 6c1. Similarly, at the second, fourth, and 

fifth sublattices (corresponding to Wyckoff positions 6c2, 18h, and 3a, respectively), the 

uncertainty ranges of Nb are around 0.2, which also cover most experimental data except for the 

one at 49.6 at. % Nb at 6c3 site that has 0.06 (the average difference is 0.03) difference with respect 

to the data point at 51.8 at. % Nb. For the third sublattice corresponding to Wyckoff position 6c3, 

the uncertainty ranges of Nb do not appear due to the third sublattice of stable endmembers 

occupied by Nb around 49.6 -56.9 at. % Nb. The uncertainty propagation regions of site occupancy 

of Nb in -Nb7Ni6 cover 80% of experiments, which shows a good match with experimental data 

by considering that the standard deviation of experimental data is around 0.35. The good 

agreement between uncertainty propagation regions and the experimental data shows that the 

uncertainty during CALPHAD modeling reflects the uncertainty of experiments. 

 

As another example, Fig. 11 shows the uncertainty propagation regions of Hmix in liquid with a 

95 % credible interval, indicating that the uncertainty increases from 0.0 – 40.0 at. % Nb, increases 

slightly from 40.0 – 80.0 at. % Nb, and then decreases from 80.0 – 100.0 at. % Nb, with the largest 

uncertainty around 3 kJ/mol-atom at 80.0 at. % Nb. It shows that a large increase of uncertainty in 

Hmix of liquid appears at the Nb-rich region due to the parameters of the liquid phase being more 

sensitive at the Nb-rich region in the present CALPHAD modeling. 
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4 Conclusions 

The present work combines thermodynamic data from DFT-based first-principles calculations and 

experiments, and the uncertainty quantification (UQ) method in CALPHAD modeling to model 

Gibbs energy expressions of the Nb-Ni system. The key conclusions are summarized as follows.  

• First-principles calculations are used to predict thermochemical properties as a function of 

temperature for the TCP phases of δ-NbNi3 and -Nb7Ni6, which provide the predicted 

Hform as input for CALPHAD modeling.  

• The present thermodynamic models of the δ-NbNi3 and -Nb7Ni6 phases are built on their 

Wyckoff positions combined with site occupancy as input for CALPHAD modeling by 

ESPEI, making precise descriptions for both phase diagram and the distribution of site 

occupancies compared with available experimental data. For the phase diagram, the 

invariant reactions from the present modeling agree well with data from experiments 

[23,66]. 

• The uncertainty propagation regions have been employed to show uncertainties of enthalpy 

of mixing, and site fraction of Nb in the -Nb7Ni6 phase. The UQ regions of site occupancy 

of Nb in -Nb7Ni6 include 80% of the experimental data [16], indicating that the 

uncertainty during the modeling reflects the uncertainty of the experiments. 
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Table 1: Wyckoff positions of the TCP phases of -Nb7Ni6 and δ-NbNi3 in the Nb-Ni system.  
Wyckoff position of δ phase a x y z 

2a 0 0 0.318 

2b 0 0.5 0.651 

4f 0.75 0 0.841 

Wyckoff position of μ phase b    

3a 0 0 0 

6c (1) 0 0 0.167 

6c (2) 0 0 0.346 

6c (3)  0 0 0.448 

18h 0.5 0.5 0.590 
a δ phase with space group Pmmn (no. 59), Pearson symbol oP8, strukturbericht designation D0a, 

and prototype of 𝛽-Cu3Ti [10].  
b μ phase with space group R3̅m (no. 166), Pearson symbol hR13, strukturbericht designation 

D85, and prototype of Fe7W6 [11]. 

 

 

Table 2: Sublattice models used in the previous CALPHAD modeling. 

References Model for δ-NbNi3 Model for -Nb7Ni6 

Kaufman and Nesor [17] (Ni)0.75 (Nb)0.25 (Ni)0.47 (Nb)0.53 

Kejun et al. [14] (Nb, Ni)3 (Nb, Ni)1 (Nb, Ni)1Ni4(Nb, Ni)2Nb6 

Bolcavage and Kattner [13] (Nb, Ni)3 (Nb, Ni)1 (Nb, Ni)7 (Nb)6 

Joubert et al. [18] (Nb, Ni)3 (Nb, Ni)1 (Nb, Ni)1Nb2Nb2(Nb, Ni)2(Nb, Ni)6 

Chen et al. [15] (Nb, Ni)3 (Nb, Ni)1 (Nb, Ni)1Nb4(Nb, Ni)2(Nb, Ni)6 

 

Table 3:  Crystallographic information for the phases in Nb - Ni and their sublattice models used 

in the present CALPHAD modeling. 
Phase name Strukturbericht Space 

group 

Pearson symbol Model 

Liquid(L)    (Nb, Ni) 

FCC  A1 Fm3̅m cF4 (Nb, Ni)1 (Va)1 

HCP A3 P63/mmc hP2 (Nb, Ni)1 (Va)1 

BCC_A2 A2 Im3m cl2 (Nb, Ni)1 (Va)3 

δ-NbNi3 D0a Pmmn oP8 (Nb, Ni)1(Nb, Ni)1(Nb, Ni)2 

-Nb7Ni6 D85 R3̅m hR13 (Nb, Ni)1(Nb, Ni)2(Nb, Ni)2(Nb, Ni)2(Nb, Ni)6 

NbNi8    (Nb)1(Ni)8 
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Table 4: Predicted equilibrium volume (V0, Å
3/atom), bulk modulus B0 (GPa), and the derivative 

of bulk modulus B’0 from the present EOS fitting at 0 K in comparison with experimental data 

[10,11,62,63]. 

Phase V0 (Å3/atom) % Diff a B0 (GPa) % Diff b B’0 Source 

BCC-Nb 18.338 0.221 173.5 1.00 3.86 This work 

 18.297  171.8   Expt. [62] 

FCC-Ni 21.860 0.217 195.9 5.03 4.81 This work 

 21.807  186.0   Expt. [63] 

δ-NbNi3 24.176 1.714 207.7  4.65 This work 

 24.591     Expt. [10] 

-Nb7Ni6 21.135 0.964 200.0  4.48 This work 

 21.338     Expt. [11] 

a 

b 

 

 

 

Table 5: The enthalpy of formation of the δ-NbNi3 phase and -Nb7Ni6 phase from present DFT-

based calculations at both 0 K and room temperature (RT) compared with experimental data at 

RT [25].  

 

Phase xNb 

∆𝑓𝐻 (kJ/mol-atom) 

at 0K 

 Difference 

(kJ/mol-atom) 

∆𝑓𝐻 (kJ/mol-atom) 

at RT 

 Difference 

(kJ/mol-atom) 
Source 

δ-NbNi3 0.25 -28.4 3.4 -28.5 3.3 This work 

 0.25 -31.8  -31.8  Expt. [25] 

-Nb7Ni6 0.46 -20.6 2.0 -20.4 2.2 This work 

 0.50 -22.6  -22.6  Expt. [25] 

 

 

Table 6: Predicted invariant reactions in the Nb-Ni system from the present CALPHAD 

modeling in comparison with available experiments [23,66].  

Type Reaction compositions (at. % Nb) 
Temperature 

(K) 
Source 

Eutectic Liquid ↔ fcc + δ-NbNi3   

 14.7  12.8  23.3 1547 This work 

 16  12.7  22.6 1555 Expt. [23] 

Congruent Liquid ↔ δ-NbNi3     

 25.0  25.0   1712 This work 

 25.0  25.0   1675 Expt. [23] 

Eutectic Liquid ↔ δ-NbNi3 + -Nb7Ni6   

 41.7  28.4  49.3 1494 This work 

 40.5  27.5  50 1448 Expt. [23] 

Peritectic Liquid + bcc ↔ -Nb7Ni6   

 47.9  94.8  56.3 1542 This work 

 50.0  95.5  54 1568 Expt. [23] 

https://www.sciencedirect.com/topics/materials-science/elastic-moduli
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Peritectic fcc + δ-NbNi3 ↔ NbNi8   

 8.5  23.8  11.1 790 This work 

      808 Expt. [66] 

 

Table 7. Site occupancies of Nb in -Nb7Ni6 from the present CALPHAD modeling compared 

with the modeling work by Chen et al. [19] work and experimental values [16]. Here, MAE 

indicates the mean absolute error and STD the standard deviation. 

Composition Type of results 6c1 6c2 6c3 18h 3a 

xNb = 0.496 

Calc., this work 0.77 0.94 1.00 0.04 0.79 

Calc., Chen et al. 0.91 1.00 1.00 0.00 0.86 

Expt.  0.67 0.85 0.95 0.13 0.74 

xNb = 0.518 

Calc., this work 0.79 0.96 1.00 0.07 0.79 

Calc., Chen et al. 0.91 1.00 1.00 0.01 0.87 

Expt.  0.89 1.00 0.89 0.07 0.77 

xNb = 0.530 

Calc., this work 0.81 0.97 1.00 0.09 0.80 

Calc., Chen et al. 0.93 1.00 1.00 0.02 0.88 

Expt.  0.78 0.94 1.00 0.10 0.84 

xNb = 0.533 

Calc., this work 0.81 0.97 1.00 0.10 0.80 

Calc., Chen et al. 0.94 1.00 1.00 0.03 0.89 

Expt.  0.85 0.99 1.00 0.12 0.81 

xNb = 0.569 

Calc., this work 0.85 0.98 1.00 0.16 0.80 

Calc., Chen et al. 0.95 1.00 1.00 0.08 0.90 

Expt.  0.81 1.00 1.00 0.16 0.81 

 MAE, this work 0.006 0.008 0.032 -0.024 0.002 

 MAE, Chen et al. 0.128 0.044 0.032 -0.088 0.086 

 STD, this work 0.070 0.049 0.068 0.052 0.031 

 STD, Chen et al. 0.221 0.092 0.068 0.146 0.143 
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Fig. 1. The presently calculated enthalpies of formation at 298 K of the intermetallic compounds 

in the Nb-Ni system, in comparison with experimental data by Argent et al. [25], Sokolvskaya et 

al. [40], Alekseev et al. [34], and Lyakishev et al. [42], and the DFT results from the Materials 

Project (MP) [43] and the Open Quantum Materials Database (OQMD) [44]. 
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Fig. 2. Calculated enthalpy of mixing in the liquid phase in comparison with available 

experimental data by Schaefers et al. [46] at 1927 K and 2000 K, by Chistyakov et al. [30] at 

2096 K, and by Sudavtsova et al. [40] at 2148 K. 
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Fig. 3. Workflow of ESPEI implementation to consider site occupancy experimental data. 
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Fig. 4. (a) Entropy and (b) enthalpy of BCC-Nb as a function of temperature calculated from 

present work using DFT-based phonon calculations and Eq. xx, compared with the SGTE 

database [56].  
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Fig. 5. (a) Entropy, (b) Enthalpy of FCC-Ni as a function of temperature calculated from present 

work using phonon calculations, compared with the SGTE database[56]. 
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Fig. 6. Predicted phonon density of states (DOS) at the equilibrium volumes of the BCC-

Nb, FCC-Ni, δ-NbNi3, and -Nb7Ni6 using DFT-based phonon calculations.  
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Fig. 7.  Calculated phase diagram of the Nb-Ni system from the present CALPHAD modeling 

compared with available experimental data [16,18,19,22–24,26,38]. 

 
Fig. 8. Calculated phase diagram of the Nb-Ni system from Chen et al.’s CALPHAD modeling 

[19] in comparison with available experimental data [16,18,19,22–24,26,38] 
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Fig. 9. Predicted site occupancies of Nb in -Nb7Ni6 at 1273 K (the lines) in comparison with 

experimental data (symbols) from Joubert et al. [16]. 
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Fig. 10. Uncertainty quantification of site occupancies of Nb in the -Nb7Ni6 phase marked by 

the shaded region for each Wyckoff site: (a) , (b) …. [see also my comment in Fig 9] 

 

 

 
 

 

 

Fig. 11. Uncertainty quantification of the enthalpy of mixing in the liquid phase at 1823 K 

marked by shaded region.  
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Supplement 

 
Fig. 12. Predicted phonon density of states of the BCC-Nb phase (blue line), the FCC-Ni 
phase (green line), using DFT-based phonon calculations in comparison with 
experimental data [64].  
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Abstract 

The present work predicts the ideal shear strength of dilute Ni34XZ ternary alloys determined by 

first-principles calculations of pure alias shear deformations. The major elements of Inconel alloys 

are examined to understand composition and concentration effects on ideal shear strength. The 

alloy ideal shear strength decreased in the following order of alloying elements: Co > Mn~Fe > 

(pure) Ni > Cr > Al > Ti > Mo > Si > Nb. The ideal shear strength shows a roughly linear 

correlation with alloying concentration at the dilute side and concentration effect splits depending 

on the relative atomic volume of the alloying element compared to that of pure Ni. The alloying 

elements with larger atomic volume decrease the ideal shear strength of the alloy, and with smaller 

atomic volumes increase the ideal shear strength of the alloy. Binary and ternary interaction 

parameters are quantified by CALculation of PHAse Diagrams (CALPHAD) method, indicating 



2 

 

that atomic volume differences and the standard state crystal structure difference determine the 

degree of the interaction on the ideal shear strength. The ideal shear strength of the Ni-based dilute 

ternary system was estimated using a linear combination of binary systems. The variations of ideal 

shear strength are quantitatively correlated with features of the pure elements X and Z, showing 

that atomic size of alloying element is the most important factor strongly associated in calculating 

ideal shear strength. 
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1 Introduction  

The ideal shear strength is the shear stress required to plastically deform a crystal lattice without 

defects [1]. This upper bound material property can be predicted by first-principles calculations 

based on density functional theory (DFT) [2]. Recently, motivated by reducing reliance on 

experimental fitting data in crystal plasticity finite element method (CPFEM), a DFT-based first-

principles calculations approach was proposed to predict the strain-hardening behavior of pure Ni 

[3]. The flow resistance was evaluated by the Peierls–Nabarro model [4], with the input of the 

ideal shear strength and elastic properties calculated by DFT-based calculation. The elastic 

hardening behavior of the pure edge dislocations is captured at small strains. For large strains, the 

linear model was proposed to combine both edge and screw dislocation contributions to flow 

resistance, giving good agreement between the CPFEM results and experimental results of pure 

Ni single crystal [3]. A continuous work quantitively examined the effects of 26 alloying elements 

on the ideal shear strength in dilute Ni11X alloys via first-principles techniques [5]. Through the 

combination of the Mg alloys data, the trends of the ideal shear strength are explored by the feature 

selection method, showing that the elemental properties such as elemental volume and 

electronegativity are the most two important factors in ideal shear strength variation. The elastic 

modulus C55 of the Ni based alloys show a strong linear correlation with the ideal shear strength. 

The ideal shear strength data of Ni11X were severed to predict the macroscopic single crystal 

deformation behavior for small and large strain [5].  

 

Although the ideal shear strength of the pure Ni and binary multicomponent systems Ni11X are 

well investigated in the previous study, the higher order composition effect on the ideal shear 

strength is still missing. One of the most successful approaches to model materials properties from 
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binary to ternary systems is the CALculation of PHAse Diagrams (CALPHAD) approach, which 

was originally developed for modeling thermodynamic properties by integrating experimental 

phase equilibrium and thermochemical data [6,7]. The CALPHAD approach relies on interaction 

parameters from unary, binary, and ternary systems to model more complex multi-component 

systems. Thus, with all interaction parameter data, the CALPHAD approach can cover the whole 

composition of the system, which includes uninvestigated compositions. In addition, the most 

challenging thing after adding the third element in the dilute alloys system is that the possible 

structures will exponentially increase when calculating the ideal shear strength. Therefore, the 

present work examines all the possible structures of Ni34XZ and chooses the lowest energy 

structure to perform the ideal shear strength calculation.  

 

The present work aims to predict the ideal shear strength of the dilute ternary alloys Ni34XZ based 

on first-principles calculations. All possible structures after adding the third elements are examined 

with the system Ni34FeX. The composition and concentration effects on ideal shear strength are 

explored combining with Ni11X data. The CALPHAD method evaluates all the binary parameters 

ϕij
0  and the ternary parameters ϕijk  with input from first-principles calculations. The feature 

selection method is also used in the present work to investigate correlation between the calculated 

ideal shear strength and features of pure elements. 
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2 Methods  

2.1 Pure alias shear deformation 

Pure alias shear deformation as shown in Figure 1 (a) with one sliding plane involved was adopted 

to predict ideal shear strength. Here ‘pure’ means full relaxations of atomic positions, cell shape, 

and cell volume, except for the fixed shear angle. This type of shear deformation is more realistic 

because the displacement of one atomic layer (e.g., the top layer) influences only the next atomic 

layer at first, then the relaxation will propagate from top down through the entire cell with fixed 

shear displacement [8]. Previous investigations show that the {111}〈112̅〉 shear deformation is the 

primary slip system of face-centered-cubic (FCC) metals [9]. In the present work, DFT-based first-

principles calculations were performed to determine ideal shear strength of dilute Ni-X-Z ternary 

alloys with alloying elements X and Z representing Al, Co, Cr, Fe, Mn, Mo, Nb, Si, and Ti. These 

elements were chosen based on the major compositions of Inconel alloys, for example Inconel 625 

and Inconel 718 [10,11]. A supercell of the conventional FCC lattice, i.e., the 36-atom 

orthorhombic cell (𝛼=𝛽=𝛾=90°), with 3 {111} layers and 12 atoms on each layer is employed, was 

used to predict ideal shear strength based on the {111} 〈112̅〉 shear deformation. Figure 1 (b) 

shows this 36-atom orthorhombic cell with the lattice vectors a along the [112̅] direction, b the 

[1̅10], and c the [111], respectively. The initial lattice parameters along these three directions are 

8.625, 7.470, and 6.099 Å, respectively. The deformed lattice vector R̅ can be obtained by [12], 

𝐑̅ = 𝐑𝐃 Eq. 1 

where 𝐑 is the original lattice vector before alias shear, and 𝐃 is the deformation matrix [8]: 

𝐃[112̅] = [
1 0 0
0 1 0
ε 0 1

] 
Eq. 2 
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Here ε is the magnitude of engineering strain, defined as the ratio between displacement applied 

for first-principles calculations and the height of the supercell. The relaxation of pure alias shear 

deformation was performed by the external optimizer GADGET [13] to fix the angle during pure 

shear deformation of {111}〈112̅〉.  

 

2.2 First-principles calculations  

All DFT-based first-principles calculations in the present work were performed by the Vienna Ab 

initio Simulation Package (VASP) [14] using the projector augmented wave (PAW) method [15]. 

The exchange-correlation functional is described by the generalized gradient approximation (GGA) 

[16]. A 3  4  5 k-point meshes together with a 350 eV plane wave cutoff energy were employed 

based on convergent tests. The energy convergence criterion of electronic self-consistency was 

chosen as 210-5 eV per supercell in all the calculations. The reciprocal space energy integration 

was performed by the Methfessel-Paxton technique [17] for structural relaxations with a 0.2 eV 

smearing width. Because of the magnetic nature of Ni, the spin-polarized approximation was used 

in all first-principles calculations. 

 

The configuration of the Ni34XZ supercell is determined by examining all possible structures 

determined by the ATAT code [18], indicating that there are 5 independent structures when X and 

Z elements on the same (111) plane; see one of the structures in Figure 2 (a), and 8 independent 

structures when X and Z elements stay at different (111) planes; see one of the structures in Figure 

2 (b). The alloying element X (purple atom) is fixed and the numbers indicate equivalent sites 

when substituting the second alloying element Z.  

 



7 

 

Taking Ni34FeX as an example, Figure 3 shows the relative energies in terms of the total 13 

independent configurations, where the structures S1 to S5 represent different alloying site 

scenarios when X and Z are at the same layer, while the structures D1 to D8 represent different 

alloying site scenarios when X and Z are at the different layer. For example, the structure S1 means 

the second alloying element Z is substituted at site 1 in Figure 2 (a) and D3 means the second 

alloying element Z is substituted at site 3 in Figure 2 (b). Figure 3 suggests that the configurations 

of S1, S2, D1, and D7 process a relatively higher energy, ranging from 0.06 to 0.34 eV per 

supercell, while the other 9 configurations process a relatively low energy. The S3 configuration 

is one of the lowest energy configurations for most elements, except for the systems Ni34FeAl and 

Ni34FeMn showing the D2 configuration is the lowest energy configuration. Since the 

configurations S3 and D2 are both one of the maximum entropy structures[19] with alloying 

element X and Y separate the most, the energy difference is small for the systems Ni34FeAl (0.0046 

eV/supercell) and Ni34FeMn (0.0086 eV/supercell). In addition, the examination shows the energy 

difference effect on ideal shear strength calculation of the S3 and D2 configuration is negligible. 

Since the Ni based alloy solid solution should be the mixture of the lowest energy configurations, 

therefore, the configuration S3 was selected in the present work to perform calculations of ideal 

shear strength. 

 

2.3 CALPHAD modeling of ideal shear strength 

The CALPHAD approach has been extended to model any properties related to individual phases, 

such as elastic properties [20], molar volume [21], diffusion coefficient [22], and stacking fault 

energy [23] in multicomponent systems. In the present work, the CALPHAD approach is used in 
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modeling ideal shear strength of dilute multicomponent Ni-based alloys. The CALPHAD 

modeling of phase-related properties can be written as follows [23]: 

𝛟 = 𝛟𝟎 + ∆𝛟 Eq. 3 

𝛟𝟎 = ∑ 𝐱𝐢
𝟎

𝐢

𝛟𝐢 
Eq. 4 

 

where ϕ is a property of a multicomponent system and ϕ0  represents linear mixing of individual 

elements’ properties in terms of their mole fraction (xi
0). Lastly, ∆ϕ represents the interaction 

among alloying elements, written as: 

∆ϕ = ∆ϕconf + ∑ xixj ∑ ∑ ϕij
L

L=0j>i

(xi−xj)
L

i

+ ∑ ∑ ∑ xixjxkϕijk

k>jj>ii

 
Eq. 5 

where ∆ϕconf is usually described by ideal atomic configurational entropy, which is ignored in the 

present work. ϕij
L  is the Lth-order binary interaction, and ϕijk the ternary interaction parameter. 

The superscript L of (xi−xj)  indicates its power, and i, j, and k denotes different species in 

multicomponent system. The present work aims to evaluate all the binary parameters ϕij
0  and the 

ternary parameters ϕijk with input from first-principles calculations. 

 

The CALPHAD modeling approach as shown in Eq. 5 was adopted to describe the ideal shear 

strength by following equation: 

τid = τ0 + ∆τ = ∑ xi
0

i

τi + ∑ xixj ∑ ϕ0
ij

j>ii

+ ∑ ∑ ∑ xixj

k>jj>ii

xkϕijk 
Eq. 6 

 

where τid is ideal shear strength of multicomponent system, ϕ0
ij is zero order of binary fitting 

parameter and ϕijk  is ternary fitting parameter, and xj , xk represent mole fractions of alloying 

element X and Z respectively. Since we are investigating the dilute Ni-based system, τ0  is 
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assumed equal to the ideal shear strength of pure Ni, and the mole fraction of Ni (xi) in Eq. 6 is 

assumed to be 1. Therefore, all the binary parameters and the ternary parameters were calculated 

using the following equation:  

τid =  τ0
Ni + ∑ xj ϕ0

Ni,X

j

+ ∑ ∑ xjxkϕNi,X,Z

kj

     with τ0
Ni  =  5.09 GPa 

Eq. 7 

 

where τ0
Ni  is ideal shear strength of pure Ni, ϕ0

Ni,X  is zero order of binary fitting parameter 

between Ni and alloying element X, and ϕNi,X,Z is ternary fitting parameter among Ni, alloying 

element X and Z. xj, xk represents mole fraction of alloying element X and Z respectively. 

 

2.4 Correlation analysis and feature selection 

To understand connections between physical informed features of alloying elements and the 

resulting ideal shear strength, the variation of ideal shear strength was examined by correlation 

analysis and feature selection algorithms. The major material features were chosen based on the 

features table in our previous study regarding the effect of 26-alloying elements on ideal shear 

strength [5], including atomic, periodic, Elastic, thermodynamic, lattice, and electronic properties. 

In addition to the material specific properties, the present work includes extra features, which are 

DFT-calculated features and combination of materials properties feature based on some surrogate 

models and criteria. For example, ‘Gb2pih’ in the feature table represents the feature of 
Gb

2πh
 , which 

equals to ideal shear strength based on the work of Frenkel [24]. ‘DFTBvG’ represents the ratio 

between bulk modulus and shear modulus based on DFT-based predictions. ‘Cauchy’ is ‘Cauchy 

pressure’ defined by the difference of elastic constants C12 and C44. These two features are usually 

the intrinsic ductility criteria indicating whether a material is ductile or brittle [25]. Table 6 in the 

appendix lists all the features and explanations. 
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Feature selection methods can be categorized into filter type methods and wrapper type methods 

[26]. Filter type methods are separate from any machine learning algorithms and are based on 

statistical tests of correlation. For example, the coefficient of determination of linear fitting (i.e., 

the R2) is a filter type method. In addition to the coefficient of determination, the present work 

includes several other filter methods, such as the maximal information coefficient (MIC), F-tests, 

and feature scores from a regression Relief algorithm. MIC evaluates the linear or non-linear 

correlation between two variables, conceptualized by a partitioning grid separating the scatterplot 

of two variables [32]. F-tests statistically test the variance of two variables, extending the R2 

method. The relief algorithm quantifies correlations by adjusting feature weights based on their 

ability to explain the variance of targeted features [27].  

 

In wrapper type methods, a subset of features will be used to train a machine learning model. A 

metric of model performance, for example the mean squared error (MSE), will determine whether 

features are added into or removed from the feature subset. Both the forward and the backward 

feature selection modes can be used in the wrapper methods. Forward means features are 

sequentially added into a null set and backward means features are sequentially removed from a 

full-feature set. All filter-type method and wrapper-type method are coded by MATLAB (version  

R2020b used herein) [28]. A rational quadratic gaussian process regression (GPR) model was used 

in the wrapper methods based on our tests to run the forward and backward feature selection, with 

the 5-fold cross validation used to determine model performance, i.e., the MSE value. 1000 

iterations in wrapper method were used in the present work to guarantee the converge of feature 
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selections and the higher iteration times do not significantly change the frequency of the selected 

features.  
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3 Results and discussion 

3.1 First-principles calculations 

In the present work, the calculated ideal shear strength of pure Ni is 5.09 GPa, which agrees well 

with the previous results using the same method (5.13 GPa) [5]. A probable explanation of the 

0.04 GPa difference comes from the different size of the supercell used in the calculation. 

Compared with 12-atom supercell in previous study, a larger supercell with 36 atoms was used in 

the present work. The Table 1 shows the relaxed total energy of different size of pure Ni when 

reaching to the ideal shear strength. Compared with the smaller supercell size, a larger supercell 

processes a higher relaxed energy. In the present study, all the results consistently show that a 

higher relaxed energy is associated with a lower ideal shear strength. The ideal shear strength could 

be experimentally measured by such as nanoindentation [29] and micropillar compression method 

[30], which results approach to DFT-based predictions, at least in similar magnitudes. For instance, 

compared to the ideal shear strength of pure Ni by first-principles calculations, the nanoindentation 

result of pure Ni is around 8 GPa [31], and the difference could be explained by the complicated 

triaxial stress state during the test. 
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Table 2 summarized the Ni34XZ ideal shear strength values, which fall in the range of 4.16 to 5.24 

GPa. It suggests that Ni34CoCo has the highest ideal shear strength, but Ni34NbNb has the lowest. 

Additionally, there is a clear trend in ideal shear strength from the highest to the lowest when 

alloying elements into dilute Ni alloys, i.e., Co > Mn~Fe > Cr > Al > Ti > Mo > Si > Nb. By setting 

ideal shear strength of pure Ni as reference, Co, Mn, and Fe can be considered as the strengthening 

alloying elements for dilute multicomponent Ni alloys, while Cr, Al, Ti, Mo, Si, and Nb can be 

considered as the softening alloying elements.  

 

Figure 4 shows one example (Ni34CoNb) of ideal shear strength and total energy evolution with 

different applied shear displacements. It shows the increase of shear stress with increasing shear 

strain before reaching the maximum point, i.e., the ideal shear strength. Besides shear stress, the 

slope of total energy with respect to the displacement continuously increases when approaching 

the ideal shear strength. Since the force definition is F = −
∂E

∂r
, the maximum stress occurs at the 

point of largest slope in Figure 5. After reaching the maximum point, the stress sharply drops. 

When the total energy reaches the highest point, the stress of the system is zero. Figure 6 shows 

the calculated shear stress versus shear strain relationships of Ni34CoCo (blue circles), Ni34CoNb 

(green triangles) and Ni34NbNb (purple squares). The red symbols represent the ideal shear 

strength among these three systems. The ideal shear strength of Ni34CoNb is roughly equal to the 

average ideal shear strength of the Ni34CoCo and Ni34NbNb system. The interaction parameters 

will be quantified in the CALPHAD result discussion. The calculation results also suggests that a 

higher ideal shear strength occurs at a lower shear strain. 

 

Table 3 summarizes the results of ideal shear strength of Ni35X, Ni34X2 from the present work and 

Ni11X results from previous work [5]. It is worth mentioning that there is only one independent 
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configuration of Ni35X and Ni11X when one alloying element on the top layer of the supercell as 

shown in Table 3.  The ideal shear strength difference among Ni35X, Ni34X2 and Ni11X could be 

attributed to the alloying elements’ concentration difference. Figure 7 shows relative ideal shear 

strength as function of X alloying elements concentration with the reference being the ideal shear 

strength of pure Ni (5.09 GPa), indicating that the ideal shear strength roughly linearly correlates 

with alloying element concentration (at least in dilute Ni-based alloy), but the trend splits in terms 

of the effect of alloying elements. The only exception is the ideal shear strength of Ni11Mo increase 

as the Mo concentration increase. A likely explanation is that the ideal shear trend of Ni11Mo from 

alloying element concentration effect only works well at dilute Ni-based alloy, with Mo 

concentration under around 6%. When the concentration higher than 6%, the ideal shear strength 

will fluctuate rather than keep decreasing. Higher concentration of strengthen alloying elements 

(Co, Mn, Fe) will lead to higher ideal shear strength. However, higher concentration of softening 

alloying elements (Cr, Al, Ti, Mo, Si, Nb) will lead to lower ideal shear strength of the alloys. The 

largest decrease of ideal shear strength is due to the addition of Nb, while the largest increase is 

caused by adding Co. The split threshold is atomic volume of host element, pure Ni. The atomic 

volume of Co, Mn and Fe all are close or smaller than pure Ni; whereas the others are all larger 

than pure Ni. It is also suggested that the ideal shear strength determined by the first-principles 

calculation has negative correlation with alloying elements’ atomic volume, i.e., the alloying 

elements with larger atomic volume decrease the ideal shear strength of the alloy. These results 

can be explained by the total relaxed energy change when applying the displacement on the shear 

plane. Compared with reference element, pure Ni, alloying elements with larger atomic volume 

causes lower total relaxed energy, which always lead to the higher ideal shear strength in the 
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present work. The relationship between ideal shear strength and alloying elements’ atomic volume 

will be quantified the in the correlation analysis discussion. 

 

3.2 CALPHAD modeling of ideal shear strength  

The CALPHAD method evaluates all the binary parameters ϕij
0  and the ternary parameters ϕijk 

with input from first-principles calculations. Based on CALPHAD approach as shown in Eq. 7, 

the binary interactions are calculated as follows: 

τid =  τ0
Ni + ϕ0

Ni,Xxi  = 5.09 +  ϕ0
Ni,X ∗

2

36
 

Eq. 8 
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Table 4 summarizes the results of all binary interactions from 9 systems (Ni34X2). The binary 

interaction of the alloying element Co, Mn and Fe is positive, which means these elements have 

strengthen effect on ideal shear strength of dilute Ni-based alloys. The sign of ϕ0
Ni,X indicates the 

strengthen or softening effect on ideal shear strength and the absolute value of ϕ0
Ni,X indicates 

the degree of strengthening or softening. Agreed with the analysis of previous investigation, it 

follows the conclusion that larger alloying atomic volume is associated with a smaller ideal shear 

strength. Furthermore, to determine the ternary interaction parameter, based on the pure Ni and 

binary interaction parameter, we can obtain the ternary interaction ϕNi,X,Z using the following 

equation: 

τid =  τ0
Ni + ϕ0

Ni,Xxj + ϕ0
Ni,Zxk + ϕNi,X,Zxjxk 

= 5.09 +  
1

36
∗ ( ϕ0

Ni,X + ϕ0
Ni,Z) + (

1

36
)

2

∗ ϕNi,X,Z 

Eq. 9 
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Table 5 shows the results of the ternary interaction parameters ϕNi,X,Z of all 45 Ni34XZ systems. 

Similar to the binary interaction parameter, the sign of ϕNi,X,Z indicated positive or negative effect 

on the ideal shear strength from the interaction between alloying elements X and Z and the absolute 

value of ϕNi,X,Z indicated the degree of the strengthening or softening effect. For most cases, the 

ternary interaction parameter ϕNi,X,Z is negative, which means the ideal shear strength of dilute Ni-

based alloy will decrease due to the ternary interaction. Some large ternary interaction parameters 

are observed in the   
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Table 5. The large ternary interaction parameters of Nb-Co, Nb-Mn, and Nb-Fe can be explained 

by the large atomic volume difference between two alloying elements, but it is hard to find a clear 

trend of all these ternary interaction ϕNi,X,Z fitting results only in terms of their atomic volumes. 

For example, a relatively large interaction value is also found for Nb and Cr related interactions, 

such as Cr-Al and Cr-Si, but the atomic volumes difference is not significant, especially for the 

Cr-Al system. These large ternary interactions parameter in Cr-Al and Cr-Si can possibly be 

understood from structure similarity principles, since each element has a different standard state 

crystal structure at room temperature: Cr (BCC), Al (FCC), Si (diamond cubic). Therefore, the 

ternary interaction discrepancy can be majorly attribute to the atomic volumes difference and the 

standard state crystal structures difference.  

 

Another interesting finding is non-linear effect is examining the present work. Figure 8 shows a 

promising prediction between DFT-predicted ideal shear strengths and linear combination 

predictions based on the binary system (Ni34X2), with R2 value of 0.977. The linear combination 

ideal shear strength of Ni34XZ is defined as followed:  

τid
linear(Ni34XZ)  =  0.5 ∗ τid(Ni34X2)  +  0.5 ∗ τid(Ni34Z2) Eq.10 

Deviation from τid
linear and τid

DFT indicates nonlinear effects not captured in the above equation. 

The result suggests that in the dilute Ni-based alloys, the ternary interaction does not significantly 

change ideal shear strength. The ideals shear strength of Ni-based dilute ternary system could be 

estimated by the linear combined of binary systems.  

 

3.3 Correlational analyses based on elemental properties 
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Table 7 shows the correlational analysis result of alloying element X and Z variations in ideal 

shear strength. We want to infer what physical features, or combination of features, could best 

explain the relationship between ideal shear strength and alloying element properties. There is a 

general agreement between the filter methods that among the most important features are the 

DFTv0 (atomic volume based on DFT-based calculations). Figure 9 shows the ideal shear 

strength versus the average atomic volumes of alloying elements X and Z, suggesting that, in 

general, larger atomic volumes of alloying elements associating with lower calculated ideal shear 

strength.  This trend could be explained by total energy variation when applying displacement on 

shear plane. Previous investigation shows relaxed energy decreased with increasing alloying 

element atomic volumes.  

 

In addition to the filter-type selected features, the wrapper method indicates DebyeT (Debye 

temperature), Radius_vDW(Van der Waals atomic radius), USFE (Unstable stacking fault energy) 

are the common features by using forward and backward feature selection. The unstable stacking 

fault energy is selected 436 times for the forward selection method and 846 times for the backward 

selection method. The strong association between unstable stacking fault energy and ideal shear 

strength may be explained by the information is carried by the unstable stacking fault energy when 

applying the shear deformation on the supercell. This specific correlation cannot solely support by 

this general correlation, but in statistically perspective it gives us some directions when we want 

to predict ideal shear strength by using intrinsic materials properties. 
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4 Summary  

The present work predicts ideal shear strength of dilute multicomponent Ni-based alloys 

determined by first-principles calculations. There is a clear trend of ideal shear strength from 

highest to lowest when alloying elements into dilute Ni alloys, i.e., 

Co>Mn~Fe>Cr>Al>Ti>Mo>Si>Nb. Larger atomic volume of alloying elements are associated 

with lower calculated ideal shear strengths. Trends of concentration of alloying elements splits 

according to atomic volume difference between host element (pure Ni). The CALPHAD method 

evaluate all the binary parameters ϕij
0  and the ternary parameters ϕijk  with input from first-

principles calculations. CALPHAD method quantified the binary and ternary interaction 

parameters of ideal shear strength and supports the conclusion that larger atomic volume is 

associated with a smaller ideal shear strength. Additionally, ideal shear strength of Ni-based dilute 

ternary system could be estimated by the linear combination of binary systems. Filter type and 

wrapper type feature selection methods generally agree that the atomic volume is the most 

important feature when calculating the ideal shear strength. Some other atomic properties like 

Debye temperature, van der Waals atomic radius, and unstable stacking fault energy also show a 

strong connection with ideal shear strength. These intrinsic material properties can be the 

interesting directions to predict ideal shear strength of the materials in the future. 
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8 Figures 

 

Figure 1. Schematic representation of (a) alias shear deformation, where ε is the magnitude of 

shear strain (b) Rotated orthorhombic FCC lattice with 36-atom supercell, showing Ni atom 

(gray) and alloying atoms X (purple) and Z (green). As lattice vectors shown, three {111} layers 

and 12 atoms on each layer is employed. 
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Figure 2. Schematic representation of independent configurations. First alloying element (purple 

atom) is fixed. The numbers indicate equivalent sites when substituting the second alloying 

element. (a) Five independent configurations when alloying elements at the same layer. (b) Eight 

independent configurations when alloying elements at the different layers.  
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Figure 3. The result of the 13 independent structures’ relative energy in terms of lowest energy 

structure (S3), where S1 to S5 represent different alloying site scenarios when X and Z are at the 

same layer, i.e. Figure 2 (a), while D1 to D8 represent different alloying site scenarios when X 

and Z are at the different layer i.e. Figure 2 (b). The plot suggests that S1, S2, D1 and D7 have a 

relatively higher energy, however structure S3, one of the maximum entropy structures, has the 

lowest energy. 
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Figure 4. The result of total energy and shear strength with imposing displacement of Ni34CoNb 

system determined by first-principles calculations. It shows the increase of shear stress with 

increasing shear strain before reaching the maximum point, i.e., the ideal shear strength. Besides 

shear stress, the slope of total energy with respect to the displacement continuously increases 

when approaching the ideal shear strength. 
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Figure 5. The zoom-in area shows the result of Ni34CoNb when reaching to the ideal shear 

strength point. The ideal shear strength occurs at the point of largest slope of total energy. 
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Figure 6. Calculated shear strength vs imposing shear strain for systems of Ni34CoCo (blue 

circles), Ni34CoNb (green triangles) and Ni34NbNb (purple squares). The red symbols represent 

the highest value of the shear strength, which are the ideal shear strength among these three 

systems. The ideal shear strength of Ni34CoNb is roughly equal to the average ideal shear 

strength of the Ni34CoCo and Ni34NbNb system and a higher ideal shear strength typically 

occurs at a lower shear strain. 
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Figure 7. Relative ideal shear strength as function of X alloying elements concentration, where 

taking the ideal shear strength of pure Ni as reference. Higher concentration of strengthen 

alloying elements (Co, Mn, Fe) will lead to higher ideal shear strength. However, higher 

concentration of softening alloying elements (Cr, Al, Ti, Mo, Si, Nb) will lead to lower ideal 

shear strength of the alloys. The only exception is ideal shear trend of Ni11Mo from alloying 

element concentration effect only works well at dilute Ni-based alloy, with Mo concentration 

under around 6%. 
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Figure 8. Linear correlation between DFT ternary predicted ideal shear strength and linear 

combined from binary system, suggesting that in the dilute Ni-based alloys, the ternary interaction 

does not significantly change ideal shear strength. The ideals shear strength of Ni-based dilute 

ternary system could be estimated by the linear combined of binary systems. 
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Figure 9. Ideal shear strength as function of the linearly combined volume of alloying elements 

X and Z. The blue line shows the linear fit result with R2= 0.773. 
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9 Tables  

Table 1. Comparison results of pure Ni with different supercell size. Typically, larger supercell 

processes a higher relaxed energy at the ideal shear strength point. This deviation causes a lower 

ideal shear strength 

Supercell size Relaxed Energy at the ideal 

shear strength point (eV/atom) 

Ideal shear strength (GPa) 

12-atom -5.4409 5.13 

36-atom -5.4406 5.09 
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Table 2. Ideal shear strength summary of Ni34XZ determined by the first-principles calculations. 

The ideal shear strength ranging from 4.16 to 5.24 GPa with a clear trend in ideal shear strength 

from the highest to the lowest when alloying elements into dilute Ni alloys, i.e., Co > Mn~Fe > 

Cr > Al > Ti > Mo > Si > Nb.  

 
 

 

  

Co Mn Fe Cr Al Ti Mo Si Nb

5.24 5.20 5.18 5.10 4.98 4.87 4.83 4.83 4.62 Co

5.17 5.17 5.02 4.92 4.84 4.76 4.71 4.57 Mn

5.17 5.05 4.94 4.82 4.79 4.73 4.57 Fe

4.88 4.88 4.70 4.64 4.73 4.51 Cr

4.73 4.64 4.60 4.53 4.42 Al

4.57 4.52 4.41 4.35 Ti

4.45 4.41 4.31 Mo

4.32 4.18 Si

4.16 Nb
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Table 3.Schematic representation of the shear plane view from {111} plane. The ideal shear 

strength summary of Ni35X, Ni34X2 and Ni11X[5].  

 

Ni
35

X 

 

Ni
34

X
2 

 

Ni
11

X 

 

 

X element 

concentration  
2.7% 5.5% 8.3% 

Co 5.20 5.24 5.46 

Mn 5.10 5.17 5.17 

Fe 5.14 5.17 5.20 

Cr 5.03 4.88 4.90 

Al 4.85 4.73 4.58 

Ti 4.77 4.55 4.24 

Mo 4.74 4.45 4.53 

Si 4.68 4.31 4.17 

Nb 4.51 4.16 3.91 
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Table 4. Calculated the binary interaction parameters 𝜙0
𝑁𝑖,𝑋 using Eq. 8. 

X Co Mn Fe Cr Al Ti Mo Si Nb  

ϕNi,X 3.10 1.80 1.80 -3.44 -6.09 -9.27 -11.15 -13.64 -16.37 
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Table 5. Calculated the ternary interaction parameters 𝜙0
𝑁𝑖,𝑋 using Eq. 9. 

 

  

Co Mn Fe Cr Al Ti Mo Si Nb

0.00 -5.81 -31.90 46.32 -13.31 -55.09 -35.78 72.16 -100.84 Co

0.00 -4.23 64.80 -34.43 -35.19 -61.98 -40.01 -119.18 Mn

0.00 28.43 -27.64 -64.82 -30.72 -12.42 -117.27 Fe

0.00 73.35 -23.77 -32.64 175.12 -7.64 Cr

0.00 -8.78 10.32 10.49 -37.77 Al

0.00 22.29 -32.75 -6.58 Ti

0.00 42.64 2.90 Mo

0.00 -75.27 Si

0.00 Nb
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Table 6. Correlation features and corresponding explanations 

 

Feature  Explanation 

A
to

m
ic

 

Radius_Coval 

Covalent radius (pm) based on the collections of Wolfram Mathematica; see 

“ElementData” in Ref. [32].  

Radius_vDW Van der Waals atomic radius (pm) [32,33]. 

V0_Miedema Atomic volume (cm3/mol) used in the Miedema model [34]. 

Mass Mass of pure elements 

.P
er

io
d
ic

 

Group  Group of pure elements in the periodic table. 

M_Num2  

Mendeleev number MN2, starting bottom left and moving up then to the right. 

[35] 

Number Atomic number of pure elements in the periodic table 

Period Period of pure elements in the periodic table. 

E
la

st
ic

 

B 

Bulk modulus (GPa) of pure elements based on [36,37]. Note that elastic 

properties of fcc Sr were taken from [38].  

G Shear modulus (GPa) of pure elements based on [36,37]. 

Y Young’s modulus (GPa) of pure elements based on [36,37]. 

T
h
er

m
o
d
y
n
am

ic
 

BoilingT Boiling temperature (K) [39]. 

Ele_Conduc Electrical conductivity of metals in (ohm-cm)-1 [40]. 

Heat_Capacity Heat capacity at 298 K (J/kg-mol･K) [40]. 

Heat_Fusion Heat of fusion at 298 K (J/mol) [40]. 

Heat_Sublimati

on 

Heat of sublimation (J/mol) at 298 K [40]. 
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MeltingT Melting temperature (K) based on the collections by Kittel [40]. 

S298 Standard entropy (J/mol.K) at 298 K [41]. 

Therm_Conduc Thermal conductivity at 300 K (W cm-1 K-1) [32,40]. 

VaporHeat 

Vaporization heat (kJ/mol) based on the collections of Wolfram Mathematica; 

see “VaporizationHeat” in Ref. [32].  

L
at

ti
ce

 

CohEnergy Cohesive energy (eV/atom) collected by Kittel [40]. 

DebyeT Debye temperature (K) collected by Kittel [40]. 

Va_Acti_FCC 

Predicted vacancy activity energy of pure elements in the fcc structure, with 

the vacancy formation energy adopted for those with unstable fcc structures 

(i.e., Ge and La) [42]. 

Va_Form_FCC Predicted vacancy formation energy of pure elements in fcc structure [42]. 

E
le

ct
ro

n
ic

 

Electron_Affini

ty 

Electron affinity (eV) [33]. 

EleDensity_Mie

dema 

Electron density at the boundary of Wigner-Seitz cell used in the Miedema 

model [34]. 

EleNeg_Miede

ma 

Electronegativity (Volt) used in the Miedema model [34].  

EleNeg_Pauling Electronegativity (dimensionless) on the Pauling scale [32,33][13,16]. 

Ion_Pot_1 The first ionization potential (eV) [39]. 

Ion_Pot_2 The second ionization potential (eV) [39].  

Ion_Pot_3  The third ionization potential (eV) [39].  
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MaxR_Ele_in_

Solid 

Maximum range (mm) of electrons in solid elements for electron energy of 15 

keV [39]. 

No_Spectral_lin

es 

Number of spectral lines of the elements [39]. 

PPot_radius_s Nonlocal pseudopotential radius (a.u.) for the s orbital [43].  

PPot_radius_p Nonlocal pseudopotential radius (a.u.) for the p orbital [43]. 

NsVal Number of filled s-shell valence electron states. 

NpVal Number of filled p-shell valence electron states. 

NdVal Number of filled d-shell valence electron states. 

NfVal (removed 

when 

correlation) 

Number of filled f-shell valence electron states. 

Nval Number of filled valence electron states. 

NsUnfill Number of unfilled s-shell valence electron states. 

NpUnfill Number of unfilled p-shell valence electron states. 

NdUnfill Number of unfilled d-shell valence electron states. 

NfUnfill 

(removed when 

correlation) 

Number of unfilled f-shell valence electron states, not applicable here. 

Nunfill Number of unfilled valence electron states. 

D
F

T
 

DFTC11 Elastic constant C11 

DFTC12 Elastic constant C12 
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DFTC44 Elastic constant C44 

DFTC13 Elastic constant C13 

DFTC33 Elastic constant C33 

DFTv0 Equilibrium volume  

 DFTb Burgers vector 

 DFTpoisson Poisson ratio 

 USFE Unstable stacking fault energy [12] 

 

WorkFunc 

Electronic work function, energy (or work) required to withdraw an electron 

completely from a metal surface. 

DFTBh 
Voigt-Reuss-Hill approach shear modulus [44]. 

DFTGh 
Voigt-Reuss-Hill approach calculated shear modulus [44]. 

F
ea

tu
re

s 
co

m
b
in

at
io

n
  

DFTBvG The ratio between bulk modulus and shear modulus [45]. 

DFTGvb The ratio between bulk modulus and Burgers vector 

DFTGV Shear modulus G multiply Volume 

Gb2pih Ideal shear strength empirical model by Frenkel (Gb/2πh)[24] . 

BGsq  Squart (B/G)  

Cauphy 

Cauphy pressure which is difference between elastic constant C12 and C44, 

i.e., C12-C44 [25]. 
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Table 7. Result of filter-type and wrapper type features ranking.  

Index Ftest 
 

rRelief 
 

R2 
 

MIC 
 

forward 
 

backward 
 

1 DFTv0 25.31 DFTv0 0.07 DFTv0 0.77 DFTv0 0.77 DFTv0 964 DebyeT 969 

2 DFTGvb 16.31 Radius_vDW 0.07 V0_Miedema 0.69 CohEnergy 0.67 DebyeT 955 Radius_vDW 958 

3 V0_Mied

ema 

16.22 V0_Miedema 0.07 DFTGvb 0.64 Heat_Subli

mation 

0.67 Va_Activa_f

cc 

728 USFE 846 

4 DFTb 16.07 BoilingT 0.06 CohEnergy 0.54 DFTb 0.62 Nval 573 DFTv0 721 

5 Heat_Fusi

on 

14.78 Heat_Fusion 0.05 DFTb 0.54 DFTGvb 0.60 Radius_vDW 513 NdVal 695 

6 CohEnerg

y 

12.82 Mass 0.05 VaporHeat 0.52 V0_Miedem

a 

0.58 USFE 436 EleDensity_M

iedema 

630 

7 Mass 11.66 G_wiki 0.05 DFTC44 0.52 DFTpoisson 0.55 V0_Miedema 356 V0_Miedema 612 

8 Number 11.31 DFTC12 0.04 Heat_Sublimati

on 

0.51 VaporHeat 0.53 DFTb 335 BoilingT 580 

9 Heat_Sub

limation 

10.88 Y_wiki 0.04 DFTpoisson 0.50 Heat_Fusion 0.51 VaporHeat 326 Ion_Pot_2 561 

10 No_Spect

ral_lines 

10.87 Number 0.04 Nval 0.50 Mass 0.51 Heat_Sublim

ation 

325 PPot_radius_p 553 

11 Nval 9.26 Heat_Sublimat

ion 

0.04 BGsq 0.48 DFTC44 0.49 G_wiki 296 DFTC33 551 

12 Radius_v

DW 

8.15 Period 0.04 DFTBvG 0.46 Radius_vD

W 

0.48 Group 286 Nval 545 

13 DebyeT 7.91 CohEnergy 0.04 DebyeT 0.36 Number 0.48 M_Num2 282 NUnfill 544 

14 M_Num2 7.72 Ion_Pot_1 0.04 Electron_Affinit

y 

0.34 BGsq 0.47 MeltingT 279 WorkFunc 541 

15 VaporHea

t 

7.64 VaporHeat 0.03 DFTGh 0.34 Nval 0.46 PPot_radius_

p 

278 Y_wiki 529 

16 DFTpoiss

on 

7.44 DFTC13 0.03 NUnfill 0.34 DFTC12 0.45 Electron_Aff

inity 

258 Ion_Pot_3 515 

17 DFTC44 7.44 DebyeT 0.03 BoilingT 0.33 DFTBvG 0.45 NUnfill 179 VaporHeat 501 

18 BoilingT 7.25 Ion_Pot_3 0.03 EleNeg_Miede

ma 

0.33 DebyeT 0.44 PPot_radius_

s 

174 DFTC11 485 

19 DFTGh 7.12 MeltingT 0.03 Radius_vDW 0.32 BoilingT 0.44 WorkFunc 153 Therm_Condu

c 

484 

20 DFTC12 7.06 MaxR_Ele_in

_Solid 

0.03 NdVal 0.31 No_Spectral

_lines 

0.43 EleDensity_

Miedema 

144 DFTBh 482 

21 Y_wiki 6.77 NsVal 0.03 No_Spectral_lin

es 

0.30 Ion_Pot_1 0.43 EleNeg_Mie

dema 

141 Group 472 

22 DFTBvG 6.55 NsUnfill 0.03 Ion_Pot_3 0.28 NUnfill 0.42 NpVal 126 DFTC12 470 

23 BGsq 6.55 DFTGvb 0.02 MeltingT 0.24 PPot_radius

_s 

0.41 Y_wiki 123 NpVal 467 

24 NdVal 6.16 USFE 0.02 NsVal 0.20 PPot_radius

_p 

0.41 DFTpoisson 111 M_Num2 451 
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25 Period 5.99 PPot_radius_s 0.02 NsUnfill 0.20 M_Num2 0.40 Ele_Conduc 97 B_wiki 423 

26 G_wiki 5.72 Radius_Coval 0.02 Ion_Pot_2 0.20 DFTC11 0.39 DFTC33 86 PPot_radius_s 374 

27 Gb2pih 5.40 Ion_Pot_2 0.02 Heat_Capacity 0.18 DFTC33 0.39 Cauchy 85 Ion_Pot_1 362 

28 Electron_

Affinity 

4.98 DFTBvG 0.02 Y_wiki 0.16 Radius_Cov

al 

0.38 NpUnfill 82 MaxR_Ele_in

_Solid 

361 

29 NsVal 4.78 NpVal 0.02 DFTBh 0.15 Y_wiki 0.37 Va_Form_fc

c 

77 NpUnfill 350 

30 NsUnfill 4.78 Va_Activa_fc

c 

0.02 Radius_Coval 0.15 NdVal 0.37 Radius_Cova

l 

73 Va_Form_fcc 343 

31 MeltingT 4.67 NdVal 0.02 DFTC12 0.15 DFTGh 0.37 BoilingT 72 EleNeg_Miede

ma 

313 

32 USFE 4.55 S298 0.02 Gb2pih 0.14 USFE 0.37 DFTGvb 72 No_Spectral_li

nes 

290 

33 Radius_C

oval 

4.54 PPot_radius_p 0.01 DFTC33 0.14 MaxR_Ele_i

n_Solid 

0.35 NdUnfill 70 CohEnergy 285 

34 Heat_Cap

acity 

4.30 BGsq 0.01 DFTC13 0.13 G_wiki 0.35 Ion_Pot_1 68 G_wiki 281 

35 Group 4.18 Ele_Conduc 0.01 G_wiki 0.13 EleNeg_Mie

dema 

0.34 NsUnfill 68 Heat_Sublimat

ion 

273 

36 NUnfill 4.13 Nval 0.01 EleDensity_Mie

dema 

0.13 Ion_Pot_3 0.34 Ion_Pot_3 64 NdUnfill 269 

37 EleNeg_

Miedema 

3.86 NpUnfill 0.01 DFTC11 0.13 Electron_Af

finity 

0.33 NsVal 64 Mass 266 

38 Ion_Pot_3 3.68 Heat_Capacity 0.01 DFTGV 0.13 DFTGV 0.33 CohEnergy 63 NsUnfill 261 

39 PPot_radi

us_s 

3.54 DFTBh 0.01 Ele_Conduc 0.12 MeltingT 0.32 NdVal 61 NsVal 260 

40 DFTGV 3.19 DFTb 0.01 NpVal 0.12 Va_Form_fc

c 

0.32 DFTC44 60 Number 230 

41 PPot_radi

us_p 

2.96 M_Num2 0.01 Cauchy 0.10 DFTBh 0.31 EleNeg_Paul

ing 

59 Cauchy 209 

42 DFTC33 2.68 NdUnfill 0.00 Heat_Fusion 0.09 NsVal 0.30 MaxR_Ele_i

n_Solid 

58 Radius_Coval 202 

43 EleDensit

y_Miede

ma 

2.62 Va_Form_fcc 0.00 MaxR_Ele_in_

Solid 

0.09 NsUnfill 0.30 BGsq 37 Heat_Fusion 185 

44 Ion_Pot_1 2.27 Group 0.00 Mass 0.08 Period 0.30 Ion_Pot_2 35 Period 175 

45 DFTC11 2.25 B_wiki 0.00 Number 0.07 Ion_Pot_2 0.30 Therm_Cond

uc 

33 Ele_Conduc 159 

46 NpVal 1.94 NUnfill 0.00 Ion_Pot_1 0.07 DFTC13 0.28 B_wiki 29 DFTC13 159 

47 Ion_Pot_2 1.91 EleNeg_Mied

ema 

0.00 PPot_radius_s 0.07 Gb2pih 0.27 DFTC11 27 Electron_Affin

ity 

118 

48 Ele_Cond

uc 

1.82 EleNeg_Pauli

ng 

0.00 NpUnfill 0.06 NpVal 0.27 Gb2pih 18 DFTpoisson 112 
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49 MaxR_El

e_in_Soli

d 

1.74 Therm_Condu

c 

0.00 Period 0.05 NpUnfill 0.27 Period 17 MeltingT 106 

50 Cauchy 1.72 DFTC44 -0.01 USFE 0.04 NdUnfill 0.27 DFTBh 17 DFTGh 98 

51 NpUnfill 1.71 DFTpoisson -0.01 PPot_radius_p 0.04 Group 0.27 Mass 11 Gb2pih 84 

52 WorkFun

c 

1.67 EleDensity_M

iedema 

-0.01 Va_Form_fcc 0.03 Heat_Capaci

ty 

0.26 DFTBvG 11 DFTGvb 75 

53 NdUnfill 1.39 DFTC11 -0.01 Therm_Conduc 0.02 Cauchy 0.25 Heat_Fusion 10 BGsq 61 

54 DFTC13 1.37 Electron_Affi

nity 

-0.02 Va_Activa_fcc 0.01 EleDensity_

Miedema 

0.25 DFTGV 9 DFTC44 57 

55 DFTBh 1.18 DFTGV -0.02 WorkFunc 0.01 S298 0.24 Number 7 DFTb 38 

56 Va_Form

_fcc 

0.96 DFTGh -0.02 NdUnfill 0.01 Ele_Conduc 0.21 No_Spectral_

lines 

7 DFTBvG 38 

57 S298 0.70 DFTC33 -0.02 EleNeg_Pauling 0.00 Therm_Con

duc 

0.21 DFTC12 4 DFTGV 29 

58 B_wiki 0.61 Cauchy -0.04 Group 0.00 Va_Activa_f

cc 

0.20 Heat_Capacit

y 

3 Va_Activa_fcc 26 

59 Therm_C

onduc 

0.28 WorkFunc -0.04 M_Num2 0.00 B_wiki 0.19 DFTGh 3 EleNeg_Paulin

g 

17 

60 EleNeg_P

auling 

0.15 Gb2pih -0.04 S298 0.00 EleNeg_Pau

ling 

0.19 S298 2 Heat_Capacity 3 

61 Va_Activ

a_fcc 

0.05 No_Spectral_l

ines 

-0.05 B_wiki 0.00 WorkFunc 0.19 DFTC13 1 S298 3 
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Abstract  

The present work uses a full-field crystal plasticity model with a first principles-informed dislocation 

density (DD) hardening law to identify the key microstructural features correlated with 

micromechanical fields localization, or hotspots, in polycrystalline Ni. An ensemble learning 

approach to machine learning interpreted with Shapley additive explanation was implemented to 

predict nonlinear correlations between microstructural features and micromechanical stress and 

strain hotspots. Results reveal that regions within the microstructure in the vicinity of 

the grain boundaries, higher Taylor and Schmid factors, and high intergranular misorientations, are 

more prone to being micromechanical hotspots. Additionally, under combined loading, intergranular 

misorientations are more responsible than Schmid factor in formation of stress hotspots while 

Schmid factors take precedence under high plastic strain localizations.  The present work 

demonstrates a successful integration of physics-based crystal plasticity with DD-based hardening 

into machine learning models to reveal the microscale features responsible for the formation of local 
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stress and strain hotspots within the grains and near the grain boundaries, as function of applied 

deformation states, grain morphology/size distribution, and microstructural texture, providing 

insights into micromechanical damage initiation zones in polycrystalline metals.  

 

Keywords:  Machine learning; ensemble learning; microstructure; hotspots; crystal plasticity   
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1 Introduction  

 

The formation of micromechanical hotspots during loading triggers damage initiation and accumulation, 

e.g., void nucleation, grain boundary sliding, shear band formation (Eghtesad and Knezevic, 2021a; 

Orme et al., 2016; Qin and Beese, 2021). Therefore, to aid in the understanding of microstructural origins 

of failure, as well as to enable microstructural design for superior properties, it is critical to understand 

the microstructural characteristics that contribute to the formation of micromechanical hotspots, and if 

and how these change with microstructure and applied loading state. A quantitative description of plastic 

deformation and subsequent damage incubation in crystalline materials requires knowledge of how 

crystallographic texture, grain morphology, and grain boundary (GB) character of polycrystalline 

microstructures alter the localization of micromechanical fields inside the grains and near the GBs.  

 

Crystal plasticity (CP) models facilitate the modeling of microstructure-sensitive elasto-plastic 

deformation based on the mechanical response of crystalline grains (Roters et al., 2010). Among CP 

models that capture explicit grain-grain interactions and spatial gradients, the crystal plasticity fast 

Fourier transform (CPFFT) (Lebensohn et al., 2012a) and the crystal plasticity finite element method 

(CPFEM) (Roters et al., 2011) are predominant in the literature. Of these two, CPFFT is the more 

computationally efficient formulation (Eghtesad et al., 2018; Eghtesad and Knezevic, 2020a; Lebensohn 

and Rollett, 2020), especially with recent developments enabling high-performance computing (HPC) 

and graphics processing unit (GPU) hardware acceleration.        

 

While HPC has improved the efficiency of CP modeling, simulations of very large datasets are still time-

consuming. To address this, recent research has enabled the integration of machine learning (ML) into 
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microstructure-property linkage applications (Batra, 2021; Gao et al., 2022; Pilania, 2021; Rodrigues et 

al., 2021; Veasna et al., 2023). Minaroodi et al. proposed a deep neural network (DNN) surrogate model 

for the quantification of stress fields in anisotropic microstructures (Mianroodi et al., 2021). Cecen et al. 

implemented a data driven approach using a convolutional neural network (CNN) for efficient 

microstructure-property linkage (Cecen et al., 2018). Yang et al. proposed an artificial intelligence (AI) 

based approach within a conditional generative adversarial neural network (cGAN) to find correlations 

between a composite microstructure and its micromechanical response (Yang et al., 2021). Pandey et al. 

reported an ML based surrogate method for predictions of texture evolution under uniaxial tension within 

crystal plasticity (Pandey and Pokharel, 2021).    

  

Several studies have explored the formation of stress hotspots within polycrystalline microstructures. 

Rollett et al. investigated stress hotspots under uniaxial tension in Cu using the CPFFT model with Voce 

hardening  (Rollett et al., 2010a). Chief findings of a study of strain localization under rolling conditions 

were that strain concentrations occur at triple junctions or quadruple points and then interconnect with 

further straining to create shear bands that extend across the polycrystalline structure(Ardeljan et al., 

2015). Particularly, the triggering strain hotspots occurred at junctions of grains with dissimilar 

reorientation propensities, while cold spots were formed vice-versa, i.e., at junctions of grains with 

similar reorientation trends. Donegan et al. used convolutional neural networks based on microstructural 

images to predict stress localization during the thermoelastic response of particulate microstructures 

(Donegan et al., 2019). Fatigue stress hotspots in polycrystalline Cu were explored by a combination of 

high resolution EBSD (HR-EBSD) and CPFEM by Wan et al (Wan et al., 2016). In a recent study 

(Mangal and Holm, 2018a), the formation of stress hotspots in polycrystalline Cu was investigated by 

integrating ML techniques and the CPFFT model with a phenomenological Voce hardening law 
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(Lebensohn et al., 2012a). The methodology was based on grain-wise averaging of the stress fields and 

intergranular misorientations of neighboring grains. The most relevant microstructural features related 

to the stress hotspots formed under uniaxial loading were identified using a Least Absolute Shrinkage 

and Selection Operator (LASSO) linear regression criterion (Ranstam and Cook, 2018).        

 

A grain-wise averaging method reduces the complexity of micromechanical variations and local 

gradients in the vicinity of grain boundaries. In most practical applications, materials are subjected to 

complex multiaxial loading conditions, which affect the intragranular fields in ways that are lost during 

homogenization. Additionally, it has been shown that the local distribution of stresses and strains within 

a microstructure is heavily dependent on the hardening law (Patil et al., 2021). Phenomenological models 

such as Voce, in contrast to the physics-based dislocation density hardening law used here, underestimate 

the heterogeneity of spatial distributions by introducing spurious grain-wise homogenizations.  

 

To identify the dominant microstructural features responsible for stress and strain hotspots, the present 

work adopts a CPFFT model with a physics-based dislocation density (DD) hardening model informed 

by density functional theory (DFT) (Eghtesad et al., 2022). A set of microstructures varying in 

crystallographic texture and grain morphology was generated, using the software DREAM3D (Groeber 

and Jackson, 2014a), and deformed under a range of applied deformation conditions. Machine learning 

techniques were then applied to identify the microstructural features most strongly associated with local 

stress and strain hotspots in pure polycrystalline Ni.  
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2 Methods  

 

Fig. 1 illustrates the ML-based identification of microstructural features correlated to hotspots. The 

CPFFT model allows for the quantification of micromechanical fields as a function of applied 

deformation. Microstructural RVEs used in this study were generated using DREAM3D software 

(Groeber and Jackson, 2014a) with high-resolution (128 voxels in each direction) in order to accurately 

capture the spatial gradients within grains and near grain boundaries. Hotspots were defined as locations 

in which the value for the field of interest exceeded 95% of the mean value of the field. The 

microstructural features and resulting fields vary as function of crystallographic texture, grain 

morphology, grain boundary (GB) features, and applied deformation.    

 

Fig. 1. Schematic of method for machine learning identification of micromechanical features responsible 

for hotspot formation used in the present study. 
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2.1 CPFFT and DFT-based dislocation density hardening law 

 

This study used a DFT-informed DD hardening law within the CPFFT framework, which mitigates the 

uncertainties involved in calibration to a macroscopic flow response obtained from experimental 

measurements (Eghtesad et al., 2022)†. The CPFFT model uses a power law constitutive formulation 

that defines the plastic strain rate, 𝛆̇𝐩(𝐱), as function of Cauchy stress, 𝛔(𝐱), through a superposition of 

shear rates on N slip systems (Asaro, 1983): 

𝛆̇𝐩(𝐱) = ∑𝐏𝐬(𝐱) 

𝑁

𝑠=1

𝛾̇𝑠(𝐱) = 𝛾̇0 ∑𝐏𝐬(𝐱)

𝑁

𝑠=1

(
⌊𝐏𝐬(𝐱):⋅ 𝛔(𝐱)⌋

𝜏𝑐
𝑠(𝐱)

)

𝑛

𝑠𝑖𝑔𝑛(𝐏𝐬(𝐱): 𝛔(𝐱)), Eq. 1 

𝐏𝐬(𝐱) =
1

2
(𝐛𝐬 ⊗ 𝐧𝐬 + 𝐧𝐬 ⊗ 𝐛𝐬), Eq. 2 

where 𝛾̇𝑠(𝐱 ), 𝛾̇0 = 0.001 𝑠−1  and n =20 are the shear rate, reference shear rate, and power law 

viscoplastic exponent, respectively. 𝜏𝑐
𝑠(𝐱) denotes the slip resistance, or critical resolved shear stress 

(CRSS). The geometry of a slip system s is defined by the Burgers vector, 
s

b , and slip plane normal, 

s
n , with the tangent vector being 

s s s= t b n . The family of 12 slip systems for face centered cubic 

(FCC) metals is given by {1̅11}〈110〉. 

  

The current slip resistance 𝜏𝑐
𝑠  is written as the sum of contributions from the initial CRSS, 𝜏0

𝑠 , the 

contribution of mobile forest dislocations, 𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠 , and the slip resistance arising from sessile debris due 

 

† In the following notation, tensors are denoted by bold letters while scalars are italic and not bold. The dot and tensor products 

between the two tensors are denoted by “·” and “⊗”, respectively 
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to the kink-jog dislocation interactions at later stages of hardening, 𝜏𝑑𝑒𝑏𝑟𝑖𝑠, as follows (Beyerlein and 

Tomé, 2008; Eghtesad and Knezevic, 2021b, 2020b; Zecevic et al., 2016):  

𝜏𝑐
𝑠 = 𝜏0

𝑠 + 𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠 + 𝜏𝑑𝑒𝑏𝑟𝑖𝑠. Eq. 3 

Details on the DFT-informed DD hardening formulation describing the individual parameters and DFT 

calculations can be found in (Eghtesad et al., 2022).   

 

2.2 Microstructural features  

 

The microstructural features studied in the present work include crystallographic orientations of 

individual grains, grain morphology, GB features, Schmid factor, intergranular misorientation, and slip 

transmission factor, or Luster-Morris parameter, m´ (Bayerschen et al., 2016; Luster and Morris, 1995). 

The role of the Luster-Morris parameter in determining the likelihood of slip transfer across grain 

interfaces was found important in selecting active slip systems and predicting texture evolution  (Riyad 

et al., 2021). Fig. 2 shows these features and the considered fields, which are discussed individually in 

following sections. 
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Fig. 2. Microstructural features and fields considered in this study. 

 

2.2.1 Crystal orientations 

 

The orientations of individual grains can be described using different conventions, including the 

transformation matrix composed of direction cosines (Kitayama et al., 2013), Bunge-Euler angles 

(Bunge, 2013), Miller indices (Frank, 1965; Schwarzenbach, 2003), axis-angle pairs (Kocks et al., 1998), 

Rodriguez vector (Neumann, 1991), and quaternions (Takahashi et al., 1985). The components of the 

axis-angle pair, 𝛉 = 𝜃𝒓̂, are given as: 
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𝜃 = cos−1 (
∑ 𝑄𝑖𝑖 − 1𝑖

2
), Eq. 4 

𝑟1 =
𝑄23 − 𝑄32

2sin𝜃
 , 𝑟2 =

𝑄31 − 𝑄13

2sin𝜃
,  𝑟3 =

𝑄12 − 𝑄21

2sin𝜃
, Eq. 5 

where, 𝜃 is the rotation angle, 𝒓̂ is the unit direction vector, and 𝐐 is the transformation matrix, which 

converts the coordinates of the crystal to the sample frame, and is defined as: 

𝐐 = [

cos𝜙1cos𝜙2 − sin𝜙1cos𝛷sin𝜙2 −cos𝜙1sin𝜙2 − sin𝜙1cos𝛷sin𝜙2 sin𝜙1sin𝛷
sin𝜙1cos𝜙2 + cos𝜙1cos𝛷cos𝜙2 −sin𝜙1sin𝜙2 + cos𝜙1cos𝛷cos𝜙1 −cos𝜙1sin𝛷

sin𝛷sin𝜙2 sin𝛷cos𝜙2 cos𝛷
], Eq. 6 

where, 𝜙1, 𝛷 and 𝜙2 are the Bunge-Euler angles.  

 

The Euclidean distance between a pair of orientations is calculated using their corresponding unit 

vectors, 𝒓̂𝟏 and 𝒓̂𝟐 . The distance between an arbitrary orientation P=Q (𝜙1, 𝛷, 𝜙2) and a crystal direction 

[hkl] as shown in Fig. 3, can be described as: 

𝑟𝐏−[ℎ𝑘𝑙] = √(𝑟1
𝐏 − 𝑟1

[ℎ𝑘𝑙]
)
2

+ (𝑟2
𝐏 − 𝑟2

[ℎ𝑘𝑙]
)
2

+ (𝑟3
𝐏 − 𝑟3

[ℎ𝑘𝑙]
)
2

, 
Eq. 7 

where [hkl] represents each of the three selected directions of [001], [101], and [111], and 𝑟𝑖
𝐏, 𝑖 = 1,3 

are the unit direction vectors of orientation P=Q (𝜙1, 𝛷, 𝜙2), with [100], [010] and [001] directions 

parallel to X, Y and Z axes of sample coordinates. Fig. 3b shows the Euclidean distances between 

individual grains within an example RVE microstructure.   

 

2.2.2 Schmid factor    

 

Schmid’s law (Schmid and Boas, 1950) describes the relationship between applied stress, σ, and the 

resolved shear stress, 𝜏, on a crystallographic slip system as follows: 
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𝜏 =  σ 𝑐𝑜𝑠𝜆 𝑐𝑜𝑠𝜉 = σ𝑚, Eq. 8 

where 𝑐𝑜𝑠𝜆 𝑐𝑜𝑠𝜉 = 𝑚 is the Schmid factor, 𝜆 is the angle between the loading direction and Burger’s 

vector, and 𝜉 is the angle between the loading direction and slip plane normal.  Fig. 3d illustrates the 

distribution of Schmid factor with respect to the Y axis within an example microstructure.    
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Fig. 3. (a) Euclidean distances of an orientation P=Q (𝝓𝟏,𝜱, 𝝓𝟐) with respect to the directions [001], 

[101] and [111], the corners of a standard inverse pole figure triangle correspond to Y axis, (b) Euclidean 

distances within an example microstructure for individual grains, (c) representation of an elongated grain 

with ellipsoid and quantifications of grain size and grain aspect ratio, (d) Schmid factor distribution for 

the entire microstructure RVE.   

 

 

2.2.3 Grain morphology 

 

The grain morphology and the distribution of grain sizes and aspect ratios within an example RVE are 

quantified by considering the elongated grains as ellipsoids with cord lengths a, b, and c. Realization of 

ellipsoids from the voxelized grains come from the DREAM3D pipeline “Find Feature Shapes”, where, 

the second-order moments of each feature are calculated to determine the ellipsoid principal axis lengths 

and directions (Groeber and Jackson, 2014b). Grain size is defined as the equivalent sphere diameter 

(ESD), 𝐸𝑆𝐷 = √𝑎2 + 𝑏2 + 𝑐2. Grain shape is defined by the minimum aspect ratio, min(
𝑏

𝑎
,
𝑐

𝑎
) as shown 

in Fig. 3c, with a as the major axis.  

 

2.2.4 Grain boundary character  

 

GB character is defined by five independent crystallographic and geometrical parameters, three of which 

form the lattice intergranular misorientations (𝜙1, 𝛷 and 𝜙2) while the other two represent the GB plane 

normal (Beladi et al., 2020). In this study, we also use the Euclidean distances between voxels within 

the grain and the location of GB geometrical features such as GB planes, lines, and vertices and slip 

transmission compatibility factor, described in the next subsections.  
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2.2.5 Grain boundary geometrical features  

 

A GB consists of three major features: (i) surfaces where two adjacent grains meet, (ii) triple junctions 

where three grains meet, and (iii) quadruple points at the intersections of four grains (Gottstein et al., 

2010; Gottstein and Shvindlerman, 2006, 2005; Rios and Glicksman, 2015; Zhao et al., 2011). Fig. 4a 

shows an illustration of the three types of GB features for an arbitrary grain within an example 

microstructure. The distances of each voxel within a RVE to the nearest GB features, 𝑟𝐺𝐵, 𝑟𝑇𝐽, and 𝑟𝑄𝑃  

were calculated, with these values for an example RVE shown in Fig. 4b. 
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Fig. 4. (a) Illustration of GB features with surface, triple junctions, and quadruple points for a grain 

within an RVE, (b) distances between GB features to voxels within individual grains for a sample RVE, 

(c) Schematic illustrating the angles for Luster-Morris parameter between two adjacent grains.  
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2.2.6 Intergranular misorientation and slip transmission compatibility factor 

 

Recent studies indicate that hotspots are more likely to initiate at the high angle grain boundaries with 

GB intergranular misorientations ranging from 45º to 60º (Bieler et al., 2009; Eghtesad and Knezevic, 

2021c). The intergranular misorientation between two adjacent grains 𝛼 and 𝛽 is defined as follows:  

𝛥𝑄𝑖𝑗
𝛼𝛽

= (𝑄𝑖𝑗
𝛼)

−1
𝑄𝑖𝑗

𝛽
, Eq. 9 

The scalar rotation angle 𝜃𝛼𝛽 = cos−1 (
∑ 𝛥𝑄𝑖𝑖

𝛼𝛽
−1

𝑖

2
) between the two adjacent grains at the GB is 

defined using the axis-angle pair convention in Eq. 4.    

 

The Luster-Morris parameter, m´, is a measure of the ability of slip transmission between two adjacent 

grains, given as (Alizadeh et al., 2020): 

𝑚′ = cos𝜅 cos𝜓, Eq. 10  

where  and  are the angles between the slip plane normals and slip directions of two adjacent grains, 

as illustrated in Fig. 4c. A value of 𝑚′ =1 indicates co-planarity of slip systems between the two grains 

and a fully transmissible GB, while 𝑚′ =0 indicates the grain boundary is impenetrable, which would 

eventually result in dislocation pileups and field localizations near the GBs.   

 

While it is possible to calculate a single value of intergranular misorientation and 𝑚´ per grain by 

averaging over neighboring grains (Mangal and Holm, 2018a), here we use two methods to account for 

the heterogeneity of these quantities along the GB segments like in(Knezevic et al., 2014). In the first 

method, as shown in Fig. 5a, the intragranular misorientation is obtained by inversely correlating the 

weighted average to the Euclidean distances with respect to the GB surfaces as follows: 
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𝜃intragranular  = (
𝐸𝑆𝐷  −  𝑟𝐺𝐵

𝐸𝑆𝐷 
) ×

∑ (𝑆𝐺𝐵,𝑖 × θ)
𝑁

𝑖=1

∑ 𝑆𝐺𝐵,𝑖
𝑁

𝑖=1

 Eq. 11 

where 𝑆𝐺𝐵,𝑖 is the area of the GB surface for each grain neighbor, and N is the total number of neighbors 

of the grain. While this method allows quantification of intragranular misorientation and 𝑚´, as shown 

in Fig. 5b-c, it obscures the individual characteristics of the GBs corresponding to different neighbors. 

Thus, in the second method, the intergranular misorientation and 𝑚’ for each GB was computed as shown 

in Fig. 5d and e. In this method, a pair of neighbor grains with different grain IDs are identified as grain 

boundaries through a search algorithm applied to the individual voxels defining the grains. Once the 

grain boundary voxels are identified, their corresponding intragranular misorientation and 𝑚´  are 

calculated using Eq. 9 and Eq. 10.   
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Fig. 5. (a) Neighbor grains and shared GB areas used for calculation of a weighted average 

misorientation angle and Luster-Morris parameter, 𝒎´ , (b) weighted gradient misorientation, (c) 

weighted gradient 𝒎´, (d) local intergranular misorientation at GBs, and (e) local 𝒎´ at GBs for an 

example RVE. 
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2.3 Correlation analysis   

2.3.1 Pearson correlation coefficient 

 

The Pearson correlation coefficient (PCC), 𝑟𝑃𝐶𝐶 , measures the strength of linear association between the 

two variables, where 𝑟𝑃𝐶𝐶 = 1−
+  indicate a strong positive/negative linear correlation and 𝑟𝑃𝐶𝐶 = 0 

implies no linear correlation. The PCC for a pair of data represented in form of vectors X and Y, with 

length N, is written as (Jebli et al., 2021): 

𝑟𝑃𝐶𝐶  =
∑ (𝑋𝑖 − 𝑋̅) ∑ (𝑌𝑖 − 𝑌̅) 𝑁

𝑖=1  𝑁
𝑖=1

 √∑ (𝑋𝑖 − 𝑋̅)2 𝑁
𝑖=1 √∑ (𝑌𝑖 − 𝑌̅)2 𝑁

𝑖=1

, 
Eq. 12 

where, 𝑋̅ and 𝑌̅ are the mean values of vectors X and Y.  

 

2.3.2 Ensemble learning  

 

Ensemble learning-based ML algorithms (Krawczyk et al., 2017; Sagi and Rokach, 2018; Zhang and 

Ma, 2012), such as Bagging (Breiman, 1996), AdaBoost (Solomatine and Shrestha, 2004), XGBoost 

(Chen and Guestrin, 2016), and random forest (Breiman, 2001; Ho, 1995), enable accurate construction 

of nonlinear data associations, by combining the predictions of multiple simpler ML models with a trade-

off between accuracy and computational cost (LeDell, 2015; Sagi and Rokach, 2018). Among ensemble 

learning methods, random forest offers an ensemble hybridization training approach, improving the 

overfitting drawbacks present in its alternatives (Ardabili et al., 2019; Sagi and Rokach, 2018). 

 

In the present study, we use the random forest regression ensemble learning method based on decision 

trees as shown in Fig. 6.  As shown later, microstructural features present strongly nonlinear correlations 
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with stress and strain hotspots; thus, random forest regression, which can identify arbitrarily complex 

functions and correlations, is a suitable choice for identifying the correlations between hotspots and the 

microstructural data provided here. 

 

Fig. 6. Schematic of random forest ensemble learning. Final decisions are made based on predictions of 

all decision trees.    

 

 

2.4 Shapley additive explanations 

 

While ML models such as random forest offer high levels of predictive performance, their inner 

workings are often inexplicable except in the most abstract sense, which hinders the physical 

interpretation of their conclusions. Several interpretation methods have recently been proposed to 

illuminate the black-box nature of ML models. These methods are either specific to one ML model (i.e., 

model-specific) or generic for all ML models (i.e., model-agnostic). Among the model-agnostic 
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methods, Shapley additive explanations (SHAP) (Lipovetsky and Conklin, 2001; Lundberg and Lee, 

2017; Merrick and Taly, 2020; Rozemberczki et al., 2022; Shapley et al., 1953) are an extension of the 

local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016) within complex ML 

models such as random forests. SHAP uses a network of graphs to identify the features that alter the 

probability of a prediction and provides visualizable patterns that determine those predictions. Shapley 

values provide an interpretation of feature importance by satisfying three major mathematical properties 

of a permutation:(i) additivity: the overall net importance of features is directly related to sum of 

importance of those features, (ii) symmetry: importance of any two features that contribute equally to 

the predictions are the same, and (iii) dummy: SHAP value is zero in the case of zero contribution 

(Winter, 2002). 

 

An explainable model 𝜁 with feature vector 𝑥 can be written in form of additive feature attributions as 

follows:   

𝜁(𝑥) = 𝜔0 + ∑𝜔𝑖𝑥𝑖

𝑁

𝑖=1

, Eq. 13 

where 𝜔𝑖  is the weight of feature 𝑖 among N features. In the SHAP model, 𝜔𝑖  is defined as follows 

(Gómez-Ramírez et al., 2020; Rodríguez-Pérez and Bajorath, 2019; Rozemberczki et al., 2022): 

𝜔𝑖 =
1

𝑁!
 ∑ 𝑆!

𝑆⊆𝑁

(𝑁 − 𝑆 − 1)! [𝑓(𝑆 ∪ {𝑥𝑖}) − 𝑓(𝑆)], Eq. 14 

where 𝑁! is all possible permutations of the total number of features, 𝑆 is a subset of features, 𝑆! is all 

possible permutations of the subset of features, and 𝑓(𝑆) is the prediction corresponding to a subset of 

features 𝑆.   
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Since Shapley additive explanations are permutation-based, predicted correlations are prone to bias due 

to preferential selection of features within the tree search algorithm (Mangal and Holm, 2018a; Strobl et 

al., 2008). To address such issue, we use a sequential feature selection (SFS) wrapper method (Chen and 

Chen, 2015; El Aboudi and Benhlima, 2016; Hall and Smith, 1999; Wang et al., 2015; Xiao et al., 2007) 

with an iterative K-fold cross-validation (Fushiki, 2011; Refaeilzadeh et al., 2009) to minimize bias in 

selection of features responsible for the formation of hotspots. 

 

2.5 Feature selection and wrapper method 

 

Wrapper-based SFS methods (Chen and Chen, 2015; El Aboudi and Benhlima, 2016; Hall and Smith, 

1999; Wang et al., 2015; Xiao et al., 2007) are ML algorithms that use a sequential procedure to select 

the most important feature combinations contributing to an output. SFS methods are classified as either 

forward selection or backward elimination. Forward selection is based on adding features to a null set, 

while in backward elimination features are removed from the full set of features. One feature is selected 

at each step, and the next feature is chosen under the condition that the overall performance is improved. 

The performance is evaluated by K-fold cross-validation (Fushiki, 2011; Refaeilzadeh et al., 2009) to 

avoid the uncertainties arising from the data distribution. The final output of the SFS method is a 

combination of features that result in the best model performance - i.e., the highest accuracy/score in the 

regression model.  Fig. 7 is a flowchart of a forward selection SFS using the random forest model. The 

wrapper method starts with adding features to a null list, swapping features out to find the next feature 

at that step that improves the model’s cross validation score. Here, the wrapper result rankings were 

constructed based on the relative frequency of individual features occurring in the list over 100 

repetitions.  
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Fig. 7. Flowchart of forward sequential feature selection. The procedure starts with a null set. Features 

are added to the list and their correlations with hotspots are predicted using a random forest model. The 

random forest model performance is evaluated using K-fold cross-validation. A final set of features is 

obtained based on error minimization by K-fold cross-validation. 

 

 

3 Results and discussion  

 

While recent studies have identified microstructural features related to the formation of hotspots under 

uniaxial loading for equiaxed and untextured grains (Mangal and Holm, 2018b), this study expands on 

prior work by examining variations in applied deformation state, grain morphology, and texture. 



 

23 

 

3.1 Micromechanical deformation in polycrystalline Ni under complex deformation states  

The CPFFT model with DFT informed DD hardening law was used to simulate the flow response of 

pure Ni polycrystal with a grain size of 2µm, using the DD hardening parameters and properties from 

DFT-based calculations provided in Table 1 (Eghtesad et al., 2022).   

 

Table 1. DD hardening parameters and DFT calculations for pure Ni 

Quantitiy  Description  Value 
Calculation 

method 

𝐶11[𝐺𝑃𝑎]  
Elastic constants 

275.5     DFT 

𝐶12 [𝐺𝑃𝑎]  160.1     DFT 

𝐶44 [𝐺𝑃𝑎]  126.4     DFT 

𝑏〈112̅〉 [𝑛𝑚] Partial Burges vector 0.14      DFT 

𝜇 [𝐺𝑃𝑎]   Shear modulus 92.3     DFT 

Γ𝑈𝑆𝐹𝐸  [𝐽𝑚−2] Unstable stacking fault energy 0.28     DFT 

Γ𝐼𝑆𝐹𝐸  [𝐽𝑚−2] Stable stacking fault energy 0.13      DFT 

𝐻𝑉𝑎
𝐹  [𝐸𝑉]   Vacancy formation energy 1.65     DFT 

𝑔 Normalized activation energy  0.01      DFT 

𝑞   Rate of debris formation   5.40     DFT 

𝜏0
𝑠[𝑀𝑃𝑎] Initial slip resistance  76.0 Calibration  

𝑘1[𝑚
−1] Hardening rate  9.0e7 Calibration 

𝐷[𝑀𝑃𝑎] Drag stress 308 Calibration 

 

To investigate the impact of applied macroscopic loading condition on micromechanical hotspots, we 

subjected the RVEs to the macroscale deformation states listed in Table 2. Note that a mixed boundary 

conditions are used to enforce zero stress for lateral directions under uniaxial loading (Lebensohn et al., 

2012b). The resultant von Mises equivalent stress fields are provided in Fig. 8d-e showing significant 

variation in field localizations within the microstructure.   
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Table 2. Applied deformation states and corresponding deformation gradient tensors in CPFFT.  

Applied deformation states  Deformation gradient tensor 

Uniaxial tension 

[
 
 
 
 
−𝜀̇𝑎𝑝𝑝

2
0 0

0 𝜀̇𝑎𝑝𝑝 0

0 0
−𝜀̇𝑎𝑝𝑝

2
 ]
 
 
 
 

 

Biaxial tension  [
𝜀̇𝑎𝑝𝑝 0 0
0 𝜀̇𝑎𝑝𝑝 0
0 0 −2𝜀̇ 𝑎𝑝𝑝 

] 

Simple shear [
0 𝜀̇𝑎𝑝𝑝 0

𝜀̇𝑎𝑝𝑝 0 0
0 0 0 

] 

Combined tension/shear #1 

[
 
 
 
 
−𝜀̇𝑎𝑝𝑝

2
𝜀̇𝑎𝑝𝑝 0

𝜀̇𝑎𝑝𝑝 𝜀̇𝑎𝑝𝑝 0

0 0
−𝜀̇𝑎𝑝𝑝

2
 ]
 
 
 
 

 

 

Combined tension/shear #2 
[
𝜀̇𝑎𝑝𝑝 𝜀̇𝑎𝑝𝑝 0
𝜀̇𝑎𝑝𝑝 𝜀̇𝑎𝑝𝑝 0
0 0 −2𝜀̇𝑎𝑝𝑝

] 

 

Combined tension/shear #3 

[
 
 
 
 
−𝜀̇𝑎𝑝𝑝

2
𝜀̇𝑎𝑝𝑝 0

𝜀̇𝑎𝑝𝑝 𝜀̇𝑎𝑝𝑝 𝜀̇𝑎𝑝𝑝

0 𝜀̇𝑎𝑝𝑝
−𝜀̇𝑎𝑝𝑝

2 ]
 
 
 
 

 

 

Combined tension/shear #4 [
𝜀̇𝑎𝑝𝑝 𝜀̇𝑎𝑝𝑝 0
𝜀̇𝑎𝑝𝑝 𝜀̇𝑎𝑝𝑝 𝜀̇𝑎𝑝𝑝

0 𝜀̇𝑎𝑝𝑝 −2𝜀̇ 𝑎𝑝𝑝

] 
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Fig. 8. Variation in von Mises equivalent stress as function of deformation state to a macroscopic strain 

of 2.5%  for RVEs with equiaxed grains deformed under: (a) biaxial tension, (b) simple shear, and (c) 

combined tension/shear.  

 

 

3.2 Identification of stress and strain hotspots  

 

The CPFFT model enables quantification of micromechanical fields within the microstructure 

throughout the deformation history. While stress hotspots give useful insights into fracture and failure 

criteria in elastic regimes, they obscure the failure and dissipation effects resulting from localization of 

plastic strain. This becomes more important under multiaxial loading in ductile materials, or in fatigue 
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or creep, for which accumulated plastic strain plays a significant role in determining the failure behavior 

of the material (Chaboche, 2003). In this work, in addition to the stress hotspots studied in literature 

(Mangal and Holm, 2018b; Rollett et al., 2010a), we also consider the strain localizations, which are 

important for shear banding-type failure (Ardeljan et al., 2015) 

 

Herein, instead of grain-wise average of the fields, as reported in (Mangal and Holm, 2018a), a local 

(i.e., voxel-based) thresholding is used to identify the hotspot locations and account for the gradients of 

the fields near the GBs. After obtaining the full-field information from CPFFT simulations extracted at 

2.5% total strain, the stress and strain hotspot locations were identified as those exceeding 95% of the 

mean value of the field of interest. Fig. 9 shows the distribution of hotspots for von Mises equivalent 

stress and effective plastic strain after applying the thresholding.  

 

  

Fig. 9. Distribution of full-field values in pure Ni under uniaxial tension to 2.5% macroscopic strain: (a) 

von Mises equivalent stress and (b) effective plastic strain.  
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3.3 Variation in texture and grain morphology  

 

The present work considers the effects of both textured and untextured (i.e., randomly distributed grain 

orientations) RVEs. Common FCC textures were investigated, including Goss, Brass, Cube and Copper 

(Butrón-Guillén et al., 1994; Jonas, 2009; Sarma et al., 2004). Fig. 10 shows the pole figures, plotted 

with MTEX software (Bachmann et al., 2010), associated with the types of texture used in this study 

with non-uniform textures showing strong intensities of preferred orientations up to 15.0 for {100} 

components. 

 

Fig. 10. Texture variants for FCC, (a) uniform, (b) Goss, (c) Brass, (d) Copper and (e) Cube. 

 

To consider the effects of grain morphology, microstructures with a constant number of voxels (1283), 

varying from equiaxed grains to elongated grains and mixed equiaxed and elongated grains were 



 

28 

 

generated as shown in Fig. 11a-c with distribution of equivalent sphere diameter (ESD) and aspect ratio 

of the elongated grains shown in Fig. 12. Corresponding von Mises equivalent stress fields obtained after 

an applied uniaxial deformation of 2.5% strain, reveal significant variations in stress fields and hotspot 

locations.   

 

Fig. 11.  Variation in von Mises equivalent stress as function of grain morphology in RVEs with uniform 

texture deformed under uniaxial tension to 2.5% macroscopic strain with: (a) equiaxed grains, (b) 

elongated grains, and (c) mixed equiaxed/elongated grains.  
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Fig. 12. Distribution of equivalent sphere diameter (ESD) and aspect ratio of the elongated grains for 

the microstructure with mixed equiaxed/elongated grains.  

 

3.4 Correlation heatmaps 

  

The degree of correlation between microstructural features and hotspots is evaluated in terms of PCC 

correlation metrics. Variations in correlation intensities for an equiaxed RVE with uniform texture under 

uniaxial tension are given in Fig. 13. More results for stress hotspots as a function of grain morphology, 

texture, and deformation state are provided in the supplementary material (Fig A1). Cells with higher 

non-zero absolute values indicate stronger correlations. Notable correlations are observed with 

misorientation, 𝑚´, Euclidean distances from the GB features, and Euclidean distances to the directions 

[001], [101] and [111]. Note that the Euclidean distances from the GB features are more appropriate in 

the case of RVE with a small number of grains, as individual grains are represented by significantly 

more voxels. Correlations with misorientation and Schmid factors are positive, indicating that stress 

hotspots occur at grains with higher Schmid factors and larger misorientations.  
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The conclusion related to correlations between misorientation and hotspots differs from what was found 

in (Mangal and Holm, 2018a) due to different representations of misorientation. While (Mangal and 

Holm, 2018a) used an average of misorientations of neighbor grains and assigns that to the entire grain, 

the present work considers the local intergranular misorientation that accounts for the nonuniformity 

across the GBs with dissimilar grain neighborhood. Negative correlations with Euclidean distances from 

the GB features confirm the fact that hotspots form near the GBs, which agrees with the findings reported 

in (Mangal and Holm, 2018a; Rollett et al., 2010b).       

 

  

Fig. 13. PCC correlation heatmaps for microstructural features hotspots under uniaxial tension for RVEs 

with equiaxed grains and uniform texture: (a) Von Mises equivalent stress and (b) effective plastic strain.  

 

 

While these heatmaps provide useful insights into linear positive/negative correlations, values far from 

unity indicate the possibility of nonlinear correlations between microstructural features and 
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micromechanical fields. In (Mangal and Holm, 2018a), a linear LASSO regularization regression 

provided by FeaLect method (Tibshirani, 1996; Zare, 2015) was used to select the most important 

features. In the present work, we selected a random forest model within an SFS algorithm for feature 

selection to identify nonlinear correlations and the relative importance of microstructural features 

contributing to the formation of hotspots.  

 

3.5 SHAP-based feature importance and random forest-based feature selection   

 

The SFS function “SequentialFeatureSelector()” from Scikit-learn using random forest regression as the 

ML core model and 5-fold cross-validation were used in the present study.  The accuracy of random 

forest regression with all features included was evaluated as a function of the number of decision trees 

and the depth of tree search. The random forest regression function “RandomForestRegressor()” from 

Scikit-learn (Pedregosa et al., 2011) was used to find the nonlinear correlations between microstructural 

features and stress hotspots. The random forest model reached a maximum accuracy of R2 = 87% and 

root mean square error of RMSE=0.09 by using 75 trees and a search depth of 35 as shown in Fig. 14. 

Next, the optimum number of features resulting in the same accuracy was found by iteratively running 

the SFS wrapper and selected features using a 5-fold cross-validation, varying from 1 to 10, saturating 

after 4 features. A maximum score of R2 = 87% was obtained by using a subset of four selected features. 
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Fig. 14. Accuracy of random forest model as a function of (a) tree depth, (b) the total number of decision 

trees, and (c) accuracy of SFS as function of number of features selected by 5-fold cross validation. The 

model reaches a maximum accuracy score of R2 = 87% and RMSE=0.09.   

  

 

It is shown in the literature that the built-in permutation-based feature importance offered by random 

forests is prone to bias due to the preferential selection of the features (Mangal and Holm, 2018a). To 

avoid bias, the tree SHAP explainer, “shap.explainers.Tree()”, from the SHAP package (Štrumbelj and 

Kononenko, 2014) was used to interpret the random forest regression predictions using normalized 

SHAP values. Fig. 15 shows the relative feature importance in formation of von Mises equivalent stress 
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and effective plastic strain hotspots for an RVE with uniform texture and equiaxed grains under uniaxial 

tension, biaxial tension and shear. More results as a function of grain morphology, texture, and mixed 

deformation states are provided in the supplementary material (Fig. A2 and Fig. A3).   

 

Fig. 15. Relative importance of top features described by normalized SHAP values responsible for the 

formation of hotspots:(a) von Mises equivalent stress, and (b) effective plastic strain as a function of 

deformation state: (i) uniaxial tension, (ii) biaxial tension, and (iii) simple shear.   

 

 

Evaluating the SHAP values for a combination of stress and strain hotspots together, reveals that Schmid 

factor, intergranular misorientation, m´, and Euclidean distances to IPF corners with [111] being 

dominant are frequently selected as the top four contributing features in the formation of hotspots with 

m´ having the least effect on both stress and strain hotspots. Note that crystals with orientation closer to 

[111] directions exhibit higher Taylor factors and are stiffer grains. It is shown that the deviation of the 

Taylor factor of a given grain with its first neighbors are important in influencing localizations (Knezevic 

et al., 2014). Intergranular misorientation is found to be the top feature responsible for stress 

concentrations while Schmid factor is the top feature responsible for strain localizations. Therefore, 

regions with high misorientations are candidates for higher stress localization while locations with high 

https://www.sciencedirect.com/topics/engineering/taylor-factor
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Schmid factors are more prone to micromechanical damage accumulation caused by plastic strain. It is 

also important to recognize that misorientation effects become more important in stress localizations 

under pure shear loading (much higher importance for this feature is observed under shear loading in 

Fig. 15 (a)(iii)). Additionally, Schmid factor becomes more dominant in strain localizations under 

uniaxial loadings, and its relative importance compared to misorientation and Euclidean distance to [111] 

directions reduces, with all four top features contributing nearly equally in simple shear. In conclusion, 

the positive correlation between hotspots and intergranular misorientation, and the fact that intergranular 

misorientations occur at GBs, suggest that harder grains with the highest Schmid factor and intergranular 

misorientation, as well as regions near the GBs, are likely locations for damage nucleation and failure. 

 

In summary, we find that the roles of m´ and intergranular misorientations are more important in 

governing stress/strain localizations than those of grain size, we find that under uniaxial tension, m' and 

intergranular misorientations are more important in governing stress/strain localizations than grain size, 

contrary to the findings reported in (Mangal and Holm, 2018b). Intergranular misorientations are also 

found to be more important than Schmid factor which is another point of contrast. This may be due to 

the fact that the present work uses a physics-based DD hardening law, while a phenomenological 

hardening was used in (Mangal and Holm, 2018b), and it has been shown that the local distribution of 

stresses and strains are strongly dependent on the selected hardening law (Patil et al., 2021) with 

phenomenological laws obscuring the heterogeneity of spatial distributions and introducing spurious 

grain-wise homogenizations. Additionally, the present study uses local definitions of grain boundary 

descriptors that may be obscured if a grain neighborhood averaging scheme is used as in (Mangal and 

Holm, 2018b).    
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In addition to the above insights pertaining to uniaxial loading conditions, our work reveals the important 

influence of non-uniaxial loading conditions on the formation of both stress and strain hotspots. 

Intergranular misorientations become much more important than Schmid factor in identification of stress 

hotspots where inelastic deformations under multiaxial loadings, including shear, are more dominant. 

Schmid factor, intergranular misorientation, m´, and Euclidean distances to IPF corners with [111] all 

become important under the condition of damage growth and failure resulted by high levels of 

accumulated plastic strains. Grain size also becomes more important in cases of combined tension/shear 

loading and high levels of accumulated plastic strains (see supplementary Fig. A4).       

 

4. Summary and conclusions  

 

In this work, we study the role that various microstructural features play in the formation of stress and 

strain hotspots using a combination of physics-informed CPFFT simulations and ML techniques for data 

analysis. The microstructures used for simulations varied in grain structure/morphology and 

crystallographic texture. The intergranular misorientation and slip transmission were quantified locally 

to describe heterogeneities in the vicinity of grain boundaries. To evaluate the effects of applied 

deformation state on the formation of hotspots, a range of loading configurations with varying 

combination of tension and shear were studied. An ensemble learning random forest regression model 

was used to establish the nonlinear correlations between the microstructural features and hotspots with 

an accuracy of R2 = 87% and RMSE = 0.09. To determine the most critical features corresponding to 

stress and strain hotspots, the sequential feature selection wrapper method was used, with the relative 

importance of the top selected features quantified by Shapley additive explanations. The present study 

identifies the microstructural features responsible for stress and strain localizations that will be followed 
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by micromechanical damage growth and failure. ML analysis of the data obtained from the stress and 

strain hotspot locations for a wide range of microstructures deformed under complex loading conditions 

reveals the following findings:  

• Schmid factor, intergranular misorientation, m´, and Euclidean distance of a point to the [111] 

directions were identified as the top four contributing features in the formation of stress and strain 

hotspots. 

• Regions within the microstructure with the following characteristics were identified to be more 

prone to coincide with micromechanical stress and strain hotspots:   

▪ Near grain boundaries, 

▪ Crystals with higher Taylor and Schmid factors, 

▪ Crystals with high intergranular misorientations. 

• Intergranular misorientations are more responsible than Schmid factor in formation of stress 

hotspots for all deformation states. 

•  Schmid factors take priority over the intergranular misorientations under high levels of plastic 

strain localization for all deformation states. 

• Grain size becomes important with respect to the top features above only under combined tension 

and shear and at high levels of accumulated plastic strains.  
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4 Data availability  

 

Data together with MATLAB and Python scripts supporting the findings of this study are provided in 

the supplementary materials. 
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