

1 Consistent Evaluation of the Prompt-fission Neutron Spectrum and
2 Multiplicity for $n+^{235,238}\text{U}$ and $n+^{239}\text{Pu}$

3 A.E. Lovell, D. Neudecker, P. Talou, I. Stetcu, M.J. Grosskopf, T. Kawano
4 Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

5 September 18, 2020

6 **Contents**

6	1	Introduction	2
7	2	Overview of the CGMF Model	3
8	3	CGMF Model Parameter Selection	8
9	4	Experimental-data Overview	10
10	5	Challenges to Overcome and Agreement of Model Calculations with Experimental	
11		Data	19
12	6	Evaluation Techniques	34
13	7	Summary	35

14 **Abstract**

15 This report was written to satisfy a FY20 NCSP milestone on $^{235,238}\text{U}$ and ^{239}Pu . The mile-
16 stone requires to “finalize a report assessing our methodology to evaluate prompt-fission neutron
17 spectrum (PFNS) and multiplicity consistently”. More specifically, we study whether the code CGMF
18 can reproduce ENDF/B-VIII.0 evaluated PFNS and average prompt-fission neutron multiplicities,
19 $\bar{\nu}$, for $^{235,238}\text{U}$ and ^{239}Pu using one joint parameter set per isotope. If CGMF is shown to be able to
20 reasonably reproduce ENDF/B-VIII.0 within its model-parameter space, this code could be used for
21 future consistent evaluations of PFNS and $\bar{\nu}$. To answer this question, we explore here the param-
22 eter space of CGMF and its impact on calculated values and whether they are close to evaluated and
23 experimental data. We also list experimental data that would enter a future evaluation and statistics
24 method that could be used to obtain evaluated data and covariances. We conclude that values of $\bar{\nu}$
25 calculated by CGMF are reasonably close to ENDF/B-VIII.0 data, while more work on modeling the
26 PFNS is needed (parameter optimization and model improvements) to reliably use it for evaluations.
27 **Keywords:** Average Prompt-fission Neutron Multiplicity, Prompt-fission Neutron Spectrum, ^{239}Pu ,

28 ^{235}U , ^{238}U , CGMF

29 **LA-UR-20-26932**

30 1 Introduction

31 This report is in answer to the FY20 NCSP milestone on $^{235,238}\text{U}$ and ^{239}Pu that requires to “finalize
32 a report assessing our methodology to evaluate PFNS (Prompt-fission Neutron Spectrum) and mul-
33 tiplicity consistently”. The goal is to use the CGMF code [1, 2] to model the PFNS and the average
34 prompt-fission neutron multiplicity, $\bar{\nu}$. Even more specifically, the aim is to investigate whether one
35 can match ENDF/B-VIII.0 PFNS and $\bar{\nu}$ nuclear data [3] within the parameter space of the CGMF
36 framework while taking into account auxiliary data for the modeling and comparing to other output
37 data. One of these possible outputs of CGMF, that can be counter-checked against experimental data,
38 is, *e.g.*, the angular distributions of neutrons or prompt-fission gamma spectra. The reason for this
39 undertaking is to explore whether CGMF could be used in the future to produce consistently evaluated
40 PFNS and $\bar{\nu}$ for the same isotope.

41 The CGMF code is a Monte Carlo implementation of the Hauser-Feshbach statistical theory of nuclear
42 reactions, applied to the de-excitation of the scission fragments through the evaporation of prompt
43 neutrons and γ rays. As input, it requires the pre-neutron-emission fission-fragment yields in mass,
44 charge and total kinetic energy, $Y(A, Z, \text{TKE})$. As output, it provides an event-by-event record of
45 fission decays that contains the initial fission-fragment conditions, including its initial momentum
46 vector, and all characteristics (multiplicity, energies, momenta) of all accompanying emitted particles
47 (neutrons and γ rays). Average quantities, distributions (energy, angle), and correlations among all
48 those particles and the fragment they originate from can all be obtained through straightforward
49 accounting and statistical techniques.

50 Two of those average quantities are particularly interesting in view of data present in the ENDF/B-
51 VIII.0 library: the PFNS and $\bar{\nu}$. In ENDF/B-VIII.0, these two quantities are given for incident-
52 neutron energies from thermal up to 20 MeV. The PFNS for both $n+^{235}\text{U}$ and $n+^{239}\text{Pu}$ were recently
53 revisited [4] in light of experimental data from Chi-Nu [5]. The $^{235}\text{U}(n,f)$ $\bar{\nu}$ was modified to include
54 fluctuations near the thermal point due to the $(n,\gamma f)$ process. The average neutron multiplicity for
55 ^{239}Pu was slightly modified in the fast region to account for integral-benchmark feedback, including
56 sub-critical experiments. No consistency between PFNS and $\bar{\nu}$ was considered in the evaluation process.

57 However, the CGMF code can be used to produce consistent calculations of PFNS and $\bar{\nu}$, as a
58 function of incident-neutron energy, from thermal up to 20 MeV. The input fission-fragment yields,
59 $Y(A, Z, \text{TKE}|E_{\text{inc}})$, have been derived and implemented in CGMF already. Other model input parame-
60 ters, primarily the $\langle \text{TKE} \rangle$ values, have been adjusted to reproduce $\bar{\nu}$ across the incident-energy range.

61 Due to these adjustments of model parameters, the calculated $\bar{\nu}$ values for $^{235,238}\text{U}$ and ^{239}Pu
62 are shown to be reasonably close to ENDF/B-VIII.0 in Section 5. Some systematic deviations of
63 calculated data from evaluated data are observed at second-chance fission pointing to shortcomings in
64 fission-probability parameters and maybe the incident-neutron energy dependence of $\langle \text{TKE} \rangle$. For $\bar{\nu}$, we
65 expect that one can produce realistic evaluated data with CGMF when optimizing the model parameters
66 to experimental data.

67 The CGMF PFNS, however, has always been calculated too soft compared to measured data; and that
68 is the case here for all three isotopes studied with the initial parameters of CGMF tweaked to get good
69 agreement to $\bar{\nu}$. But the PFNS’s systematic behavior is different across isotope: ^{238}U PFNS, while still
70 too soft, are closest to experimental data below second-chance fission, while ^{235}U and ^{239}Pu PFNS are
71 clearly far away from experimental data. Also, all PFNS suffer from obvious issues at second-chance
72 fission pointing again to the need for optimizing the fission-probability, *etc.*, parameters. The shape of
73 the average outgoing-neutron energy or mean energy of the ^{239}Pu PFNS, *i.e.*, the first moment of the
74 spectrum, as a function of incident-neutron energy has been shown to be in reasonable agreement with
75 the Chi-Nu data for ^{239}Pu except for a systematic, but very significant for applications (up to 100 keV!),
76 off-set. However, this systematic behavior does not apply to $^{235,238}\text{U}$ PFNS mean energies. Hence,
77 the initial parameters set of CGMF used here in Section 5 was clearly not satisfactory in reproducing
78 ENDF/B-VIII.0.

79 Hence, parameter studies were undertaken here to map out in how far one can give more reasonable
 80 PFNS while maintaining good agreement for $\bar{\nu}$. Also, this issue was studied by Lovell, Stetcu *et al.* over
 81 the summer with students (T.S. Blade and S.D. Ozier) from the “2020 XCP Computational Physics
 82 Summer Workshop” using an emulator with discrepancies and is summarized here briefly; this issue
 83 was also previously studied by Lovell, Stetcu, Talou, *et al.* during the “2019 XCP Computational
 84 Physics Summer Workshop” with students (C. Parker and S. Pineda) to understand the effects of
 85 assuming different optical potentials on the PFNS. The information from all these studies is combined
 86 here to assess whether we will be able to reproduce ENDF/B-VIII.0 PFNS and what developments
 87 need to be undertaken in the future to use CGMF for consistent evaluations of PFNS and $\bar{\nu}$.

88 To study this, we:

- 89 1. Perform CGMF calculations with default input parameters as described in Section 2. We will also
 90 explore to which model parameters the PFNS and $\bar{\nu}$ are sensitive to, and whether optimizations in
 91 the parameter space have the potential to improve the agreement of the PFNS with experimental
 92 data, shown in Section 3.
- 93 2. Collect the most recent PFNS and $\bar{\nu}$ evaluated data and show them in Section 5 in comparison
 94 to CGMF calculated values and experimental data. The latter are listed in Section 4.
- 95 3. Explore in Section 6 which evaluation techniques (Kalman filter, GLS) lend themselves to opti-
 96 mize the CGMF input parameters to reproduce the evaluated $\bar{\nu}$ and PFNS as well as yield evaluated
 97 covariances for both observables. We will also explore whether emulators paired with Gaussian
 98 processes can be used to reliably correct for remaining issues in the PFNS that cannot be resolved
 99 by improving the model parameters or the model itself.

100 A summary of the main findings and a conclusion whether a consistent evaluation of PFNS and $\bar{\nu}$ for
 101 one isotope is attainable with CGMF is given in Section 7.

102 2 Overview of the CGMF Model

There are several models and data needed for a complete CGMF calculation. The multi-chance fission probabilities are an input at each incident-neutron energy and are sampled for each fission event; the fission probabilities for ^{235}U , ^{238}U , and ^{239}Pu are shown in Fig. 1. If one of the multi-chance fission channels, above first chance, is sampled, one or more neutrons are emitted from the compound nucleus before fission occurs. Most of these pre-fission neutrons are evaporated from the compound nucleus, and their energy is sampled from an evaporation spectrum. At high enough incident energies, above ~ 12 MeV, the first neutron emitted from, *e.g.*, ^{240}Pu , can be a pre-equilibrium neutron. These neutrons have an energy spectrum and angular distribution more akin to inelastically scattered neutrons. If this channel is energetically available, the first pre-fission neutron out is determined to be a pre-equilibrium neutron or not based on the pre-equilibrium fraction, as shown in Fig. 2. The fraction of pre-equilibrium neutrons is fit, based on calculations from CoH₃, to the functional form

$$f_{pe} = \frac{1}{1 + \exp[(a_0 - E_{\text{inc}})/E_0]} + sE_{\text{inc}} + f_0, \quad (1)$$

103 where a_0 , E_0 , s , and f_0 are all fitted parameters and E_{inc} is the energy of the incident neutron.
 104 Although the pre-equilibrium fraction is non-zero starting around $E_{\text{inc}} \sim 1.5$ MeV, it is not until
 105 $E_{\text{inc}} \sim 12$ MeV that a pre-equilibrium neutron can be emitted from the compound nucleus and leave
 106 the resulting nucleus with enough excitation energy to fission. The four fitted parameters for f_{pe} are
 107 given in Table I for ^{235}U , ^{238}U , and ^{239}Pu .

To initialize each CGMF fission event, a model for the initial conditions of the fission fragments,
 $Y(A, Z, TKE, J, \pi)$, is required, that is the distributions in mass, charge, total kinetic energy, spin,

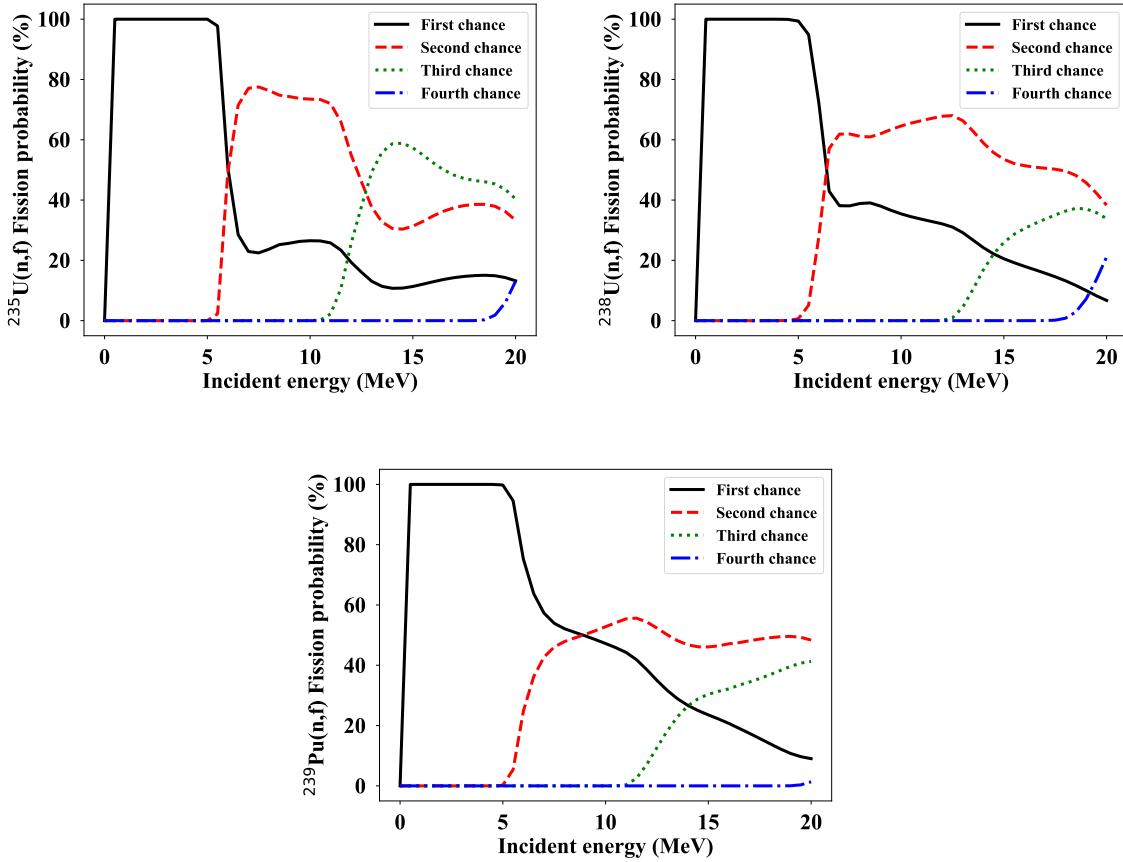


Figure 1: Multi-chance fission probabilities in CGMF calculated from CoH_3 for $^{235}\text{U}(\text{n},\text{f})$, $^{238}\text{U}(\text{n},\text{f})$, and $^{239}\text{Pu}(\text{n},\text{f})$.

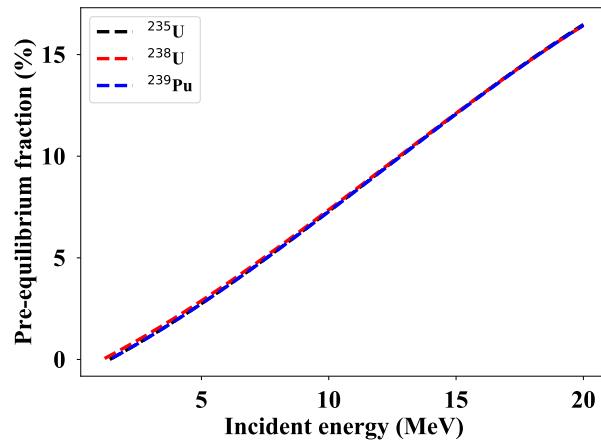


Figure 2: Fraction of first-emitted, pre-fission neutrons that are pre-equilibrium neutrons for $^{235}\text{U}(\text{n},\text{f})$, $^{238}\text{U}(\text{n},\text{f})$, and $^{239}\text{Pu}(\text{n},\text{f})$. Note that the three curves are essentially identical, as expected based on the similarities between the parameters in Table I.

Target	a_0	E_0	$s (\times 10^{-3})$	f_0
^{235}U	11.913	12.948	-9.6218	-0.294
^{238}U	11.913	12.948	-9.7463	-0.292
^{239}Pu	11.913	12.948	-9.6401	-0.294

Table I: Pre-equilibrium-fraction parameter values for Eq. (1).

and parity. The mass distribution is modeled as a sum of three Gaussian distributions,

$$Y(A|E_{\text{inc}}) = G_0(A|E_{\text{inc}}) + G_1(A|E_{\text{inc}}) + G_2(A|E_{\text{inc}}), \quad (2)$$

with

$$G_0(A|E_{\text{inc}}) = \frac{W_0(E_{\text{inc}})}{\sqrt{2\pi}\sigma_0(E_{\text{inc}})} \exp\left[\frac{-(A - A_c/2)^2}{2\sigma_0(E_{\text{inc}})^2}\right], \quad (3)$$

108 and

$$G_{1,2}(A|E_{\text{inc}}) = \frac{W_{1,2}(E_{\text{inc}})}{\sqrt{2\pi}\sigma_{1,2}(E_{\text{inc}})} \left\{ \exp\left[\frac{-(A - \mu_{1,2}(E_{\text{inc}}))^2}{2\sigma_{1,2}(E_{\text{inc}})^2}\right] \right. \quad (4)$$

$$\left. + \exp\left[\frac{-(A - (A_c - \mu_{1,2}(E_{\text{inc}})))^2}{2\sigma_{1,2}(E_{\text{inc}})^2}\right] \right\}. \quad (5)$$

Each of the weights, means, and widths are allowed to be energy-dependent with

$$W_{1,2}(E_{\text{inc}}) = \frac{1}{1 + \exp[(E_{\text{inc}} - w_{1,2}^a)/w_{1,2}^b]}, \quad (6)$$

$$\mu_i(E_{\text{inc}}) = \mu_i^a + \mu_i^b E_{\text{inc}}, \quad (7)$$

and

$$\sigma_i(E_{\text{inc}}) = \sigma_i^a + \sigma_i^b E_{\text{inc}}. \quad (8)$$

109 The weight of the symmetric mode is constrained by the normalization $2 = W_0 + 2W_1 + 2W_2$, and the
110 width of the symmetric Gaussian mode is fixed at $\mu_0 = A_c/2$. The charge distribution, $Y(Z|A)$, is
111 taken from Wahl systematics [6].

The average total kinetic energy, $\langle \text{TKE} \rangle$, is linear in incident energy, with an inflection point
reflective of the change in the slope of $\text{TKE}(E_{\text{inc}})$ seen experimentally for many isotopes. This is
parametrized in CGMF as

$$\langle \text{TKE} \rangle(E_{\text{inc}}) = \begin{cases} a + bE_{\text{inc}}, & \text{if } E_{\text{inc}} \leq E_0 \\ c + dE_{\text{inc}}, & \text{if } E_{\text{inc}} \geq E_0 \end{cases} \quad (9)$$

where a , b , d , and E_0 are fitting parameters, and c is determined by the continuity at E_0 ,

$$c = a + (b - d)E_0. \quad (10)$$

112 Typically, E_0 is around 1 MeV. $\langle \text{TKE} \rangle(E_{\text{inc}})$ from CGMF compared to experimental data is shown
113 in Fig. 3. The slope change in $^{235}\text{U}(\text{n},\text{f})$ and $^{238}\text{U}(\text{n},\text{f})$ around $E_{\text{inc}} = 1$ MeV is visible in the
114 experimental data—and absent for $^{239}\text{Pu}(\text{n},\text{f})$. In incident-energy ranges where the $\langle \text{TKE} \rangle$ appears
115 higher than the experimental data, the $\langle \text{TKE} \rangle$ was adjusted to reproduce $\bar{\nu}(E_{\text{inc}})$. However, large
116 jumps in $\langle \text{TKE} \rangle$ at the opening of the second-chance fission channel indicate that either the multi-
117 chance fission probabilities or the TKE parametrizations need to be revisited.

The mass dependence of TKE is defined as polynomial,

$$\text{TKE}(A) = \sum_{i=0}^8 p_i (A - A_0)^i, \quad (11)$$

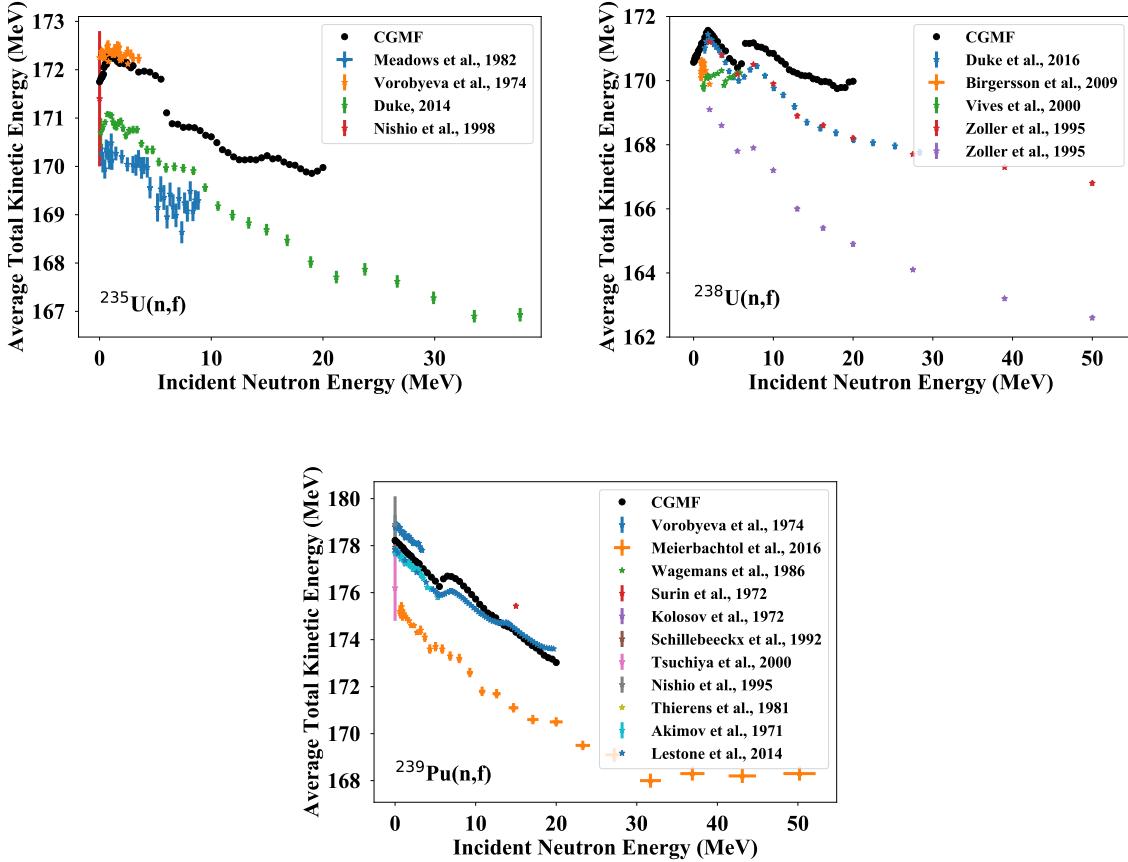


Figure 3: Average total kinetic energy from CGMF compared to experimental data for $^{235}\text{U}(n,f)$, $^{238}\text{U}(n,f)$, and $^{239}\text{Pu}(n,f)$.

and the width of the TKE distribution for each A -value is defined in a similar fashion,

$$\sigma_{\text{TKE}}(A) = \sum_{i=0}^8 s_i (A - A_0)^i. \quad (12)$$

In both cases, A_0 is a fitted expansion parameter—which can be different for both $\text{TKE}(A)$ and $\sigma_{\text{TKE}}(A)$, and typically one or more of the last s_i values are zero. In addition, because Eqs. (11) and (12) are polynomials, they can have unphysical values outside of the range over which they were fitted. For this reason, we also define A_{max} for $\text{TKE}(A)$ and $\sigma_{\text{TKE}}(A)$ as the maximum mass up to which this parametrization is valid, beyond which $\text{TKE}(A)$ and $\sigma_{\text{TKE}}(A)$ go to a pre-defined constant value. A_{max} can be different for both $\text{TKE}(A)$ and $\sigma_{\text{TKE}}(A)$. The total excitation energy, TXE, is determined based on the Q -value of the sampled split, $\text{TXE} = Q - \text{TKE}$.

The spin distribution is defined proportionally to a Gaussian,

$$P(J) \propto (2J+1) \exp \left[\frac{-J(J+1)}{2B^2(Z, A, T)} \right], \quad (13)$$

where B^2 is the spin-cut off parameter, and the width of this distribution can be tuned with an energy-dependent parameter, $\alpha = \alpha_0 + \alpha_1 E_{\text{inc}}$. Even and odd parity states are sampled with equal weight.

The parameters for the $Y(A)$, $Y(\text{TKE})$, and $Y(J, \pi)$ models are given in Table II for ^{235}U , ^{238}U , and ^{239}Pu . This leaves 42 free parameters in the yield parametrization for each fissile target. When the

Parameter	$^{235}\text{U}(\text{n,f})$	$^{238}\text{U}(\text{n,f})$	$^{239}\text{Pu}(\text{n,f})$
w_a^1	-6.856049	-2.167787	-25.369127
w_b^1	6.0824	5.0323	29.9818
μ_a^1	133.79	135.16	135.11
μ_b^1	-0.28	-0.09	0.13
σ_a^1	3.0288	3.3868	3.8465
σ_b^1	0.000	0.0142	0.0689
w_a^2	-6.863698	-2.224051	-25.258746
w_b^2	-6.1438	-5.1629	-30.0000
μ_a^2	140.97	142.20	141.35
μ_b^2	-0.27	-0.16	0.20
σ_a^2	4.6942	5.5624	6.5176
σ_b^2	0.1853	0.1048	0.0324
σ_a^0	9.8854	10.0092	9.9823
σ_b^0	0.0322	0.0153	0.0580
a	171.74	172.01	178.21
E_0	0.75	1.50	0.00
b	0.7181	0.0900	0.0000
d	-0.075	-0.3000	-0.3409
$A_0(\text{TKE})$	131.70	130.00	131.49
$A_{\max}(\text{TKE})$	166.00	162.00	170.00
p_0	1.7838×10^2	1.7774×10^2	1.8445×10^2
p_1	-3.8105×10^{-1}	2.4323×10^{-1}	-1.7386×10^{-1}
p_2	-1.4501×10^{-1}	-1.5521×10^{-1}	-9.4080×10^{-2}
p_3	5.9204×10^{-3}	4.0098×10^{-3}	3.7735×10^{-3}
p_4	2.0923×10^{-4}	1.7018×10^{-4}	-5.1130×10^{-5}
p_5	-1.6306×10^{-5}	-8.9348×10^{-6}	0.0
p_6	2.4070×10^{-7}	1.0190×10^{-7}	0.0
p_7	0.0	0.0	0.0
p_8	0.0	0.0	0.0
$A_0(\sigma_{\text{TKE}})$	125.75	130.00	128.00
$A_{\max}(\sigma_{\text{TKE}})$	163.00	162.00	159.00
s_0	9.3499	7.985	7.5837
s_1	-3.1996×10^{-1}	-2.0539×10^{-2}	1.0168×10^{-1}
s_2	4.1924×10^{-3}	-2.2611×10^{-2}	-1.6588×10^{-2}
s_3	1.9662×10^{-4}	1.2051×10^{-3}	3.9178×10^{-4}
s_4	-4.1142×10^{-6}	-1.6865×10^{-5}	0.0
s_5	0.0	0.0	0.0
s_6	0.0	0.0	0.0
s_7	0.0	0.0	0.0
s_8	0.0	0.0	0.0
α_0	1.45	1.5	1.53
α_1	0.070	0.071	0.071

Table II: Initial CGMF parameters for $^{235}\text{U}(\text{n,f})$, $^{238}\text{U}(\text{n,f})$, and $^{239}\text{Pu}(\text{n,f})$.

130 energy of the incident neutron is above ~ 6 MeV, the second-chance fission channels opens, and above
 131 this energy range, both the compound, A , and $A - 1$ systems can fission. The same parametrization
 132 can be used for the $A - 1$ system (taking into account a shift in the compound mass), however, where
 133 there is experimental data, the parameters are tuned independently. Thus, as the multi-chance fission
 134 channels open (both second-chance fission and third-chance fission around 12 MeV), the number of
 135 free parameters is potentially doubled and then tripled. When experimental data are not available
 136 for the $A - 1$ and $A - 2$ systems, the parametrization of the A system is used, with A_c being shifted
 137 appropriately.

The TXE and TKE are then shared between the two fragments. The TXE is split between the fragments based on a ratio of temperatures,

$$R_T = \frac{T_L}{T_H} \approx \sqrt{\frac{U_L a_H(U_H)}{U_H a_L(U_L)}}, \quad (14)$$

138 where a_L (a_H) and U_L (U_H) are the level density and excitation energy of the light (heavy) fragment.
 139 In CGMF, R_T is implemented as a function of A to reproduce $\bar{\nu}(A)$, and U_L and U_H are iteratively
 140 searched over until Eq. (14) is fulfilled. The level densities are taken from the Fermi-gas model.
 141 Currently, R_T does not dependent on the incident-neutron energy, and $\bar{\nu}(A)$ only scales with the total
 142 prompt-neutron multiplicity. Then, TKE is split between the two fragments by conservation of energy.

To calculate the neutron evaporation from the fission fragments, neutron-transmission coefficients are required. The transmission coefficients for a certain channel, T_c , are calculated from the scattering matrix, S_{cc} ,

$$T_c = 1 - |\langle S_{cc} \rangle|^2. \quad (15)$$

143 To calculate the transmission coefficients for all of the fission fragments that are produced during
 144 the fission processes, we rely on a global optical-model parametrization (OMP). The default OMP in
 145 CGMF is the Koning-Delaroche potential [7], a non-relativistic, spherical potential. Other global optical
 146 potentials are available—Refs. [8] and [9] are two examples of other common spherical potentials—and
 147 while these potentials lead to slight differences in the average energies of the neutrons emitted from
 148 the fission fragments, the PFNS calculated using all three are nearly identical, as seen in Fig. 4.

149 3 CGMF Model Parameter Selection

The neutron multiplicities and energies are not necessarily sensitive to all of the parameters described in Section 2. Therefore, we perform a sensitivity analysis for $\bar{\nu}$ and $\langle \varepsilon_n \rangle$ to each of these parameters in Table II for incident-neutron energies from thermal to 20 MeV. The sensitivities, R_{ij} , are defined as

$$R_{ij} = \frac{d o_i}{d p_j} \frac{\bar{p}_j}{\bar{o}_i}, \quad (16)$$

150 where o is the observable (either $\langle \varepsilon_n \rangle$ or $\bar{\nu}$ at a single incident energy) and p is the parameter; \bar{o}
 151 represents the observable calculated using the baseline values of the parameters, with \bar{p} the default
 152 value of the parameter. Each parameter is initially varied by 2% to calculate the sensitivities. The
 153 initial parameters for each of the three isotopes studied in this report are listed in Table II. Note that
 154 a sensitivity was not calculated for any parameter listed as 0 in Table II.

155 The R_{ij} sensitivities are shown in Figs. 5, 6, and 7 for the parameters of $^{235}\text{U}(\text{n},\text{f})$, $^{238}\text{U}(\text{n},\text{f})$, and
 156 $^{239}\text{Pu}(\text{n},\text{f})$, respectively. It is important to note that these sensitivities only take into account the
 157 parametrization of the compound nucleus that is formed initially, and not the initial conditions of any
 158 of the compound nuclei that are formed at incident energies above ~ 6 MeV when the multi-chance
 159 fission channels begin to open. Looking at each of Figs. 5, 6, and 7, we see that $\langle \varepsilon_n \rangle$ and $\bar{\nu}$ are sensitive
 160 to the same parameters, and $\bar{\nu}$ is about five times as sensitive as $\langle \varepsilon_n \rangle$. Because of these trends in the

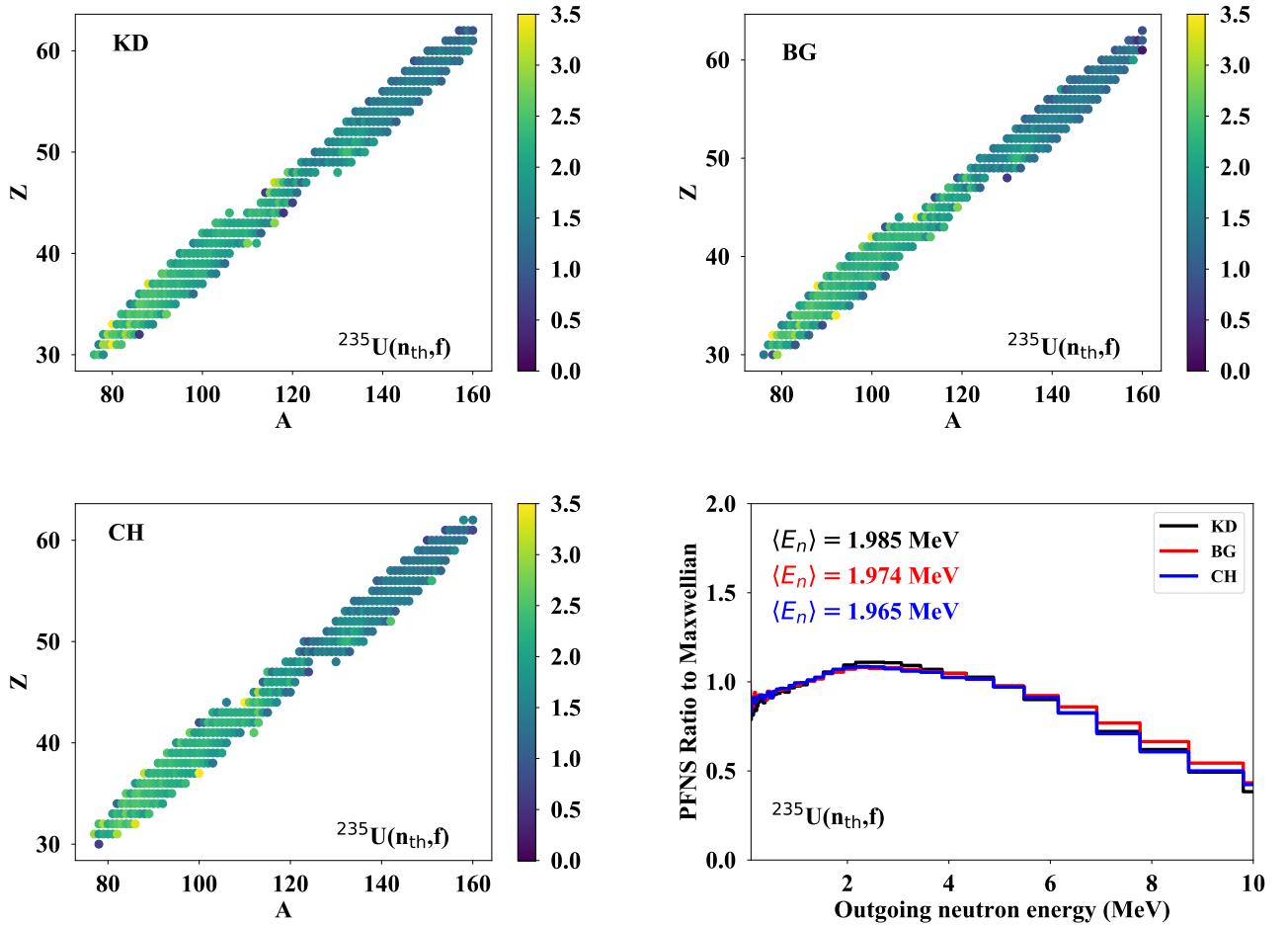


Figure 4: Average neutron energies emitted from the fission fragments for $^{235}\text{U}(n_{\text{th}},f)$ when the Koning-Delaroche (KD), Becchetti-Greenlees (BG), and Chapel-Hill 89 (CH) potentials are used to calculate the transmission coefficients for neutron evaporation, plus a comparison of the PFNS—as a ratio to a Maxwellian distribution ($kT=1.32$ MeV)—for the three optical potentials. Average neutron energies are listed in the colors corresponding to each given optical potential.

161 sensitivities, it becomes difficult to adjust both $\bar{\nu}$ and $\langle \varepsilon_n \rangle$ simultaneously. Small changes to $\bar{\nu}$ will have
162 an even smaller effect on $\langle \varepsilon_n \rangle$, and as will be shown in Section 5, larger adjustments to the neutron
163 energies are required. However, it is promising, from the consideration of calculation time, that these
164 observables are strongly sensitive to only two to three parameters in the yield distribution.

165 It is important to note that in these studies, we have only focused on the parameters in the first-
166 chance fission calculations, *e.g.*, for the ^{236}U compound but not the ^{235}U , ^{234}U , and ^{233}U compounds.
167 Therefore, the parameter sensitivities shown in this section primarily concern incident energies lower
168 than ~ 6 MeV. Although there is some effect at higher incident energies (as shown in Figs. 5, 6,
169 and 7), differences between $\bar{\nu}$ and the PFNS from CGMF values and experimental data will also depend
170 on other parameters, such as fission barriers, which are not studied in detail in this report. Further
171 studies will have to be performed to fully optimize all model parameters and consistently model the
172 transitions between multi-chance fission channels.

173 We also have some indications that large changes in the spin-distribution cut-off parameter, α_0 ,
174 can have a substantial effect on the mean neutron energy—and the shape of the PFNS. Therefore,
175 a more sophisticated parameter optimization may be needed across the entire input space, where
176 simultaneous, large changes in parameters can have compensating effects. However, a significant
177 increase in α_0 comes at the cost of pushing the average γ -ray multiplicities to values higher than what
178 are observed experimentally.

179 In addition, we then perform some bulk parameter studies for $^{235}\text{U}(\text{n},\text{f})$. Particularly seeing the
180 spread of the experimental TKE values in Fig. 3, we increase and decrease the TKE by 1 MeV, through
181 the a parameter in Eq. (9). The results of this tweaking is shown in Fig. 8 for $\langle \text{TKE} \rangle$, $\bar{\nu}$, and $\langle \varepsilon_n \rangle$,
182 where the black curve shows the default CGMF calculation, red (blue) shows the results when TKE is
183 increased (decreased) by 1 MeV. In addition, we change the multi-chance fission probabilities from
184 those calculated by default in CoH₃ Miranda-3.5.3 to those calculated using the barriers from Ref. [4].
185 These different multi-chance fission probabilities are shown as the solid (default) and dashed (Ref. [4])
186 lines in the lower right panel of Fig. 8. The resulting $\langle \text{TKE} \rangle$, $\bar{\nu}$, and $\langle \varepsilon_n \rangle$ are shown in green in Fig. 8.
187 Although the shift in the TKE by 1 MeV shows a much bigger change in $\bar{\nu}$ than $\langle \varepsilon_n \rangle$ (as expected
188 from the sensitivity studies shown in Fig. 5), the changes in the multi-chance fission probabilities
189 lead to a more significant change on the shape of the average neutron energies above the opening of
190 second-chance fission.

191 We also see a large drop in the $\langle \text{TKE} \rangle$ as calculated by CGMF when the second-chance fission channel
192 opens. This feature, which is not seen in the experimental data, is due to a combination of the change
193 in the $\langle \text{TKE} \rangle$ parametrization between the ^{236}U and ^{235}U compound nuclei, the slope change in Eq. (9),
194 and the very sharp increase in the second-chance fission probability. In addition, the kinks seen at
195 the openings of multi-chance fission for $\bar{\nu}$ come from the differences in $\langle \text{TKE} \rangle$ for the ^{236}U , ^{235}U , and
196 ^{234}U compounds, both the magnitude and slope of the parametrization. However, none of these bulk
197 parameter tweaks change the shape of the tail of the PFNS in any significant manner.

198 4 Experimental-data Overview

199 CGMF model calculations and experimental data will be taken into account for the evaluations of PFNS
200 and $\bar{\nu}$. To this end, all available experimental data will be extracted from EXFOR [10], their quality
201 will be judged and covariances will be estimated for those data deemed reliable.

202 These steps were already undertaken for ^{235}U and ^{239}Pu PFNS as part of the evaluations doc-
203 umented in Ref. [4] and a recent in-house evaluation including Chi-Nu and CEA ^{239}Pu PFNS [11].
204 The experimental data shown in Tables III and IV encompass only these data that were judged to
205 be of adequate quality for evaluation purposes. The uncertainties of these data displayed in figures
206 in Section 5 are not the originally reported uncertainties but were changed by expert judgment to
207 estimate suspected shortcomings in the data [12]. The only work that might need to be performed

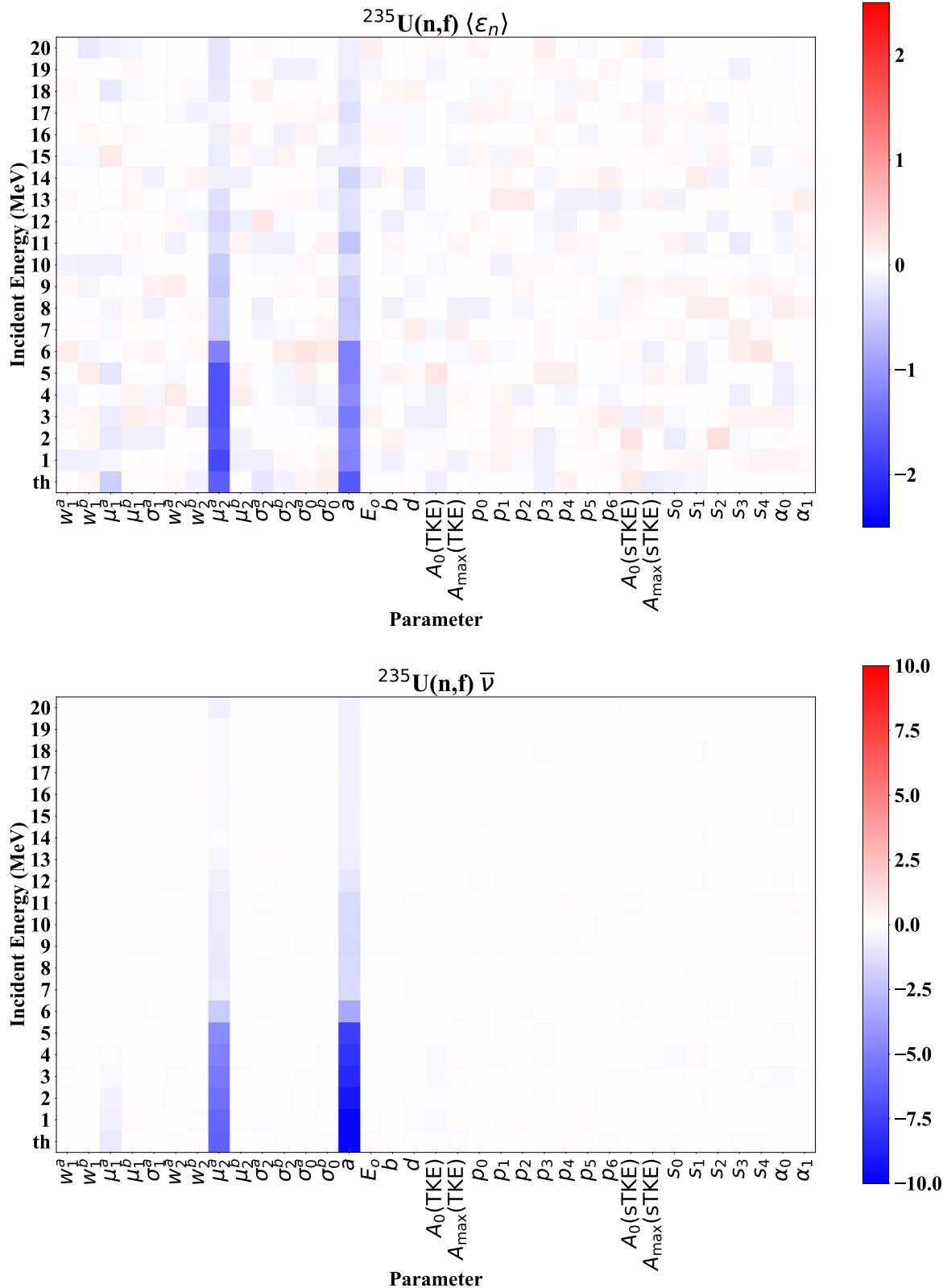


Figure 5: Sensitivities, R_{ij} , of (top) the mean energy of the PFNS and (bottom) average number of emitted neutrons for to the parameters in the yields, $Y(A, Z, \text{TKE}, J, \pi)$, as a function of incident-neutron energy, for $^{235}\text{U}(\text{n},\text{f})$.

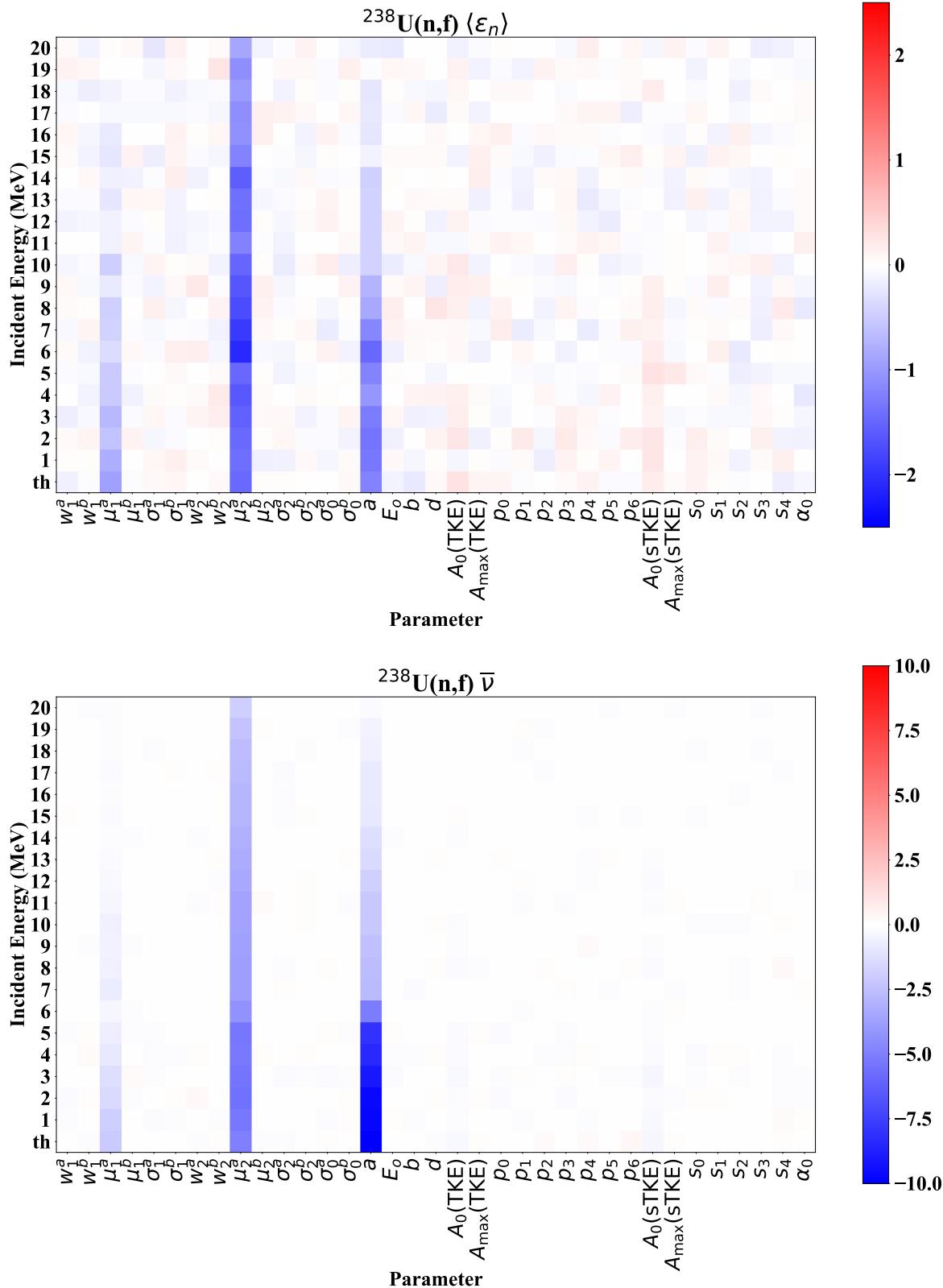


Figure 6: Sensitivities, R_{ij} , of (top) the mean energy of the PFNS and (bottom) average number of emitted neutrons for to the parameters in the yields, $Y(A, Z, \text{TKE}, J, \pi)$, as a function of incident-neutron energy, for $^{238}\text{U}(\text{n},\text{f})$.

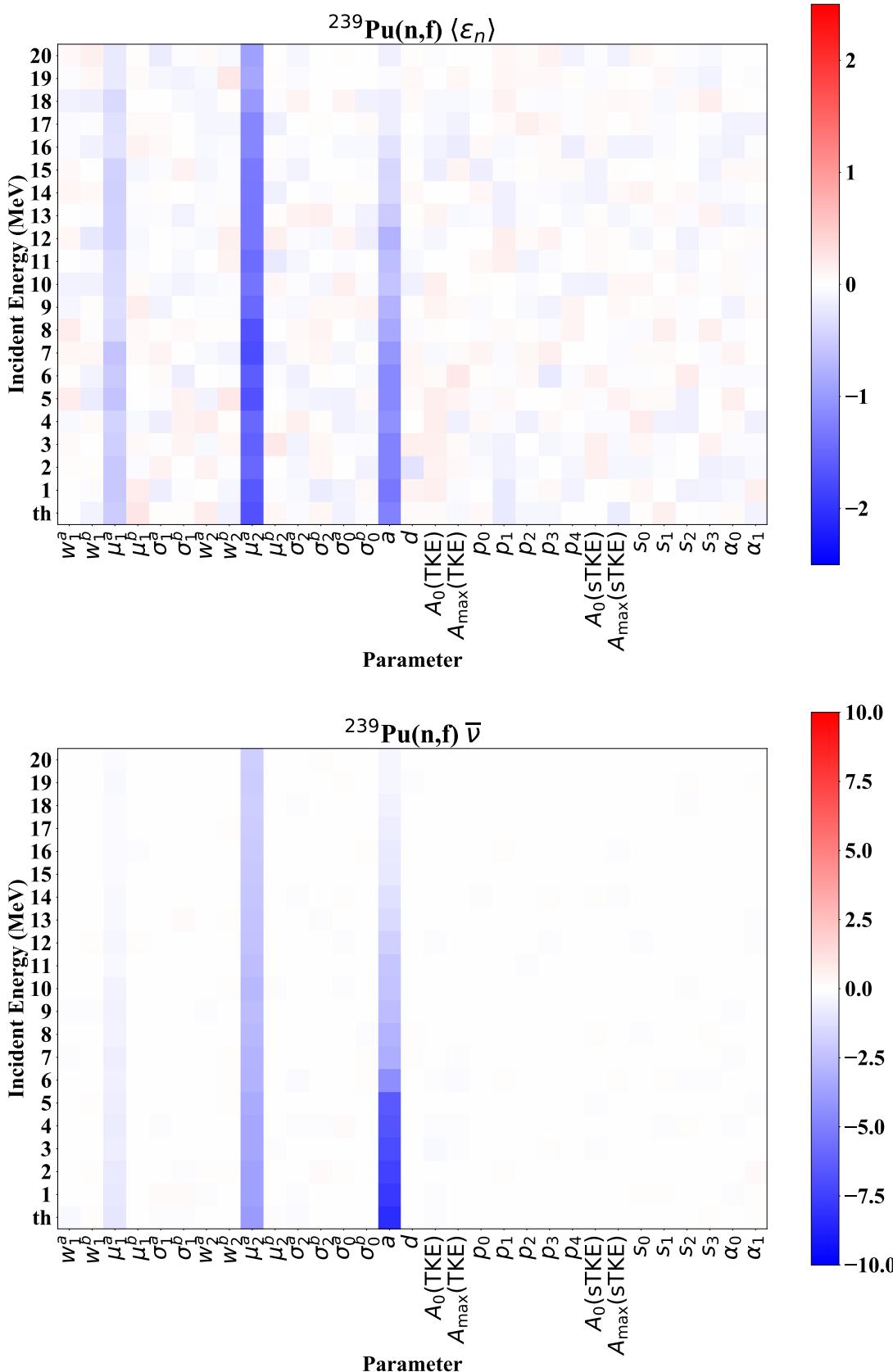


Figure 7: Sensitivities, R_{ij} , of (top) the mean energy of the PFNS and (bottom) average number of emitted neutrons for to the parameters in the yields, $Y(A, Z, \text{TKE}, J, \pi)$, as a function of incident-neutron energy, for $^{239}\text{Pu}(\text{n,f})$.

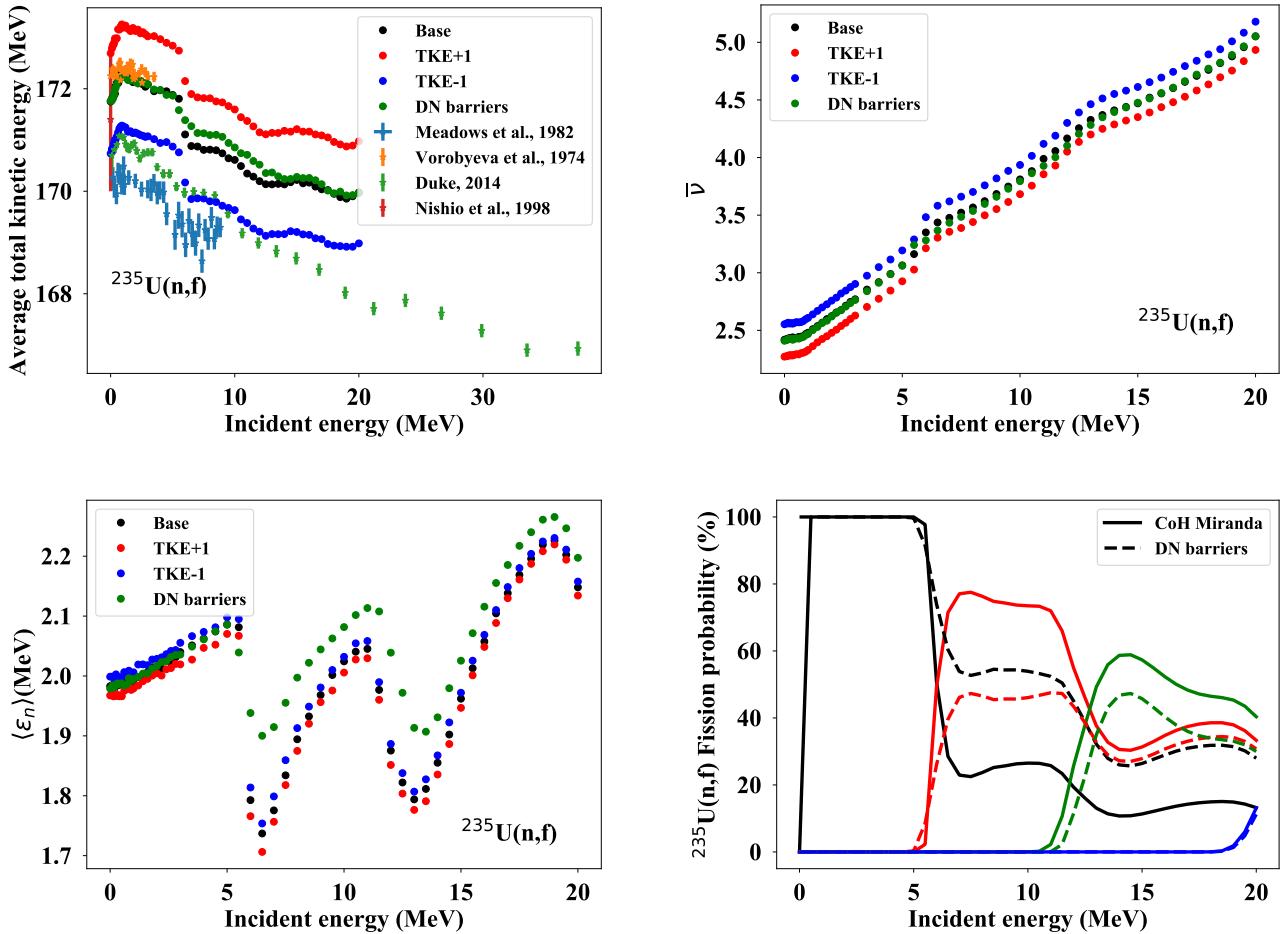


Figure 8: Changes in the CGMF results for $\langle \text{TKE} \rangle$, $\bar{\nu}$, and $\langle \varepsilon_n \rangle$ when TKE is increased by 1 MeV (red), TKE is decreased by 1 MeV (blue), and the multi-chance fission probabilities are changed (green), compared to the baseline CGMF calculation (black). The bottom right panel shows two different sets of multi-chance fission barriers, solid lines show the default CoH₃ calculations from the Miranda-3.5.3 version and the dashed lines show the multi-chance probabilities using the barriers from [4].

Table III: Measured differential PFNS data sets for neutron-induced fission of ^{235}U . The E_{inc} in MeV, EXFOR No., first author, year of publication and main reference, outgoing-neutron energy, E , and comments that include the quality of the information for the purposes of uncertainty quantification (UQ) are given. This table was taken from Ref. [13] and only those experiments are listed that will be used for the actual evaluation.

E_{inc}	EXFOR	First Author & Year	Type of data	E (MeV)	Comments
thermal	41597002	Vorobyev (2013) [14]	ratio to Cf	0.221–16.65	Detailed UQ
thermal	31692006	Kornilov (2011) [15]	ratio to Cf	0.7–11.8	Detailed UQ
thermal	40871011	Nefedov (1983) [16]	ratio to Cf	0.084–0.91	Detailed UQ
thermal	40871012	Nefedov (1983) [16]	ratio to Cf	1.0–7.8	Detailed UQ
thermal	40872007	Starostov (1983) [17]	ratio to Cf	4.115–12.06	Detailed UQ
thermal	40873004	Boytsov (1983) [18, 19]	ratio to Cf	0.021–4.5	Detailed UQ
1.5	–	Lestone (2014) [20, 21]	shape	1.5–11.5	Detailed UQ
2.9	41110009	Boykov (1991, 1994) [22, 23]	ratio to Cf	0.232–11.885	Detailed UQ
0.53	20175003	Johansson (1977) [24, 25]	shape	0.625–14.45	Incomplete UQ
0.4	20385003	Islam (1973) [24, 27]	shape	0.58–6.9	Incomplete UQ
1.5	20394008	Knitter (1972) [26]	shape	1.8–6.7	Incomplete UQ
1.5–20	–	Chi-Nu (2018) [5]	ratio to fct.	0.01–2.1	to be finalized

208 for experimental PFNS of these two isotopes is including the newest data of the Chi-Nu collaboration
 209 when delivered.

Table IV: Experimental PFNS for neutron-induced fission of ^{239}Pu . The incident-neutron energy, E_{inc} (MeV), EXFOR No., first author, year of publication and main reference, type of data, outgoing-neutron energy, E , and comments that include the quality of the information for the purposes of UQ are given. This table was taken from Ref. [13] and only those experiments are listed that will be used for the actual evaluation.

E_{inc}	EXFOR	First Author & Year	Type of data	E (MeV)	Comments
thermal	40871009	Nefedov (1983) [16]	ratio to Cf	0.08–1.8	Detailed UQ
thermal	40871010			1.2–9.1	
thermal	40872006	Starostov (1983) [17]	ratio to Cf	3–11.2	Detailed UQ
thermal	40873006	Boytsov (1983) [18]	ratio to Cf	0.02–4.5	Incomplete UQ
thermal	40930	Starostov (1985) [19]	ratio to Cf	0.02–11.2	Incomplete
thermal	30704004	Lajtai (1985) [28]	ratio to Cf	0.03–3.9	Detailed UQ (Cf) [29]
1.5	–	Lestone (2014) [20, 21]	shape	1.5–11.5	Detailed UQ
1–200	14379	Chatillon (2014) [30, 31]	shape	0.3–8.3	Detailed UQ
0.215	20576003	Knitter (1975) [24, 32]	shape	0.28–13.9	Incomplete UQ
1–28	–	CEA (2020) [33]	ratio to Cf	0.25–11.3	Incomplete UQ
1.5–19	–	Chi-Nu (2020)	ratio to fct.	0.01–9.4	Detailed UQ

210 As part of this project, ^{238}U PFNS listed in Table V will need to be extracted from EXFOR.
 211 Their uncertainties will be estimated using the code ARIADNE [34]. Correlations will be estimated
 212 between uncertainties of the same and different experiments. To this end, the literature and EXFOR
 213 entries will be studied in detail to glean an understanding of potential biases in the data, but also
 214 to extract pertinent uncertainty sources (*e.g.*, counting statistics, background, multiple scattering and
 215 attenuation, detector response, angular distribution of fission fragments and neutrons, nuclear data,
 216 time resolution and TOF length uncertainties). Uncertainties that were not provided in EXFOR or
 217 literature but are clearly missing will be estimated by taking recourse to templates of expected uncer-
 218 tainties in PFNS measurements [35]. Experimental uncertainties and associated correlation coefficients
 219 will then be estimated for each pertinent uncertainty source based on this information following the

220 procedure outlined in Ref. [4, 13].

Table V: Experimental PFNS for fast neutron-induced fission of ^{238}U . The incident-neutron energy, E_{inc} , in MeV, EXFOR [10] accession number, first author, year of publication and main reference, type of data, outgoing-neutron energy, E , and comments that include the quality of the information for the purposes of UQ are given. This table was taken from Ref. [13].

E_{inc}	EXFOR	First Author, Year	Type of data	E (MeV)	Comments
14.3	40740002	Baryba (1979) [36, 37]	shape	0.6–9.96	Incomplete UQ
6.01	40631	Kornilov (1980) [37, 38]	shape	0.72–8.8	Incomplete UQ
7.02				0.62–8.14	
8.01				0.7–8.63	
8.94				0.61–9.73	
2.0	22112003	Baba (1989) [39]	shape	2.3–12.87	Incomplete UQ
2.9	41110010	Boykov* (1991) [22, 23, 40]	shape, ratio to Cf	0.232–11.885	Incomplete UQ
14.7			shape, ratio to Cf	0.225–11.77	
16.0	41461004	Smirenkin (1996) [41]	shape, ratio to Cf	0.39–11.95	Incomplete UQ
17.7				0.39–13.36	
5.0	41450003	Trufanov (2001) [42]	shape, ratio to Cf	0.28–12.27	Incomplete UQ
13.2			shape, ratio to Cf	0.45–12.36	
6.0	41447003	Lovchikova (2004) [43]	shape, ratio to Cf	0.13–13.77	Incomplete UQ
7.0			shape, ratio to Cf	0.14–15.17	
2.0	33084	Desai (2015) [13, 44]	shape	0.75–8.75	Incomplete UQ
2.5			shape	0.75–6.75	
3.0			shape	0.75–8.25	

The data for $^{235,238}\text{U}(\text{n,f})$ and $^{239}\text{Pu}(\text{n,f})$ $\bar{\nu}$ listed in Tables VI–VIII have been extracted from EXFOR. An uncertainty estimate will be started for $^{239}\text{Pu}(\text{n,f})$ $\bar{\nu}$ data in FY20 and will need to be finished in FY21. Covariances will need to be estimated for $^{235}\text{U}(\text{n,f})$ and $^{238}\text{U}(\text{n,f})$ $\bar{\nu}$ as well. To this end, a module will be developed in the code package ARIADNE to estimate experimental covariances for $\bar{\nu}$ measurements. Similarly to PFNS measurements, uncertainty values, δ_i^k , and correlation coefficients, $\text{Cor}_{i,j}^k$, will be estimated for each expected uncertainty source k at incident-neutron energy i or j . Total covariances, $\text{Cov}_{i,j}^{tot}$, will then be estimated by:

$$\text{Cov}_{i,j}^{tot} = \sum_k \delta_i^k \text{Cor}_{i,j}^k \delta_j^k, \quad (17)$$

221 assuming that the individual uncertainty sources are partitioned such that they be independent. A
222 template of expected uncertainties was recently developed for absolute and ratio $\bar{\nu}$ measurements [35]
223 and will be used to estimate comprehensive covariances for all data sets accepted for evaluation pur-
224 poses. Correlation coefficients will be provided for uncertainties for the same and between different
225 experiments.

Table VI: Measured $\bar{\nu}$ data sets for $^{235}\text{U}(\text{n,f})$ found in EXFOR. The EXFOR No., first author, year of publication and E_{inc} are given.

EXFOR no.	First Author & Year	Monitor	E_{inc} (MeV)
41673.003	Apalin 1962	N/A	$2.53e^{-8}$
41397.01	Apalin 1965	N/A	$2.53e^{-8}$
21139.003	Barnard 1965	N/A	$2.53e^{-8}$
12397.002	Bethe 1955	N/A	4–4.5
40158.006	Bljumkina 1964	$^{235}\text{U}(\text{n,f}) \bar{\nu}_t$	0.08–0.99
41110.006	Boikov 1991	$^{252}\text{Cf(sf)} \bar{\nu}_p$	2.9–14.7

30772.003	Boldeman 1985	$^{252}\text{Cf(sf)} \bar{\nu}_p$	$2.53e^{-8}$
21454.005/7/8	Colvin 1965	$^{252}\text{Cf(sf)} \bar{\nu}_p$	$2.53e^{-8}$ –2.57
20025.002	Conde 1965	$^{252}\text{Cf(sf)} \bar{\nu}_p$	7.5–14.8
14294.002	DeVolpi 1966	N/A	$2.53e^{-8}$
12337.003	Diven 1956	$^{235}\text{U(n,f)} \bar{\nu}_p$	0.08
12436.002	Diven 1957	N/A	1.25–4.8
14297.007	Diven 1961	$^{252}\text{Cf(sf)} \bar{\nu}_p$	4
14297.006	Diven 1961(2)	$^{252}\text{Cf(sf)} \bar{\nu}_t$	$2.53e^{-8}$
21252.005	Fieldhouse 1966	$^{252}\text{Cf(sf)} \bar{\nu}_t$	0.075–14.2
21252.006	Fieldhouse 1966(2)	$^{252}\text{Cf(sf)} \bar{\nu}_t$	0.04–7.96
40806.003	Flerov 1958	N/A	14.1
22592.003	Frehaut 1973	$^{252}\text{Cf(sf)} \bar{\nu}_t$	$2.00e^{-6}$ – $4.46e^{-5}$
20506.002	Frehaut 1980	$^{252}\text{Cf(sf)} \bar{\nu}_t$	1.36–14.79
21685.002	Frehaut 1980(2)	$^{252}\text{Cf(sf)} \bar{\nu}_t$	2.279–2.828
21785.003	Frehaut 1982	$^{252}\text{Cf(sf)} \bar{\nu}_t$	1.14–14.66
12345.003	Fultz 1966	N/A	$2.53e^{-8}$
12833.001/3+12906.003	Gwin 1984	$^{252}\text{Cf(sf)} \bar{\nu}_t$	$2e^{-8}$ – $4.1e^{-5}$
13101.003	Gwin 1986	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.0005–9
12326.004	Hopkins 1963	$^{252}\text{Cf(sf)} \bar{\nu}_t$	$2.53e^{-8}$ –14.5
10574.003	Howe 1976	$^{235}\text{U(n,f)} \bar{\nu}_t$	$5.20e^{-7}$ – $8.43e^{-5}$
14051.002	Howe 1976(2)	$^{252}\text{Cf(sf)} \bar{\nu}_t$	$8.90e^{-2}$ –23.3
12870.004	Howe 1984	$^{235}\text{U(n,f)} \bar{\nu}_p$	17–48.9
21696.004	Johnstone 1956	$^{235}\text{U(n,f)} \bar{\nu}_t^M$	2.5–14.1
20427.002	Kaeppler 1975	$^{235}\text{U(n,f)} \bar{\nu}_p$	0.225–1.363
40356.003	Kalashnikova 1957	$^{235}\text{U(n,f)} \bar{\nu}_t^M$	$2.53e^{-8}$
33102.004	Kappor 1963	N/A	$2.53e^{-8}$
41378.002	Khoklov 1994	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.048–14.122
12419.002	Meadows 1962	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.03–1.76
12391.002	Meadows 1965	$^{252}\text{Cf(sf)} \bar{\nu}_t$	3.91–6.36
12399.002/4	Meadows 1967	$^{252}\text{Cf(sf)} \bar{\nu}_t$	0.039–1
30022.002	Nadkarni 1967	N/A	0.37–2.13
40871.003	Nefedov 1983	$^{252}\text{Cf(sf)} \bar{\nu}_p$	$2.53e^{-8}$
40033.002/4/6/8	Nesterov 1970	$^{252}\text{Cf(sf)} \bar{\nu}_p$	$2.53e^{-8}$ –1.51
40132.002	Prokhorova 1967	$^{235}\text{U(n,f)} \bar{\nu}_p$	0.37–3.25
40392.002/3	Protopopov 1958	$^{235}\text{U(n,f)} \bar{\nu}_p^M$	14.8
10427.003	Reed 1973	$^{235}\text{U(n,f)} \bar{\nu}_p^M$	$1.20e^{-8}$ – $2.64e^{-5}$
21456.005	Sanders 1956	N/A	$2.53e^{-8}$
40058.004	Savin 1970	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.65–6.6
40262.002	Savin 1972	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.86–5.35
40493.002	Savin 1979	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.198–0.985
20600.002	Simon 1976	$^{252}\text{Cf(sf)} \bar{\nu}_p$	$2.03e^{-6}$ – $7.46e^{-5}$
40388.006	Smirenkin 1958	$^{235}\text{U(n,f)} \bar{\nu}_p^M$	4–15
12395.002	Snyder 1944	N/A	$2.53e^{-8}$
20568.002	Soleihac 1970	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.223–1.87
40785.002	Vasilev 1960	N/A	14.3
41597.004	Vorobyev 2013	N/A	$3.63e^{-8}$
30006.002	Walsh 1971	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.11–1.9
20113.003	Widen 1973	$^{252}\text{Cf(sf)} \bar{\nu}_p$	$2.53e^{-8}$

Table VII: Measured $\bar{\nu}$ data sets for $^{238}\text{U}(\text{n},\text{f})$ found in EXFOR. The EXFOR No., first author, year of publication and E_{inc} are given.

EXFOR no.	First Author & Year	Monitor	E_{inc} (MeV)
20075.002	Asplund 1964	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	1.49–14.8
21139.002	Barnard 1965	N/A	2.09–4.91
40740.003	Baryba 1979	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	14.3–14.3
12397.004	Bethe 1955	N/A	4.5
41110.007	Boikov 1991	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	2.9–14.7
40671.003	Bondarenko 1958	$^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_p$	4
12462.002	Butler 1961	$^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_p$	1.58
20072.003	Conde 1961	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	3.6–14.9
33084.003	Desai 2015	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	2–3
21696.005	Diven 1956	$^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_t^M$	2–14.1
12436.003	Diven 1958	N/A	1.5
21252.004	Fieldhouse 1966	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	14.2
40806.005	Flerov 1958	N/A	14.1
20490.002	Frehaut 1980	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	1.36–14.79
21685.003	Frehaut 1980 (2)	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	22.79–28.28
21696.005	Johnstone 1956	$^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_t^M$	2.5–14.1
40631.006	Kornilov 1980	$^{252}\text{Cf(sf)}$ $\bar{\nu}_t$ DE	6.01–8.94
41213.003	Kuzminov 1961	$^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_p$	2.3–3.75
14384.002	Laurent 2014	N/A	1.4–19.11
21453.002	Leroy 1960	$^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_p$	14.2
21135.006	Mather 1965	$^{252}\text{Cf(sf)}$ $\bar{\nu}_t$	1.4–4.02
40429.003	Nurpeisov 1975	$^{252}\text{Cf(sf)}$ $\bar{\nu}_t$ DE	1.2–4.89
40138.002	Sabin 1972	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	1.27–5.87
14296.002	Sher 1960	N/A	2.8
41461.003	Smirenkin 1996	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$ DE	16–17.7
14215.003	Taieb 2007	N/A	1.76–190.01
40785.003	Vasilev 1960	N/A	14.3
21094.007	Voignier 1968	N/A	14.1
40665.002	Vorobyeva 1981	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	1.3–5.89
21909.003	Yamamoto 1979	N/A	14.5
32606.002	Zangyou 1975	$^{240}\text{Pu(sf)}$ $\bar{\nu}_t$	1.22–5.5

Table VIII: Measured $\bar{\nu}$ data sets for $^{239}\text{Pu}(\text{n},\text{f})$ found in EXFOR. The EXFOR No., first author, year of publication, main reference and E_{inc} are given.

EXFOR no.	First Author & Year	Monitor	E_{inc} (MeV)
41397.008	Apalín 1965	N/A	2.53e^{-8}
30772.004	Boldeman 1980 [45]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	2.53e^{-8}
20052.002	Conde 1968 [46]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	4.22–14.8
12337.004	Diven 1956 [47]	$^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_p$	0.08
14279.009 +.010	Diven 1961 [47]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_t$	2.53e^{-8} –4
20490.003	Frehaut 1973 [48]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	1.36–14.79
21685.004	Frehaut 1980 [48]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	22.79–28.28
10759.004	Gwin 1978 [49]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	5e^{-5} –6.4

12906.002	Gwin 1984 1 [49]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$5\text{e}^{-9}\text{--}6\text{e}^{-5}$
12833.004	Gwin 1984 2 [49]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$5\text{e}^{-9}\text{--}1\text{e}^{-5}$
13101.004	Gwin 1986 [49]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$5\text{e}^{-4}\text{--}10$
12326.005+.006	Hopkins 1963 [50]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$2.53\text{e}^{-8}\text{--}14.5$
30600.002	Huanqiao 1980 [51]	$^1\text{H(n,el)}$ cs	$0.186\text{--}1.44$
21696.006	Johnstone 1965 [52]	$^{235}\text{U(n,f)}$ $\bar{\nu}_t^M$	14.1
40757.002	Kalashnikova 1955 [53]	N/A	2.53e^{-8}
40523.002	Khoklov 1976 [54]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_t$	$1.06\text{--}1.81$
21453.004	Leroy 1960 [55]	$^{238}\text{U(n,f)}$ $\bar{\nu}_p$	14.2
21135.007+.008	Mather 1965 [56]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_t$	$2.53\text{e}^{-8}\text{--}4.02$
40871.002	Nefedov 1983	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	2.53e^{-8}
4033.003+.007	Nesterov 1970 [57]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$2.53\text{e}^{-8}\text{--}1.607$
23012.009	Nishio 1988	N/A	2.53e^{-8}
40429.004	Nurpeisov [58] 1975	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$0\text{--}4.89$
21456.007	Sanders 1956	$^{235}\text{U(n,f)}$ $\bar{\nu}_p^M$	2.53e^{-8}
40058.003	Savin 1970 [59]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$0.89\text{--}4.7$
40388.007	Smirenkin 1959 [60]	$^{239}\text{Pn(n,f)}$ $\bar{\nu}_p^M$	4--15
20568.004	Soleihac 1970 [61]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$0.21\text{--}1.375$
40148.003	Volodin 1970 (1) [62]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$2.53\text{e}^{-8}\text{--}1.6$
40148.005	Volodin 1970 (2) [62]	$^{239}\text{Pu(n,f)}$ $\bar{\nu}_p^M$	$0.08\text{--}0.7$
41611.008	Vorobyev 2016	N/A	thermal spectrum
30006.004	Walsh1970 [63]	$^{252}\text{Cf(sf)}$ $\bar{\nu}_p$	$0.2\text{--}1.9$

226 5 Challenges to Overcome and Agreement of Model Calculations 227 with Experimental Data

228 Each CGMF run takes between 1 and 5 minutes using 100 cores (3 nodes) on the LANL computational
229 cluster Snow, for 100,000 to 500,000 fission events. 500,000 fission events were shown to be necessary
230 for a converged PFNS calculation. On Snow, the maximum nodes per user is 20, so this computing
231 time could be decreased as well to run further sensitivities or parameter sampling. In addition, we
232 have the option of using the deterministic fission-decay code **BeoH** [64], which calculates the PFNS
233 and $\bar{\nu}$ as well. Without considering the MPI implementation of CGMF, **BeoH** takes less time to run
234 for a converged PFNS result (*e.g.*, about 20 minutes for yields on the order of 10^{-5} to be computed
235 at thermal incident-neutron energy). However, when taking into account the parallelization of CGMF,
236 and that **BeoH** has not been parallelized, CGMF is faster. In addition, while the models within CGMF
237 and **BeoH** are similar, the conversion of the calculated center-of-mass PFNS to the lab frame PFNS
238 within **BeoH** is only approximate at incident-neutron energies beyond second-chance fission; in CGMF,
239 this transformation is exact, because the neutron energies are converted from center-of-mass to lab
240 frame on an event-by-event basis. Therefore, we do not suggest using **BeoH** for this study.

241 It is obvious from both, the mean energies of the PFNS and the PFNS itself (shown in Figs. 9–16
242 for $^{235,238}\text{U}$ and ^{239}Pu), that the current version of CGMF using the initial parameter sets is not able to
243 predict a PFNS in agreement with existing experimental or evaluated data (ENDF/B-VIII.0, JEFF-3.2
244 or JENDL-4.0).

245 The CGMF PFNS calculated with the initial parameter sets is systematically too low compared to
246 experimental data for all isotopes studied and at all incident-neutron energies. Originally, unexpected
247 structures were observed for ^{239}Pu PFNS at all incident-neutron energies below 300 keV in Figs. 15–16
248 that increased in magnitude with E_{inc} . Similar structure are observed for the ^{235}U PFNS in Fig. 12.
249 These structures did not vanish with increasing number of events (up to 2 million events). The major
250 structures were due to the binning of the excitation energies in the compound nuclei when pre-fission

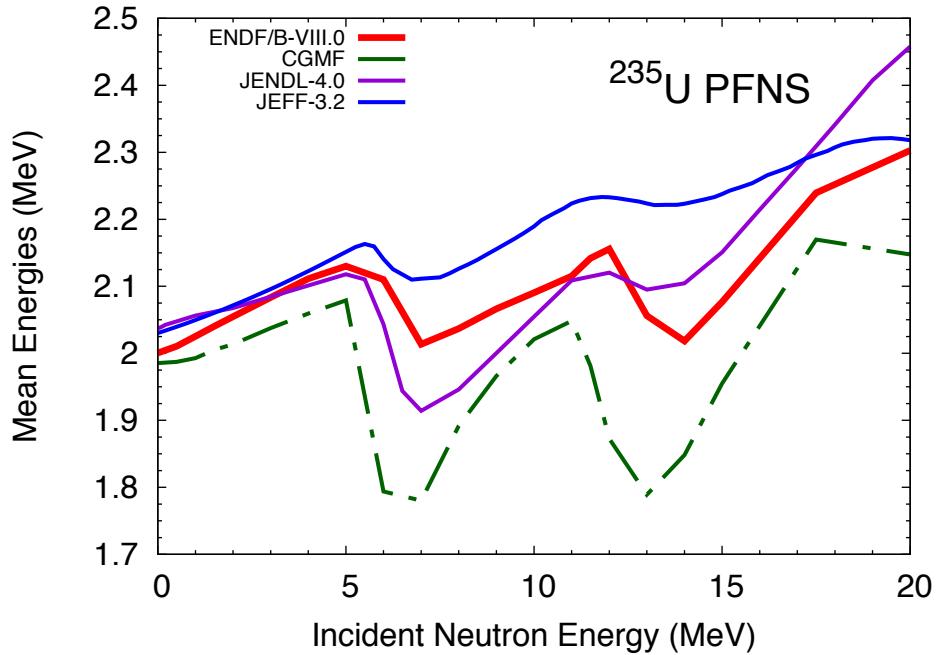


Figure 9: The mean energies of the ^{235}U PFNS calculated with CGMF are compared to those reported for ENDF/B-VIII.0, JENDL-4.0 and JEFF-3.2.

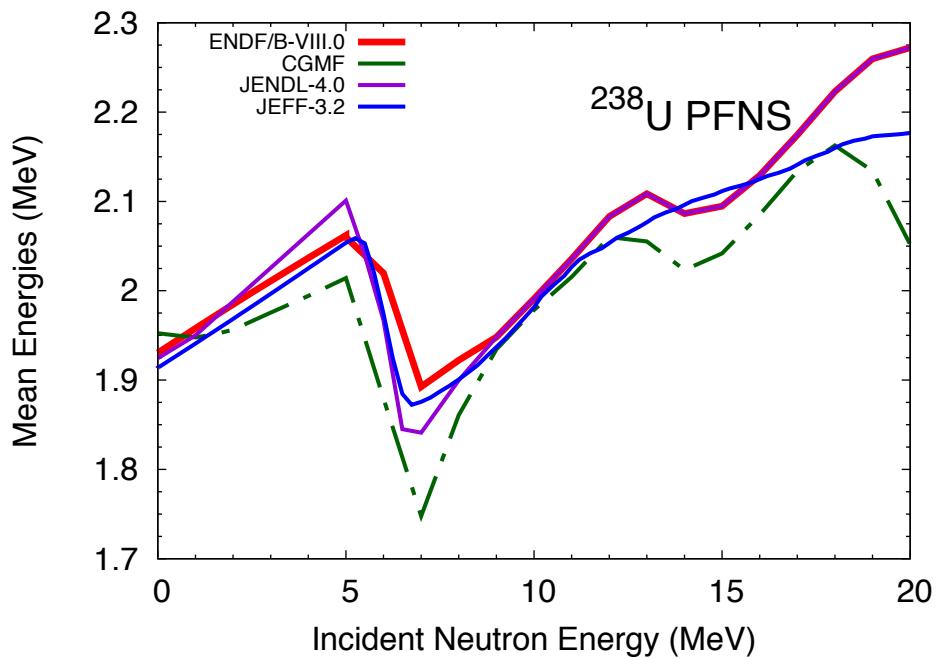


Figure 10: The mean energies of the ^{238}U PFNS calculated with CGMF are compared to those reported for ENDF/B-VIII.0, JENDL-4.0 and JEFF-3.2.

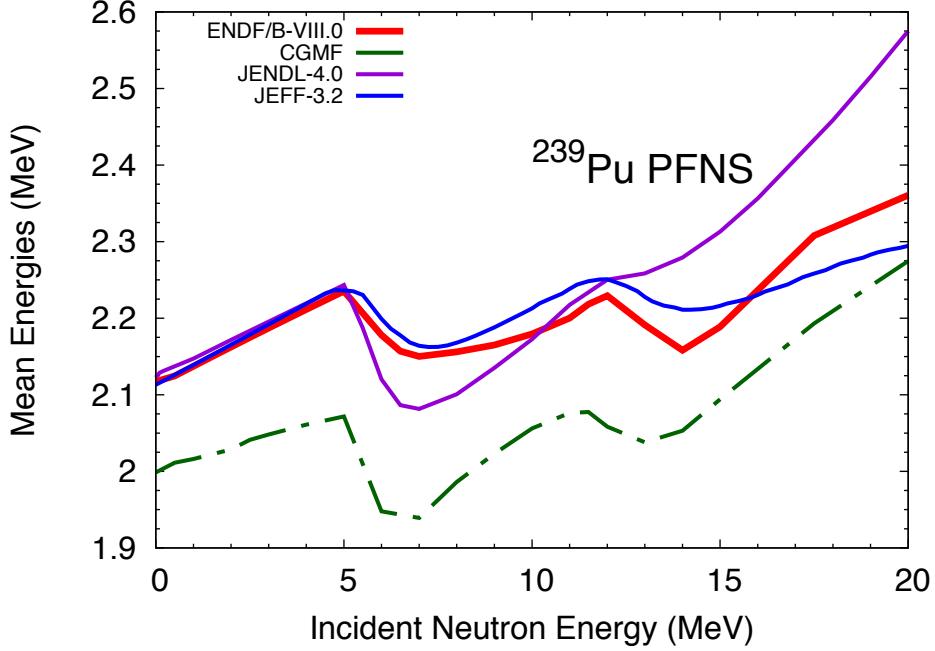


Figure 11: The mean energies of the ^{239}Pu PFNS calculated with CGMF are compared to those reported for ENDF/B-VIII.0, JENDL-4.0 and JEFF-3.2.

251 neutrons were emitted. These were resolved by T. Kawano and I. Stetcu by adding a random number
 252 within the size of the bin to the sampled pre-fission neutron energy. Distinctly smaller structures
 253 remain that could be attributed to the outgoing-neutron energy binning that still need to be resolved;
 254 however, these small oscillations are also likely to be related to the statistics of the CGMF calculations.

255 In addition to that, structures that reflect the physics, like the opening of second-chance fission
 256 (around 6 MeV for both, ^{235}U and ^{239}Pu) and the pre-equilibrium peak, are not fully reproduced by
 257 CGMF. For instance, the $^{235,238}\text{U}$ PFNS show around second-chance fission a sharp triangular structure
 258 from 200–800 keV outgoing-neutron energy. While experimental data support a structure there, it
 259 is distinctly less pronounced and not that sharp. The magnitude of the structure can be changed by
 260 tweaking the multiple-chance fission probabilities. If, for instance, the fission probabilities of Ref. [4] are
 261 used compared to the initial parameters of CoH_3 , the structure lessens in magnitude and agrees slightly
 262 better with experimental data in Fig. 17. However, the triangular shape is still too pronounced and the
 263 PFNS is overall too soft. At least for $^{235}\text{U}(\text{n},\text{f})$, the experimental data from Chi-Nu is given for large
 264 incident-energy bins covering about 1 MeV. Averaging the CGMF calculations with the experimental
 265 neutron flux over this energy range could soften the sharp triangular shape seen at $E_{\text{inc}} = 6.5$ MeV.
 266 This needs to be further explored. Tweaking the $\langle \text{TKE} \rangle$ does little to improving the agreement with
 267 experimental data; however, preliminary studies show that large change in the spin cut-off parameter
 268 lead to a harder spectrum, at the cost of increasing the average γ -ray multiplicity. Further studies
 269 are needed to resolve these issues. Beneficially, since CGMF records the energies of all of the emitted
 270 neutrons—and whether they are emitted from the fission fragments or the compound before fission—we
 271 can determine which part, or parts, of the model should be investigated further.

272 The systematically too soft CGMF PFNS can also be observed in the mean energies of $^{235,238}\text{U}$ and
 273 ^{239}Pu in Figs. 9–11 that were calculated from the PFNS. The mean energies are—with few exceptions—
 274 systematically too low compared to evaluated mean energies. However, the location of first- and
 275 second-chance fission seems to agree with that predicted by evaluations. The overall shape of the
 276 mean energy of ^{239}Pu seems to agree with ENDF/B-VIII.0. This observation seems to indicate that a

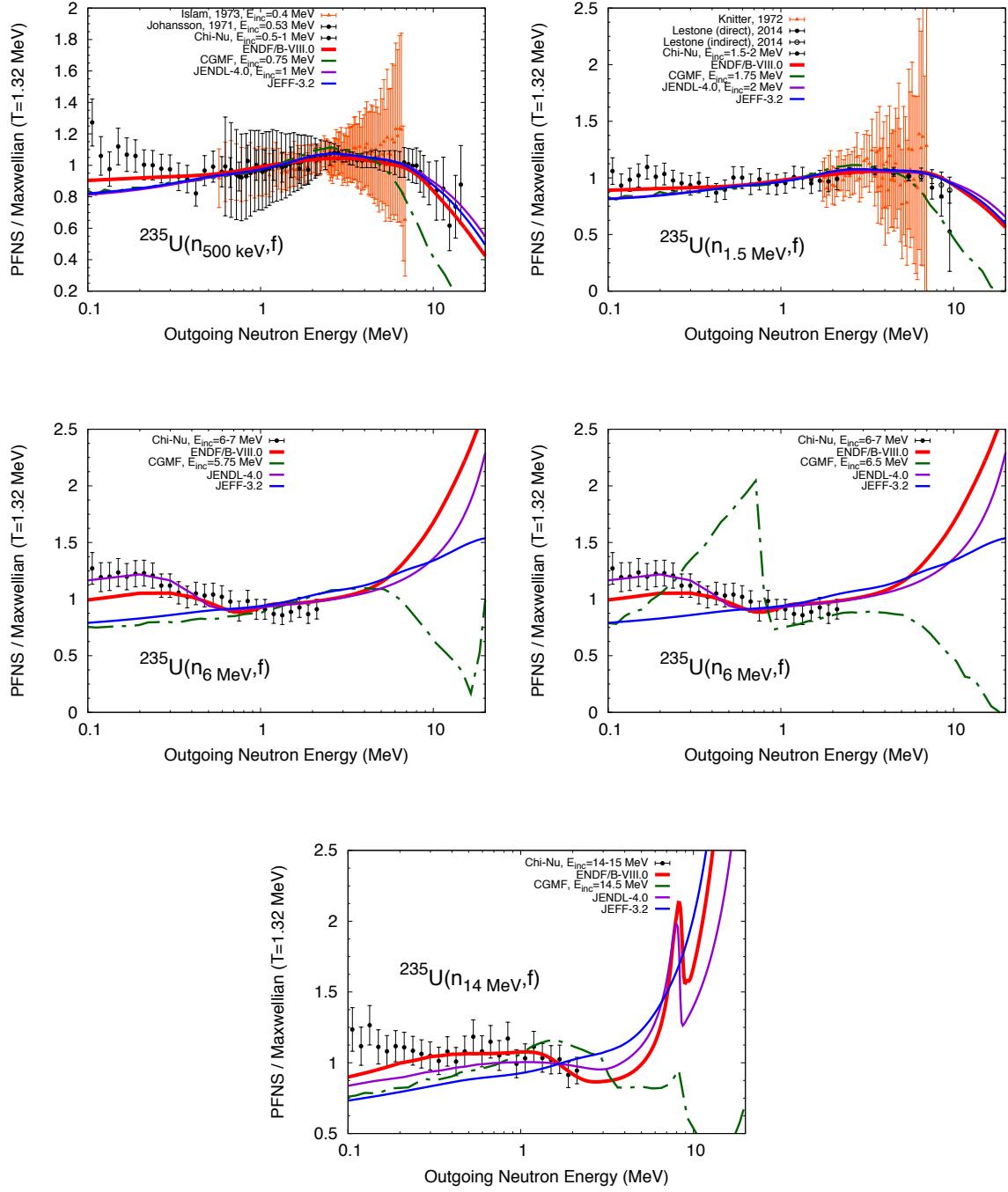


Figure 12: The ^{235}U CGMF PFNS are compared to ENDF/B-VIII.0, JENDL-4.0, JEFF-3.2 and experimental data used for the ENDF/B-VIII.0 evaluation.

277 scaling of the PFNS to harden the spectrum could solve the PFNS CGMF issue. However, it is obvious
 278 that the shapes of $^{235,238}\text{U}$ mean energies do not agree with current evaluated data. Hence, a global
 279 scaling factor for all PFNS might be out of reach.

280 In summary, we would caution against using the CGMF PFNS model calculations in their present
 281 form and using initial model-parameter sets for evaluation purposes. Even, if they are used as a non-
 282 informative prior with adequate experimental data, one would still need a reliable model that allows
 283 for extrapolation of PFNS to E_{inc} and E without experimental data. This reliability of CGMF-predicted

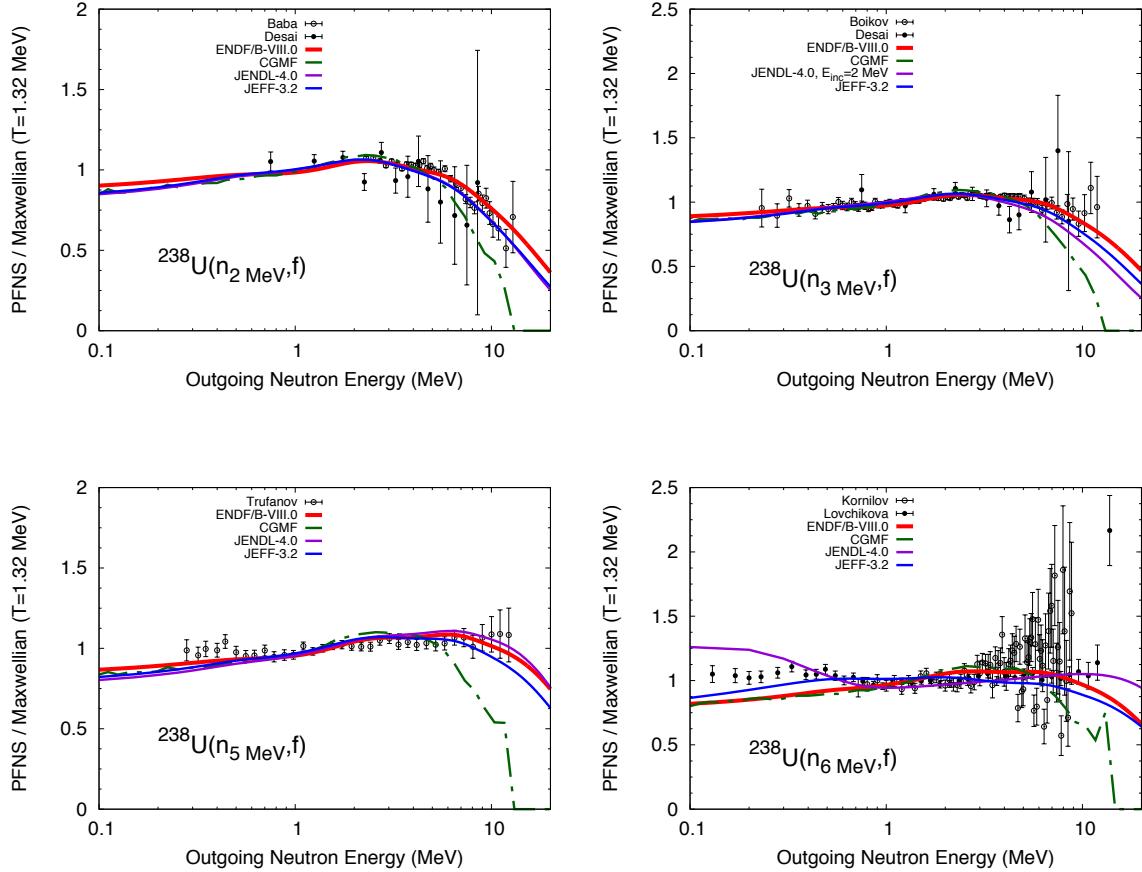


Figure 13: The ^{238}U CGMF PFNS are compared to ENDF/B-VIII.0, JENDL-4.0, JEFF-3.2 and experimental data used for the ENDF/B-VIII.0 evaluation.

PFNS is currently not guaranteed. Even if Gaussian Processes are used to mitigate the shortcomings in the model, this is not recommended as the model curves are too far away from experimental data. Hence, in energy ranges without experimental data, the Gaussian Processes would default (after a transition region) back to model values which are in their present form too biased for evaluation purposes. However, initial studies on changes in model parameters and improvements of the model showed that the CGMF PFNS can be improved. Further investigations—either in the direction of accounting for model defects or removing biases in the model description of the PFNS—are needed before using CGMF for PFNS evaluations.

The $\bar{\nu}$ of CGMF, however, describes existing experimental data well for $^{235,238}\text{U}$ and ^{239}Pu in Figs. 18–21. The thermal $\bar{\nu}$ values of $^{235}\text{U}(n,f)$ and $^{239}\text{Pu}(n,f)$ agree very well with both experimental and evaluated data within their respective uncertainties in Fig. 18. Given that ENDF/B-VIII.0 is based on a detailed analysis of existing experimental data, it is easy to understand that ENDF/B-VIII.0 agrees well with the data. CGMF parameters, on the other hand, were fitted to reproduce experimental data, and the model is able to reproduce them. The discrepancy between the thermal values of $^{238}\text{U}(n,f)$ $\bar{\nu}$ from ENDF/B-VIII.0 and CGMF is not indicative of a shortcoming in CGMF given that no experimental data exist for this sub-fission-threshold value to validate one calculated value over the other.

The CGMF-calculated $^{235}\text{U}(n,f)$ $\bar{\nu}$ values are well within the spread of existing experimental data in Fig. 19. They seem a bit low compared to experimental data for 0.15–1.5 MeV. The CGMF-calculated $^{235}\text{U}(n,f)$ $\bar{\nu}$ values are rarely within the $1-\sigma$ uncertainties of ENDF/B-VIII.0. That issue can be

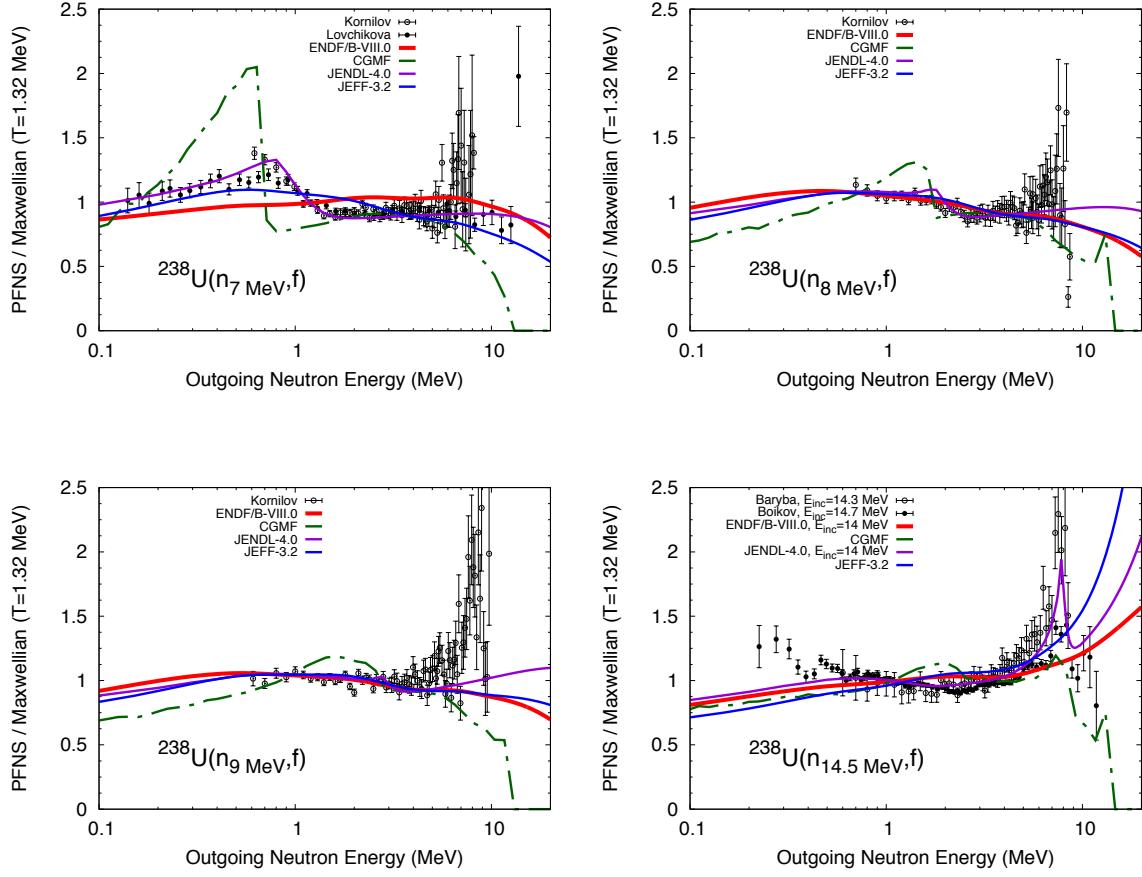


Figure 14: The ^{238}U CGMF PFNS are compared to ENDF/B-VIII.0, JENDL-4.0, JEFF-3.2 and experimental data used for the ENDF/B-VIII.0 evaluation.

303 partially attributed to unrealistically low ENDF/B-VIII.0 uncertainties; they are significantly lower
 304 than the standard ($^{252}\text{Cf}(\text{sf})$ $\bar{\nu}_{\text{tot}}$). Changing the $\langle \text{TKE} \rangle$ within a physically-defined space (*i.e.*, by
 305 the spread in experimental data) would be able to increase the $\bar{\nu}$ between 0.14–1.5 MeV for ^{235}U such
 306 that it agrees with experimental data all the while the mean energy of the PFNS is impacted less
 307 significantly as can be seen in Fig. 8.

308 The structures in $^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}$ values of CGMF around second- and third-chance fission are also
 309 interesting to note. Experimental data would not completely exclude structures there but would
 310 indicate less pronounced ones. If the multiple-chance fission probabilities of Ref. [4] are used, the $\bar{\nu}$
 311 of ^{235}U shows less pronounced structures around second- and third-chance fission in Fig. 8, while the
 312 PFNS mean energy also become more reasonable. Hence, fixing the structures in and too low $\bar{\nu}$ of
 313 ^{235}U seems attainable with optimizing the parameters of CGMF.

314 For $^{238}\text{U}(\text{n},\text{f})$ $\bar{\nu}$, CGMF agrees mostly with experimental data and with evaluated data within their
 315 uncertainties above the fission threshold. However, it does not predict the slope change of the evaluated
 316 data around approximately 3 MeV in Fig. 20 that is seemingly visible in experimental data. It is unclear
 317 if that is an experimental artifact or real physics. Vibrational states could be a reason for the slope
 318 change but CGMF does not model them. In addition to that, the second-chance fission structure around
 319 6 MeV is not at all observed in experimental data. This shortcoming can be fixed by improving
 320 multiple-chance fission probabilities to change more gradually with incident-neutron energy as shown
 321 for ^{235}U , as well as in smoothing out the sudden jump in $\langle \text{TKE} \rangle$ that is seen in Fig. 3 for ^{238}U as well

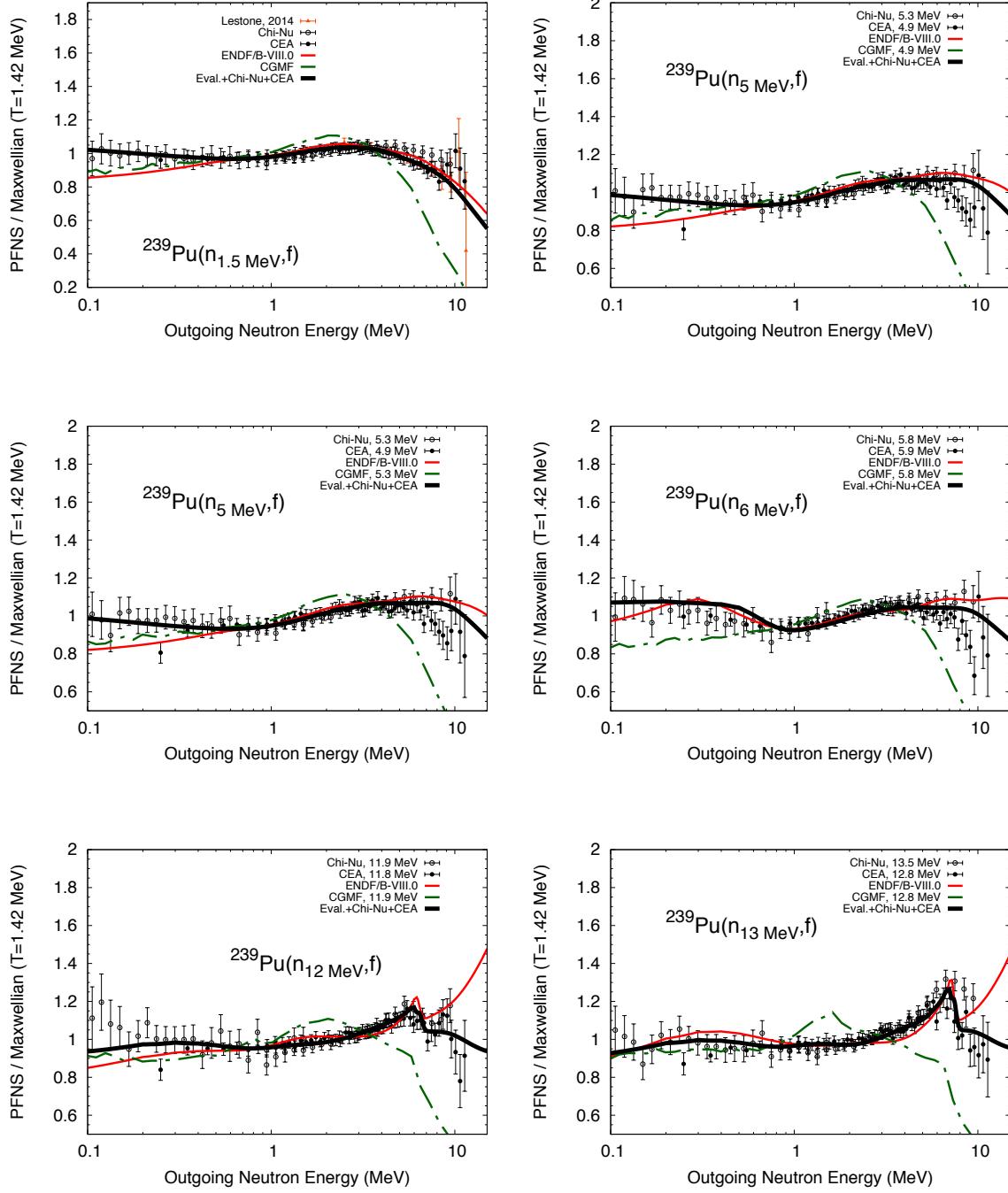


Figure 15: The ^{239}Pu CGMF PFNS are compared to ENDF/B-VIII.0, a recent evaluation using CEA and Chi-Nu experimental data by D. Neudecker and Chi-Nu and CEA experimental data.

322 as for ^{235}U .

323 The $^{239}\text{Pu}(n,f)$ $\bar{\nu}$ predicted by CGMF agree overall well with existing experimental data. Although,
324 they are slightly outside of the range of $1-\sigma$ ENDF/B-VIII.0 evaluated uncertainties in Fig. 22. How-
325 ever, recent work by D. Neudecker using the “Physical Uncertainty Boundary” (PUB) method by
326 Vaughan *et al.* indicate that these uncertainties are underestimated [65, 66]. If CGMF-predicted val-
327 ues of $^{239}\text{Pu}(n,f)$ $\bar{\nu}$ are compared to PUB’s bounds (see Fig. 22), it is obvious that CGMF is able to
328 predict realistic $^{239}\text{Pu}(n,f)$ $\bar{\nu}$ given existing experimental data.

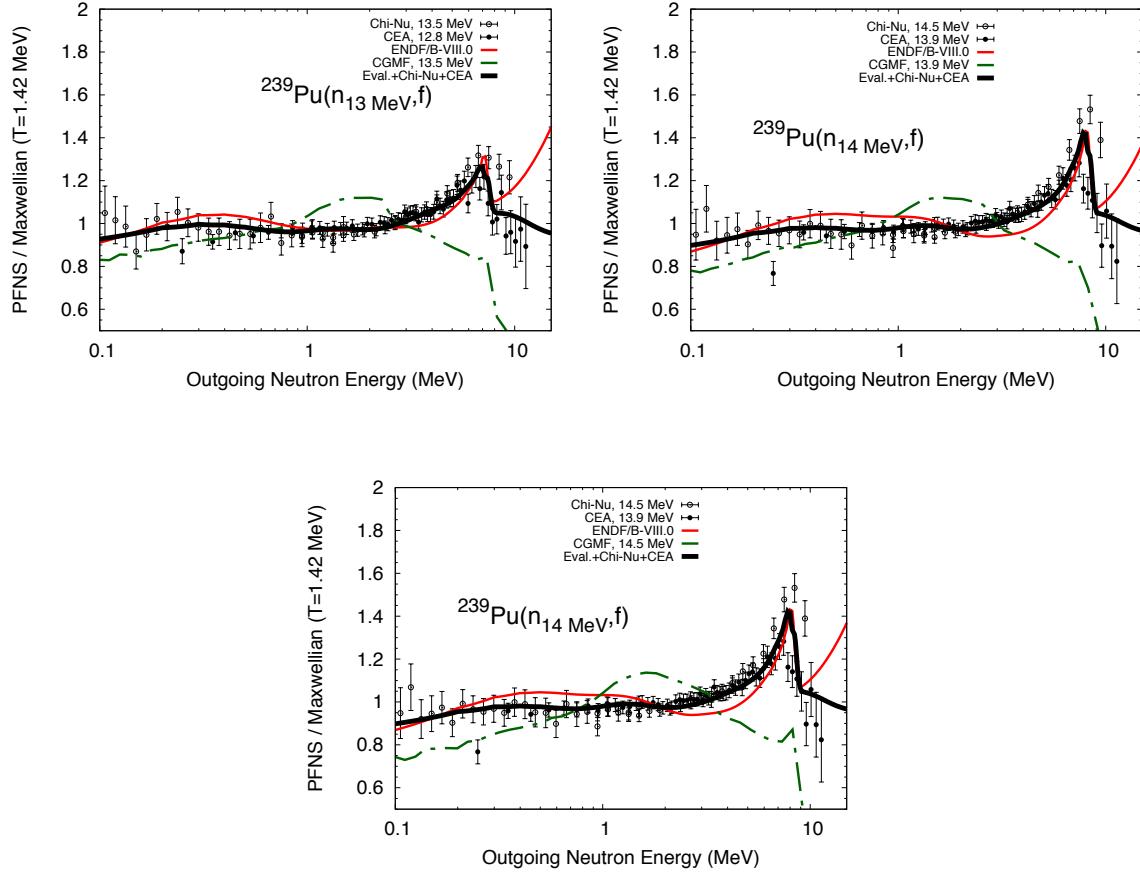


Figure 16: The ^{239}Pu CGMF PFNS are compared to ENDF/B-VIII.0, a recent evaluation using CEA and Chi-Nu experimental data by D. Neudecker and Chi-Nu and CEA experimental data.

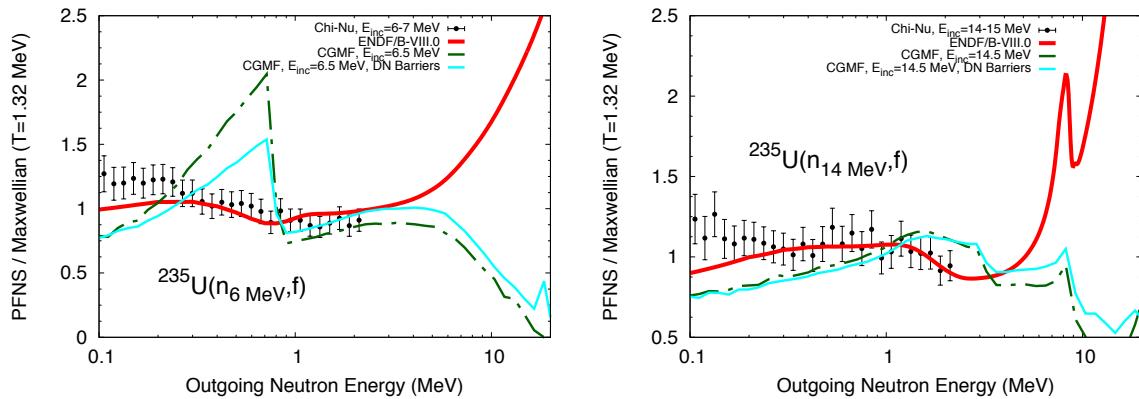


Figure 17: The ^{235}U CGMF PFNS at incident-neutron energies of 6.5 and 14 MeV using default and fission-barrier parameters of Ref. [4] are compared to ENDF/B-VIII.0 and experimental data used for the ENDF/B-VIII.0 evaluation. While using the fission-barrier parameters of Ref. [4] improves the agreement with experimental data, the CGMF PFNS still distinctly differs from them.

329 In short, CGMF could possibly be used to evaluate $\bar{\nu}$. To this end, the model parameters of CGMF,
330 especially the multiple-chance fission probabilities and $\langle \text{TKE} \rangle$ should be tuned to better reproduce ex-
331 perimental data of $^{235,238}\text{U}(n,f)$ $\bar{\nu}$ close to the second- and third-chance fission threshold. For $^{238}\text{U}(n,f)$

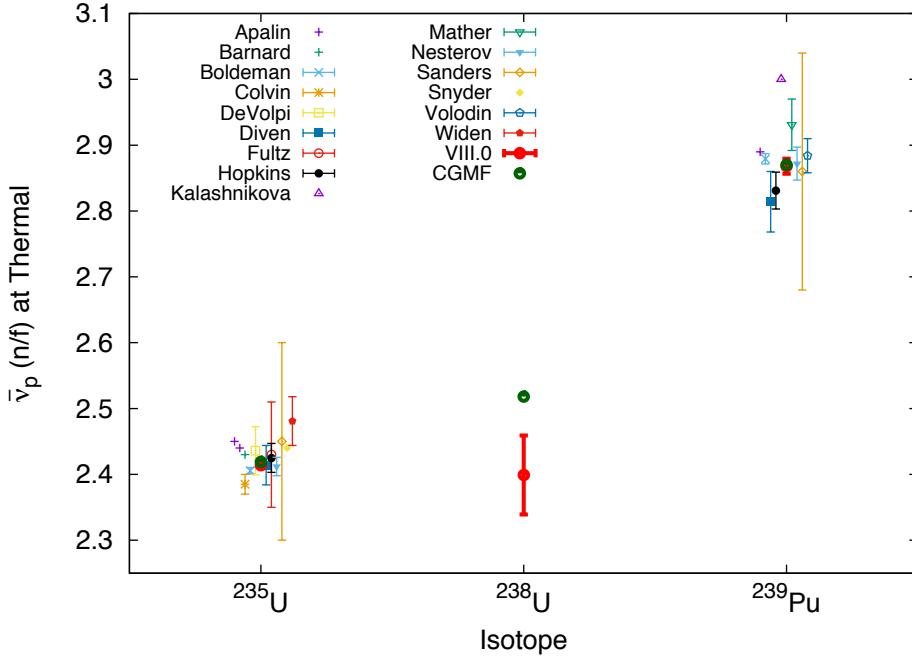


Figure 18: The thermal $^{235,238}\text{U}$ and ^{239}Pu $\bar{\nu}$ CGMF-calculated values are compared to experimental data and ENDF/B-VIII.0 nuclear data.

332 $\bar{\nu}$, it should also be investigated whether the slope change at 3 MeV is physically justifiable or a mea-
 333 surement artifact. (Preliminary studies with CGMF show that a flattening of $\bar{\nu}$ at low incident energies
 334 is caused by the slope change of $\langle \text{TKE} \rangle$ in Eq. (9).) However, even if CGMF can be used to evaluate $\bar{\nu}$,
 335 the remaining challenge is that we cannot use it for PFNS evaluations—at least not with the initial
 336 parameter values. As mentioned above, a small change in parameters to better fit PFNS entails an
 337 even larger change for $\bar{\nu}$, and for parameters, where large changes can harden the tail of the PFNS,
 338 these changes come at the cost of reliably predicting some γ observables. However, initial studies here
 339 indicate that changes in the parameters to fix one of the two observables, leads to improvements in the
 340 other. Further studies are needed how to solve this issue; some additional investigations in this matter
 341 are given below.

342 During the summer of 2019 and 2020, two pairs of summer students from the “XCP Computational
 343 Workshop” worked with A.E. Lovell, I. Stetcu, and P. Talou on two separate projects trying to address
 344 the discrepancy between the PFNS calculated with CGMF and experimental data. In the first project,
 345 physics models were explored to try to reduce this discrepancy, and in the second, an emulator was
 346 constructed to take into account this discrepancy.

347 In 2019, C. Parker and S. Pineda studied the effects of the optical potential—the effective interaction
 348 between a heavy target and light projectile—on the PFNS. Most global optical potentials, *e.g.* [7–9],
 349 are parametrized as a function of mass, charge, and incident-particle energy and have been fit to
 350 scattering data such as elastic-scattering angular distributions, polarization observables, and total/
 351 reaction cross sections for stable targets or targets near stability. Each optical potential typically
 352 uses a different subset of reaction data in the optimization, as well as a different parametrization.
 353 There are also known to be compensating effects between optical model parametrizations, where two
 354 different parametrizations can lead to the same elastic-scattering observables. In addition, because
 355 the potentials are constrained near stability, beyond this region, they rely on extrapolations, which
 356 can be of varying quality. These potentials are needed in the Hauser-Feshbach formalism for fission
 357 to calculate the probability of neutron emission at a given energy from the fission fragments—nuclei

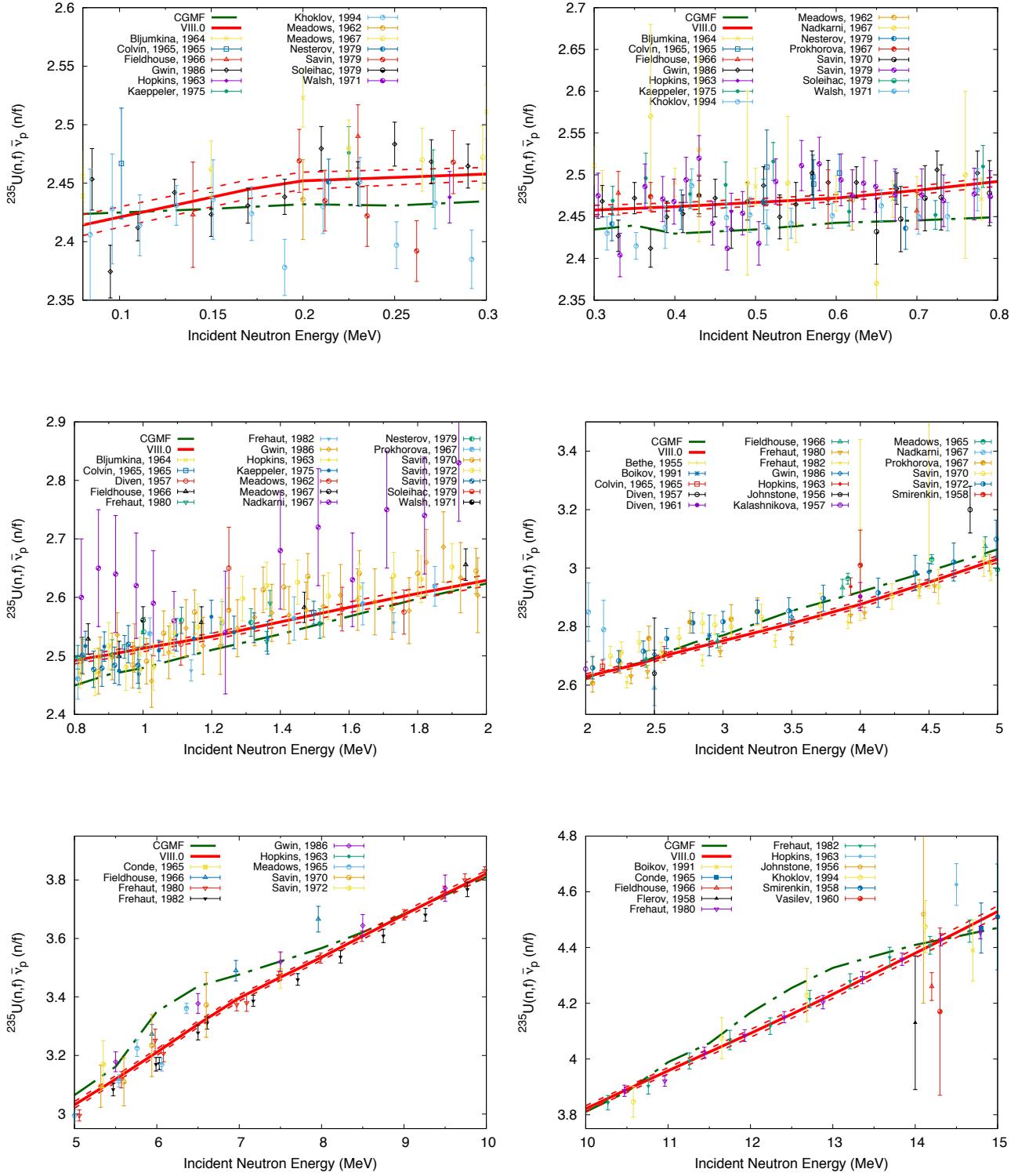


Figure 19: The ^{235}U \bar{v} CGMF-calculated values are compared to experimental data and ENDF/B-VIII.0 nuclear data. Each plot zooms into a specific energy range for increased visibility.

358 that are much further from stability than the targets used to constrain the potentials. Additionally,
359 because there is still limited to no experimental data (e.g., cross sections) in these regions, it is difficult
360 to assess the quality of the extrapolations.

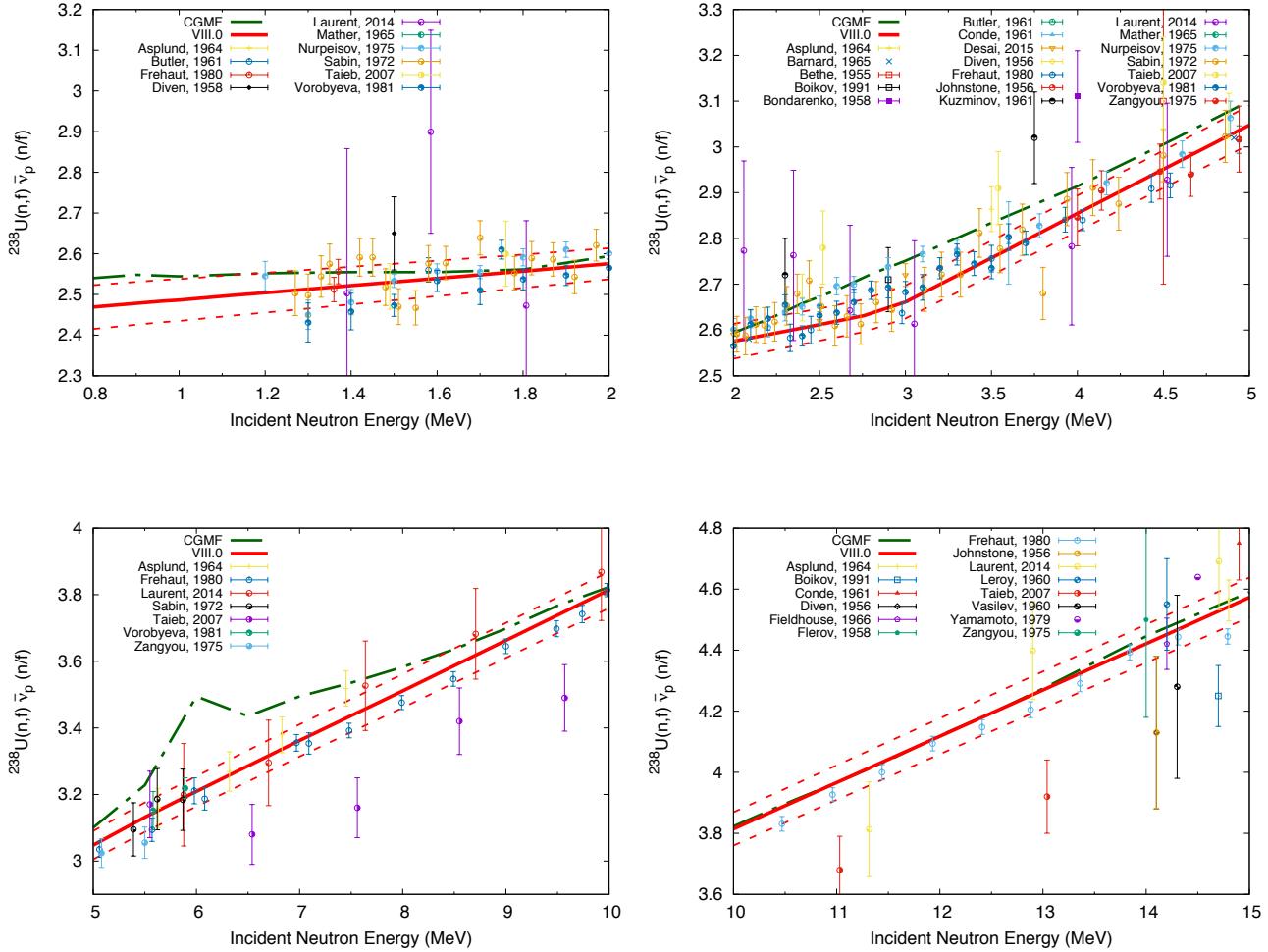


Figure 20: The $^{238}\text{U} \bar{\nu}$ CGMF-calculated values are compared to experimental data and ENDF/B-VIII.0 nuclear data. Each plot zooms into a specific energy range for increased visibility.

C. Parker and S. Pineda explored several different optical potentials [7–9], calculating the χ^2 per degree of freedom of the total cross section calculated with these potentials to the available experimental data. Then, they used CoH_3 to construct an approximate PFNS from the calculated neutron spectra at incident energies equating to excitation energies in the compound

$$\chi(\varepsilon_i) = \sum_{A,Z} Y(A,Z) \sum_{E_i} f(E_i + 6) \chi(\varepsilon_i | A - 1, Z, E_i), \quad (18)$$

where $\chi(\varepsilon_i | A, Z, E_i)$ is the neutron spectrum for a fission fragment (A, Z) (not, the $A - 1$, due to the spectrum being calculated for a neutron-induced reaction), $Y(A, Z)$ is the mass and charge distribution of the fission reaction, and $f(E_i)$ is a weighting function to take into account the distribution of excitation energies within the fission fragments. Here, we add ~ 6 MeV to E_i in this distribution to account for the energy difference between the incident energy used in CoH_3 and the excitation energy of the fission fragment, which is approximately the neutron-separation energy for each fragment. Even with a relatively light computational code such as CoH_3 , performing this sum over roughly 40 excitation energies for at least a hundred nuclei is time consuming. Therefore, the students also made an approximation similar to a Los Alamos model-like (LAM) PFNS [69] by including in Eq. (18) only the two most abundant isotopes—those in the light and heavy peaks. In the center-of-mass frame of the fission fragments, this results in a decrease of the mean energy of the PFNS by about 50 keV.

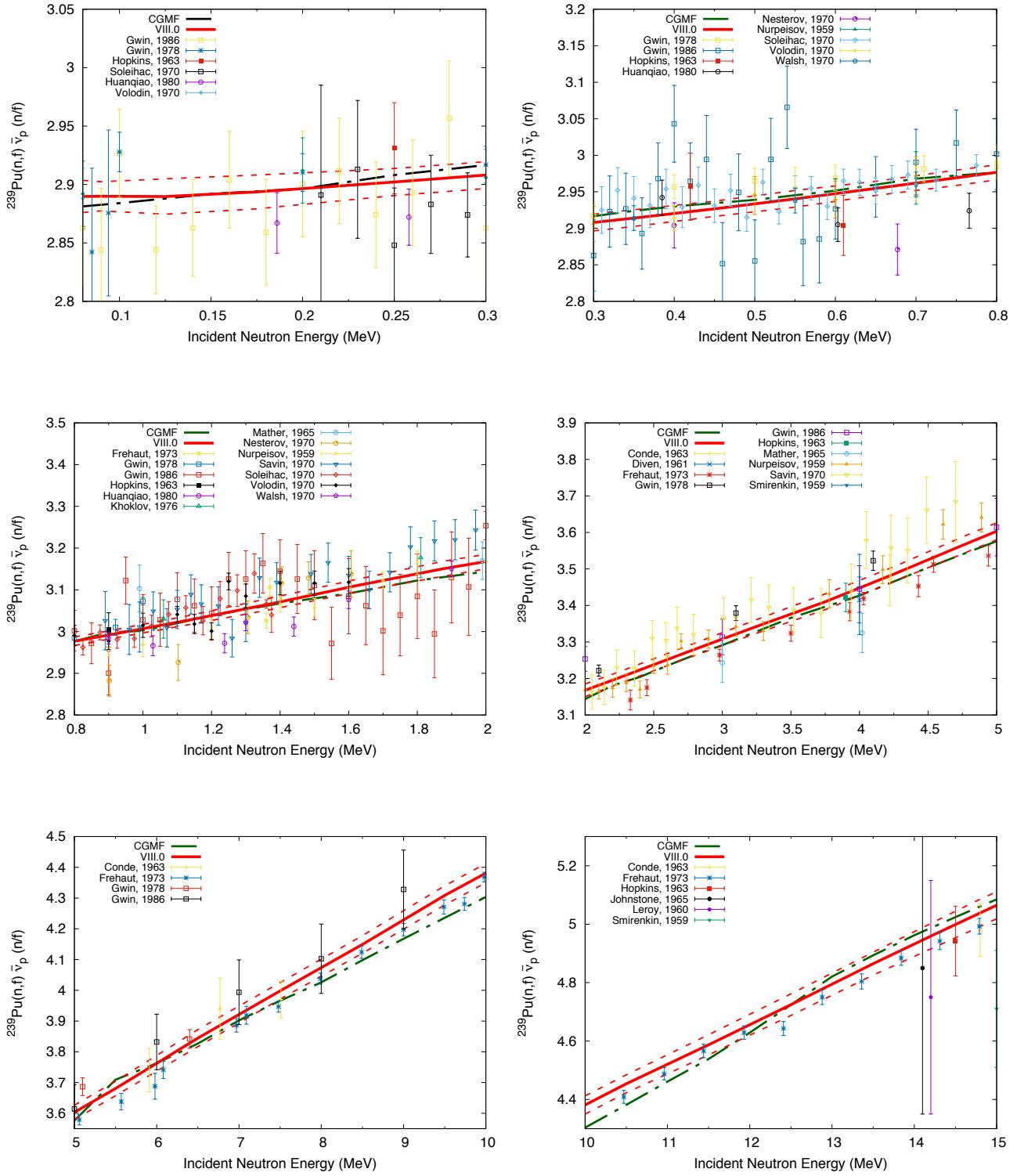


Figure 21: The ^{239}Pu $\bar{\nu}$ CGMF-calculated values are compared to experimental data and ENDF/B-VIII.0 nuclear data (including $1-\sigma$ uncertainties). Each plot zooms into a specific energy range for increased visibility.

372 We continued these studies FY20 with the understanding that most optical potentials are con-
 373 strained with data close to the stable nuclei. Hence, we explored for $^{252}\text{Cf(sf)}$ optimizing the optical-

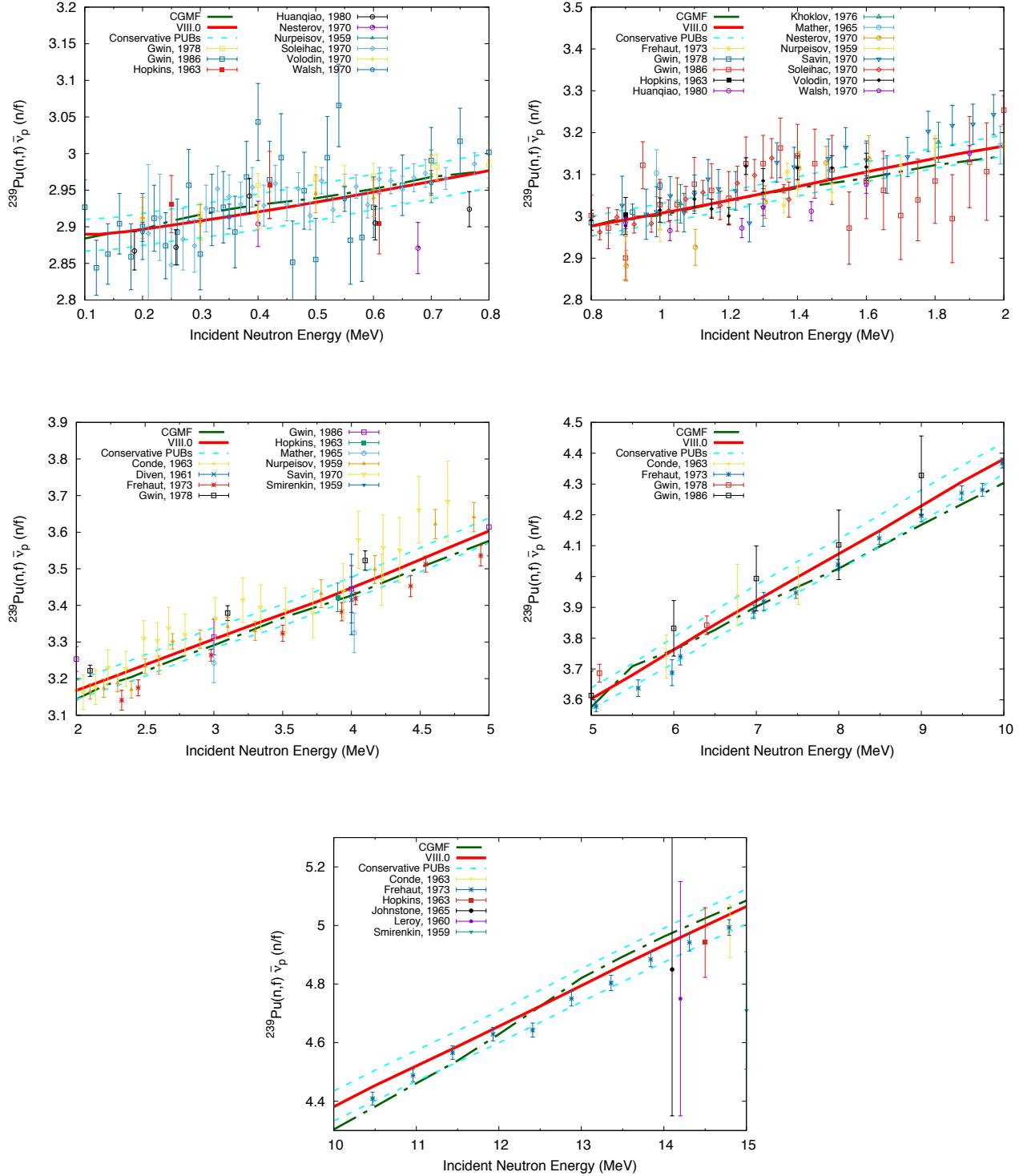


Figure 22: The ${}^{239}\text{Pu}$ $\bar{\nu}$ CGMF-calculated values are compared to experimental data and ENDF/B-VIII.0 nuclear data. Conservative 1- σ PUBs bounds indicate that CGMF predicts ${}^{239}\text{Pu}$ $\bar{\nu}_p$ in reasonably. Each plot zooms into a specific energy range for increased visibility.

374 model parameters with respect to the most exotic (*e.g.*, far from stability), experimentally measured
 375 nuclei in the isotopic chains containing the peaks of the yield distribution, ${}^{99}\text{Tc}$ and ${}^{133}\text{Cs}$. The peaks
 376 of the yield distribution in CGMF are ${}^{110}\text{Tc}$ and ${}^{142}\text{Cs}$. Hence, these nuclei are both about 10 neutrons

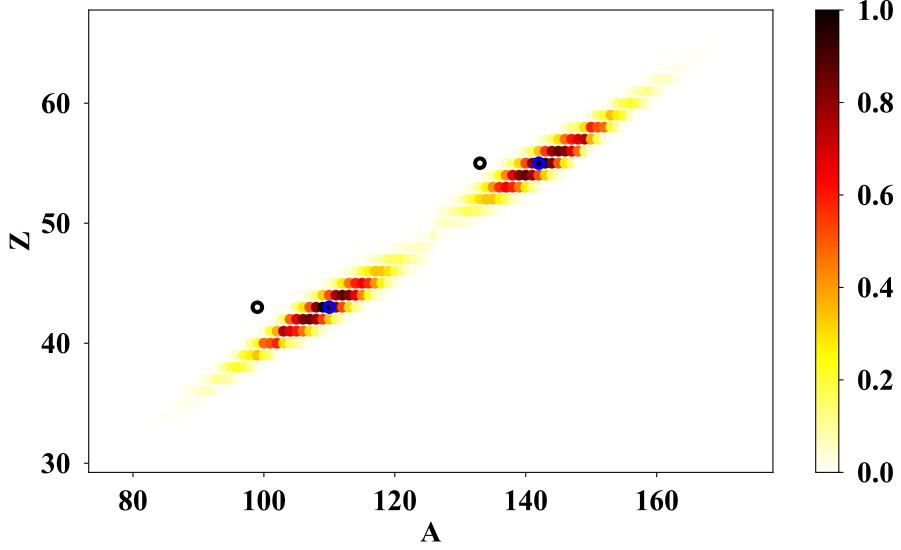


Figure 23: Yields as a function of mass and charge for $^{252}\text{Cf(sf)}$. Blue circles highlight the heavy and light peaks. Black circles indicate the nuclei in those two isotopic chains where the total cross section has been experimentally measured.

away from the peaks in the distribution, illustrated in Fig. 23. Still, we found that by fitting the optical-model parameters to these data sets, the result on the LAM PFNS was an increase of mean energy of the PFNS by ~ 20 keV in the center-of-mass frame of the fission fragments, shown in Fig. 24. This increase in mean energy was calculated by scaling the depth radius and diffuseness of the $^{99}\text{Tc}+\text{n}$ and $^{133}\text{Cs}+\text{n}$ optical potential parameters, not taking into account any potential change in the energy dependence of the optical potential or difference between mass and charge. Further studies are underway to explore possible updates of the optical-model parameters as a function of mass and charge, by looking across well-measured isotopic chains. While the 20 keV increase found in this small study is promising, the mean energy for $^{252}\text{Cf(sf)}$ from CGMF is about 150 keV lower than those derived from experimental PFNS, and 20 keV only represents a small part of the needed change. However, we have seen earlier in this section that mean energies of some isotopes are closer to experimental data than others, possibly indicating that certain neutron-target interactions need more of a tweak than others; this hypothesis would need to be investigated in more detail, and further studies are underway.

During the summer of 2020, A.E. Lovell and I. Stetcu, with the help of M.J. Grosskopf, again had two students through the XCP Computational Workshop, S. Blade and S. Ozier, who trained an emulator to model the discrepancy between CGMF and experimental data, beginning with the mean energies of the PFNS. Emulators will be described in more detail in Section 6, but the main idea is to have a function that corrects the code results based on experimental data. Currently, preliminary results have been produced and are shown in Fig. 25 for both $^{239}\text{Pu}(\text{n},\text{f})$ (left) and $^{235}\text{U}(\text{n},\text{f})$ (right) compared to data taken by the Chi-Nu group (provided by K.J. Kelly) [5]. The emulator is able to correct both the magnitude and shape of the CGMF calculations. However, the emulator appears to have more difficulty training on the discrepancy between theory and data for $^{235}\text{U}(\text{n},\text{f})$, where the differences are less consistent—which may led to the large uncertainties between the experimental data points in Fig. 25 (left), compared to the relatively constant emulator uncertainties for ^{239}Pu (right). Further studies are underway to understand these differences between the two reactions, as well as to test the covariance function within the emulator, its predictive power, as well as the impact of the spread in the incident energy of the model calculations.

With the sensitivity studies shown in Section 3, a Gaussian Process emulator could also be used to

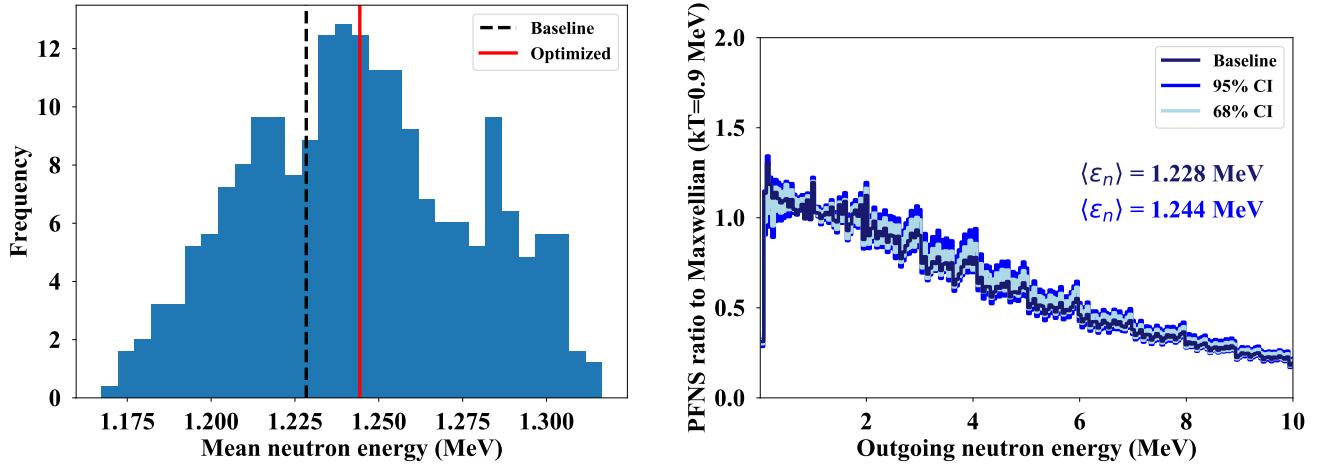


Figure 24: (Left) Distribution of mean neutron energies from the LAM PFNS (shown right) resulting from the optimization of the optical potentials of $^{99}\text{Tc}+\text{n}$ and $^{133}\text{Cs}+\text{n}$. Black dashed line shows the mean energy before the optimization and the red solid line shows the average across the plotted histogram. (Right) PFNS as a ratio to Maxwellian ($kT=0.9$ MeV) resulting from the OMP optimization. The PFNS before optimization is shown in dark blue, while the blue (light blue) regions give the 95% (68%) confidence intervals resulting from the optimization.

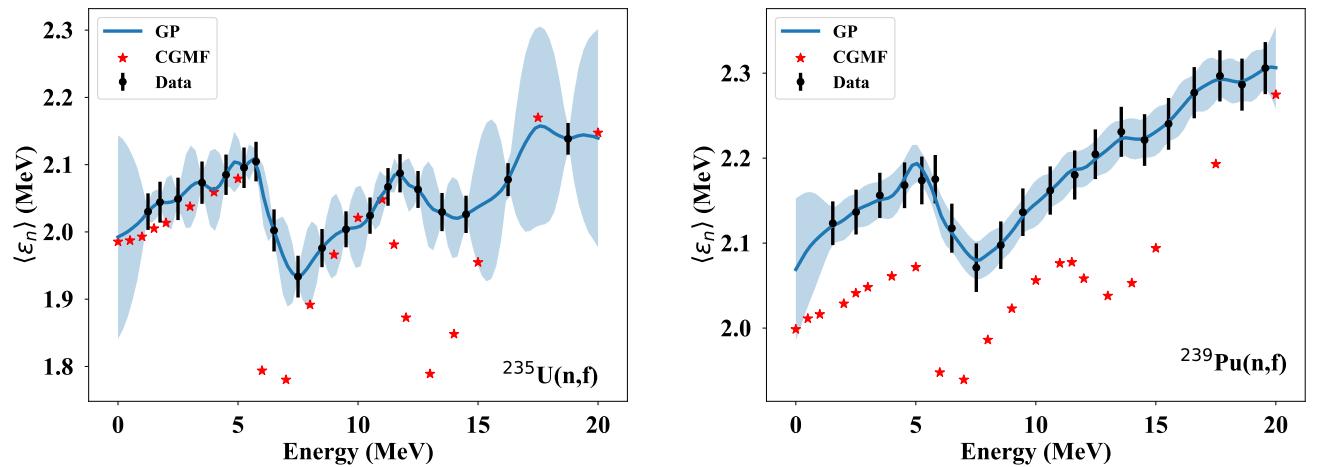


Figure 25: Preliminary results from the emulator modeling the discrepancy between CGMF calculations for the mean energy of the PFNS and experimental data from Chi-Nu for (left) $^{239}\text{Pu}(\text{n},\text{f})$ and (right) $^{235}\text{U}(\text{n},\text{f})$.

405 further optimize those parameters that are found to be sensitive to the average number of neutrons,
 406 mean energy, and PFNS. For example, as we have seen that the total kinetic energy parametrization
 407 and the multi-chance fission probabilities can change $\bar{\nu}$ and the average neutron energies, we can train
 408 an emulator on variations in just these model parameters and further optimize the output of CGMF
 409 without requiring thousands of full model runs.

410 In addition, CGMF has already been shown to make good predictions for the average γ multiplicity,
 411 N_γ , and accurately produces the prompt fission γ -ray spectrum, PFGS, based on experimentally mea-
 412 sured γ levels, as from RIPL [3, 67, 68]. Therefore, this same method for consistent evaluations could
 413 be used to evaluate N_γ and the PFGS simultaneously. Many of these mitigation strategies would also
 414 not be needed in this case, as the γ -ray observables are already well-reproduced by CGMF.

415 6 Evaluation Techniques

For the recent ENDF/B-VIII.0 ^{235}U and ^{239}Pu evaluated PFNS, ψ , and associated covariances, \mathbf{Cov}^ψ ,
 were obtained by a generalized least squares algorithm [4] (GLS) including model data, χ , and covari-
 ances, \mathbf{Cov}^χ , and experimental data, \mathbf{N} , and covariances \mathbf{Cov}^N , by:

$$\begin{aligned}\psi &= \chi + \mathbf{Cov}^\psi \mathbf{S}^t (\mathbf{Cov}^N)^{-1} (\mathbf{N} - \mathbf{S}\chi), \\ \mathbf{Cov}^\psi &= \mathbf{Cov}^\chi - \mathbf{Cov}^\chi \mathbf{S}^t Q^{-1} \mathbf{S} \mathbf{Cov}^\chi,\end{aligned}\quad (19)$$

where

$$Q = \mathbf{S} \mathbf{Cov}^\chi \mathbf{S}^t + \mathbf{Cov}^N. \quad (20)$$

416 To this end, \mathbf{N} at a specific E_{inc} must be rescaled with one multiplicative factor with respect to the
 417 model data. This scaling factor was calculated by taking the ratio of numerical integrals of χ and \mathbf{N}
 418 at the same or the nearest E_{inc} for the same outgoing neutron energy range.

419 The design matrix \mathbf{S} and its transpose \mathbf{S}^t were calculated in Ref. [4] by linear interpolation to
 420 bring experimental data onto the E_{inc} and E grid of the prior (model) data. Here, a different approach
 421 to calculate \mathbf{S} is taken that transforms GLS into the Kalman filter technique. Contrary to Ref. [4], χ
 422 are model-parameter values and \mathbf{Cov}^χ are their covariances. We only update those model parameters
 423 that the PFNS and $\bar{\nu}$ are sensitive to.

424 The design matrix needs to convert experimental data into model-parameter space. This is achieved
 425 by taking as \mathbf{S} the sensitivity vectors R_{ij} as discussed in Section 3. This different approach is taken here
 426 because CGMF PFNS and $\bar{\nu}$ calculations are computationally expensive. The LAM used in Ref. [4] was
 427 much faster and allowed to calculate thousands of model-calculated PFNS for equally many parameter
 428 sets that could then be used for estimating \mathbf{Cov}^χ in PFNS space. This is prohibitively expensive for
 429 CGMF and therefore the Kalman-filter technique, which requires only calculating the sensitivities of the
 430 most important parameter in a few dozen runs, is more desirable. Hence, the resulting ψ are actually
 431 CGMF model parameters that can then be applied to obtain evaluated data. If Gaussian Processes (GP)
 432 are used to account for model defects in PFNS calculations, the GP parameters will become part of χ
 433 and, hence, the updated ψ .

434 A Gaussian process is a non-parametric model that aims to find a distribution over all possible
 435 functions that are consistent with the data [70]. The GP is defined by a mean, $m(\mathbf{x})$, and a covariance
 436 function, $k(\mathbf{x}, \mathbf{x}')$,

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')). \quad (21)$$

437 In most applications, the mean function is taken to be zero, and the covariance function can have many
 438 forms but is defined by a strength and a correlation length. The strength and correlation length are
 439 determined by tuning to a set of training data, and then predictions outside of the training data can
 440 be made. Predictions that are between training points are typically more accurate than predictions

438 beyond the training set, because outside of the bounds of the training set, the GP goes back to the
439 mean function beyond one or two correlation lengths.

440 Gaussian processes are commonly used in two ways, as mentioned above to account for model
441 defects and as emulators to speed up calculations (typically for parameter optimization). While the
442 preliminary studies into discrepancy modeling, shown in Section 5, appear to be able to correct CGMF
443 calculations to experimental data (albeit, with some overfitting that needs to be addressed), more in
444 depth studies need to be performed to understand the challenges that could arise for a 2D emulator
445 with discrepancy—if this path were to be used to correct the PFNS from CGMF to experimental data—
446 and to quantify the quality of the emulator for interpolation and extrapolation. Using the emulator
447 in this manner would also somewhat decouple the final PFNS evaluation from the underlying physics
448 within CGMF.

449 Instead, using the GP to speed up the CGMF calculations for parameter optimization would keep
450 the connection to the underlying physics and make optimization of the underlying parameters more
451 feasible. Still, further studies have to be performed to pin down the models within CGMF that can
452 change the shape of the PFNS along with the mean neutron energy.

453 7 Summary

454 This report here was written in answer to a FY20 NCSP milestone on $^{235,238}\text{U}$ and ^{239}Pu that states:
455 “finalize a report assessing our methodology to evaluate prompt fission neutron spectrum (PFNS)
456 and multiplicity consistently”. To be more specific, this milestone targeted to assess whether modern
457 LANL fission-codes such as CGMF [1] or BeoH [64] can be used in their present version for future
458 nuclear-data evaluations of $^{235,238}\text{U}$ and ^{239}Pu average prompt-neutron multiplicity, $\bar{\nu}$, and the prompt
459 fission neutron spectrum, PFNS. To this end, we studied whether these codes are able, in principle,
460 to provide these data up to 20 MeV (CGMF can, while BeoH currently cannot due to limitations in
461 the modeling of multiple-chance fission processes), and whether the parameter space of these codes
462 are able to reproduce ENDF/B-VIII.0 evaluated data of these observables. Also, the steps towards
463 a full production-run evaluation are outlined, including a survey of all available experimental data,
464 evaluation techniques, and mitigation strategies for shortcomings in the data.

465 The current calculated values of $\bar{\nu}$ from CGMF are close enough to experimental values that with small
466 parameter optimizations—particularly in the multi-chance fission probabilities and total kinetic energy
467 values—CGMF could be used for $\bar{\nu}$ evaluations. On the other hand, the PFNS calculated from CGMF is
468 too soft, compared to experimental data, across the entire incident-neutron energy range of interest
469 and the features associated with opening of the multi-chance fission channels are either not strong
470 enough or enter at the wrong incident-neutron energies. The strength and on-set in incident-neutron
471 energy of some of these features could, again, be adjusted with the multi-chance fission probabilities.
472 However, none of the parameter studies performed here had a significant enough impact on the average
473 prompt-neutron energy or the shape of the PFNS to give us confidence that the PFNS evaluation could
474 be preformed with CGMF with the model as it currently stands.

475 Still, there are a few promising studies underway that could improve CGMF PFNS calculations to a
476 point where it can be used as a base for reliable nuclear-data evaluations:

- 477 • Preliminary studies show that a significant increase in the spin cut-off parameter can harden the
478 PFNS. However, this comes at the cost of the γ -ray observables, which were not shown in this
479 study.
- 480 • We have found that by adjusting the optical-model parameters for the nuclei in the peak of the
481 pre-neutron fission yields, $Y(A, Z)$, to total cross-section data, the average PFNS energy in the
482 center of mass was increased. Studies are on-going to determine if changes to the optical model
483 as a function of mass and charge could further harden the PFNS.

- Preliminary studies for the mean energy of the PFNS show that a Gaussian Process emulator modeling the discrepancy between model and experiment is able to account for these differences while providing well-quantified uncertainties. A similar approach could be used for the PFNS, where a Gaussian Process discrepancy function could be constructed on top of the CGMF PFNS. This approach could allow us to obtain PFNS in agreement with existing experimental data through the Gaussian Process, while obtaining $\bar{\nu}$ mainly from CGMF calculations and experimental data. This leads to somewhat of a disconnect for $\bar{\nu}$ and the PFNS from CGMF. To minimize this disconnect, we will try to improve the CGMF PFNS calculations by investigating the parameter space of the code further. Also, additional studies would have to be performed to understand the performance of the Gaussian Process for interpolation and extrapolation as a function of both incident-neutron energy and outgoing-neutron energy. To be clear, Gaussian Processes can only be used reliably if (a) enough experimental data exists (this is the case for ^{235}U and ^{239}Pu and will be the case for ^{238}U PFNS only after Chi-Nu delivered their data) to model the PFNS and (b) if the model is reasonably close to the experimental data to give reliable extrapolated data.
- As mentioned above, we will further explore the parameter space of CGMF to concurrently obtain PFNS and $\bar{\nu}$ in good agreement with experimental data. Even though we have performed here sensitivity studies to many of the parameters in the pre-neutron yield model, it may be that small changes to a single parameter are not enough to strongly change the shape of the PFNS, but changes to several parameters at the same time would have a larger effect, *e.g.*, changes to the shape of $\langle \text{TKE} \rangle$ or $\sigma_{\text{TKE}}(A)$, which are each determined by a handful of parameters. Likewise, the energy sharing between the light and heavy fragments has been adjusted as a function of mass to experimental data for $\bar{\nu}(A)$, and changes to any of these mass-dependent values could impact the shape of the PFNS. There are also several models within CGMF for which there is less data available to directly constrain them, such as the Wahl systematics for the charge distribution or the energy spectra of the pre-fission neutrons. Further studies should be performed to determine how much affect each of these models had on the PFNS.

In the event that none of the above model adjustments is enough to bring the PFNS from CGMF in line with the experimental data to reliably correct the remaining discrepancy with Gaussian Processes, we could still use CGMF to evaluate $\bar{\nu}$ but use the standard Los Alamos model [69] to evaluate the PFNS, as has been done for previous evaluations, *e.g.*, in Ref. [4].

Regardless which model code we will use, the following tasks need to be performed for the evaluation next FY:

- Do a more detailed analysis of models and associated parameters within CGMF to determine how close we can get with calculated PFNS to experimental data. This task will be lead by A. Lovell with help from T. Kawano, I. Stetcu and P. Talou while teaching D. Neudecker the code. This task includes optimizing the multi-chance fission probabilities and total kinetic energy parametrizations in CGMF to reproduce the ENDF/B-VIII.0 evaluation for $\bar{\nu}$. To this end, training a Gaussian Process emulator (as provided by M.J. Grosskopf) would significantly speed up the CGMF optimization. This task might take considerable time.
- A decision will need to be taken whether CGMF can only be used for $\bar{\nu}$ evaluations or also for PFNS. If CGMF cannot be used for PFNS evaluations (even with a Gaussian Process to account for discrepancies compared to experimental data), we will default to the Los Alamos model.
- Model parameter sensitivities and uncertainty values will be determined for CGMF by A. Lovell in discussion with D. Neudecker. D. Neudecker will determine the same for the Los Alamos model if we need to default to it.
- D. Neudecker will estimate total covariances for all experimental data deemed reliable for the evaluation using and extending ARIADNE [34] and previous work [4]. She will teach A. Lovell

531 how to do this. Given the volume of data, especially for $\bar{\nu}$, this will be a very time-consuming
532 task.

533

- 534 • A Kalman filter evaluation code including Gaussian Processes will be implemented by A. Lovell
535 and D. Neudecker with guidance from M.J. Grosskopf on the Gaussian Process code he has
already written.
- 536 • D. Neudecker will perform the evaluation and produce ENDF-6 formatted files including mean
537 values and covariances (MF=5, 35; MT=18 for PFNS and MF=1, 31 MT=456 for $\bar{\nu}$). She will
538 also validate the resulting data with respect to various ICSBEP critical assemblies and LLNL
539 pulsed-sphere neutron leakage spectra.

540 These results will then be delivered to NCSP. If they prove to be reliable they will also be offered to
541 CSEWG.

542 Acknowledgments

543 The authors would like to acknowledge the work of C. Parker, S. Pineda, T. S. Blade, and S. D. Ozier,
544 students from the 2019 and 2020 XCP Computational Physics Workshop, whose hard work over those
545 two summers spurred the optical model potential and Gaussian Process emulation studies shown here.
546 This work was carried out at Los Alamos National Laboratory under the auspices of the NNSA of the
547 U.S. Department of Energy under contract 89233218CNA000001.

548 References

549 [1] P. Talou, T. Kawano, I. Stetcu et al. , “Fission Fragment Decay Simulations with the CGMF
550 Code,” COMP. PHYS. COMM. *in progress*.

551 [2] B. Becker, P. Talou, T. Kawano et al. , “Monte Carlo Hauser-Feshbach predictions of prompt fission
552 γ rays: Application to $n_{th} + {}^{235}\text{U}$, $n_{th} + {}^{239}\text{Pu}$, and ${}^{252}\text{Cf}$ (sf),” PHYS. REV. C **87**, 014617 (2013).

553 [3] D.A. Brown, M.B. Chadwick, R. Capote et al. , “ENDF/B-VIII.0: The 8th Major Release of the
554 Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal
555 Scattering Data,” NUCL. DATA SHEETS **148**, 1–142 (2018).

556 [4] D. Neudecker, P. Talou, T. Kawano et al. , “Evaluations of Energy Spectra of Neutrons Emitted
557 Promptly in Neutron-induced Fission of ${}^{235}\text{U}$ and ${}^{239}\text{Pu}$,” NUCL. DATA SHEETS **148**, 293 (2018).

558 [5] M. Devlin *et al.* , “The Prompt Fission Neutron Spectrum of ${}^{235}\text{U}(\text{n},\text{f})$ below 2.5 MeV for Incident
559 Neutrons from 0.7 to 20 MeV,” NUCL. DATA SHEETS **148**, 322–337 (2018).

560 [6] A.C. Wahl, “Systematics of fission-product yields ”Los Alamos National Laboratory Report LA-
561 13928 (2002).

562 [7] A.J. Koning, J.P. Delaroche, “Local and global nucleon optical models from 1 keV to 200 MeV
563 ” NUCL. PHYS. A **713**, 231–310 (2003).

564 [8] F.D. Becchetti, G.W. Greenlees, “Nucleon-Nucleus Optical-Model Parameters, $A > 40, E < 50$
565 MeV ” PHYS. REV. **182**, 190 (1969).

566 [9] R.L. Verner, W.J. Thompson, T.L. McAbee, E.J. Ludwig, T.B. Clegg, “A global nucleon optical
567 model potential ” PHYS. REP. **201**, 57–191 (1991).

568 [10] N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, et al., “Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between
569 Nuclear Reaction Data Centres (NRDC)”, *NUCL. DATA SHEETS* , **120**, 272–276 (2014). Data
570 available online (*e.g.*, at www-nds.iaea.org/exfor/).
571

572 [11] D. Neudecker, “Comparing Preliminary Evaluations with Chi-Nu and CEA using the LAM Model
573 for the Prior,” Los Alamos National Laboratory Report LA-UR-20-22395 (2020).
574

575 [12] D. Neudecker, T.N. Taddeucci, R.C. Haight *et al.* , “The Need for Precise and Well-
576 documented Experimental Data on Prompt Fission Neutron Spectra from Neutron-induced Fission
577 of ^{239}Pu ,” *NUCL. DATA SHEETS* **131**, 289–318 (2016).
578

579 [13] R. Capote, Y.-J. Chen, F.-J. Hambach *et al.* , “Prompt Fission Neutron Spectra of Ac-
580 tinides,” *NUCL. DATA SHEETS* **131**, 1–106 (2016).
581

582 [14] A. S. Vorobyev, O. A. Shcherbakov, “Total prompt fission neutron spectrum from thermal-
583 neutron-induced fission of ^{235}U ”, *VOPR. AT. NAUK. TECH., SER. YAD. KONST., ISSUE 1-2,*
584 37–54 (2013) [report **INDC(CCP)-0455**, IAEA, Vienna, 2014], EXFOR 41597002.
585

586 [15] N. V. Kornilov, F.-J. Hambach, “Absolute Ratio ^{252}Cf to ^{235}U Prompt Fission Neutron Spectra
587 ”, *NUCL. SCI. ENG.* **168**, 73–74 (2011), EXFOR 31692006.
588

589 [16] V. N. Nefedov, B. I. Starostov, A. A. Boytsov, “Precision Measurements of ^{252}Cf , ^{233}U , ^{235}U and
590 ^{239}Pu Prompt Fission Neutron Spectra (PFNS) in the Energy Range 0.04 - 5 MeV”, *PROC. 6-TH
591 ALL-UNION CONF. ON NEUTRON PHYSICS, KIEV, 2-6 OCT. 1983, Vol. 2*, 285–289 (1983) [report
592 **INDC(CCP)-0457**, IAEA, Vienna, Austria (2014)], EXFOR 40871011, 40871012.
593

594 [17] B. I. Starostov, V. N. Nefedov, A. A. Boytsov, “Precision Measurements of ^{252}Cf , $^{233}\text{U}+n_{\text{th}}$,
595 $^{235}\text{U}+n_{\text{th}}$ and $^{239}\text{Pu}+n_{\text{th}}$ Prompt Fission Neutron Spectra (PFNS) in the Energy Range 2 - 11
596 MeV”, *PROC. 6-TH ALL-UNION CONF. ON NEUTRON PHYSICS, KIEV, 2-6 OCT. 1983, Vol. 2*,
597 290–293 (1983) [report **INDC(CCP)-0458** IAEA, Vienna, Austria (2014)], EXFOR 40872007.
598

599 [18] A. A. Boytsov, A. F. Semenov, B. I. Starostov, “Relative Measurements of $^{233}\text{U}+n_{\text{th}}$, $^{235}\text{U}+n_{\text{th}}$
600 and $^{239}\text{Pu}+n_{\text{th}}$ Prompt Fission Neutron Spectra (PFNS) in the Energy Range 0.04 – 5 MeV”,
601 *PROC. 6-TH ALL-UNION CONF. ON NEUTRON PHYSICS, KIEV, 2-6 OCT. 1983, Vol. 2*, 294–297
602 (1983) [report **INDC(CCP)-0459** IAEA, Vienna, Austria (2014)], EXFOR 40873004.
603

604 [19] B. I. Starostov, V. N. Nefedov, A. A. Boytsov, “Prompt Neutron Spectra from Fission of ^{233}U ,
605 ^{235}U and ^{239}Pu by Thermal Neutrons and from Spontaneous Fission of ^{252}Cf in the 0.01-12 MeV
606 Energy Range”, *VOPR. AT. NAUK. TECH., SER. YAD. KONST., Issue.3*, p.16 (1985) [report
607 **INDC(CCP)-293/L**, p.19 IAEA, Vienna, Austria (1989)], EXFOR 40930.
608

609 [20] J. P. Lestone, E. F. Shores, “Uranium and Plutonium Average Prompt-fission Neutron Energy
610 Spectra (PFNS) from the Analysis of NTS NUEX Data”, *NUCL. DATA SHEETS* **119**, 213–216
611 (2014).
612

613 [21] J. P. Lestone, E. F. Shores, “Uranium and Plutonium Prompt-fission-neutron Spectra (PFNS) of
614 NTS NUEX Data and the Corresponding Uncertainty Budget”, LANL report **LA-UR-14-24087**,
615 Los Alamos, USA (2014).
616

617 [22] G. S. Boykov, V. D. Dmitriev, G. A. Kudyaev, Yu. B. Ostapenko, M. I. Svirin, G. N. Smirenkin,
618 “Spectrum of Neutrons Accompanying Fission of ^{232}Th , ^{235}U , and ^{238}U by 2.9-MeV and 14.7-MeV
619 Neutrons (Below and Above the Threshold of Emission Fission)”, *YAD. FIZ.* **53**, 628–648 (1991)
620 [*Sov. J. NUCL. PHYS.* **53**, 392–406 (1991)], EXFOR 41110.
621

610 [23] G. S. Boykov, V. D. Dmitriev, G. A. Kudyaev et al., “Neutron spectrum in the fission of Th-232,
 611 U-235, and U-238 by neutrons with energies 2.9 and 14.7 MeV”, PHYS. ATOMIC NUCL. **57**, 572
 612 (1994).

613 [24] B. H. Armitage and M. G. Sowerby (Eds), PROC. EURATOM SPECIALIST MEETING ON IN-
 614 ELASTIC SCATTERING AND FISSION NEUTRON SPECTRA, AERE, HARWELL, 14-16 APRIL 1975,
 615 Report **AERE-R-8636**, AERE, Harwell, UK (1977). See Appendix A with detailed corrections
 616 and numerical data for ^{235}U earlier measurements.

617 [25] P. I. Johansson, B. Holmqvist, “An Experimental Study of the Prompt Fission Neutron Spectrum
 618 Induced by 0.5-MeV Neutrons Incident on ^{235}U ”, NUCL. SCI. ENG. **62**, 695–708 (1977), EXFOR
 619 20175003. See corrections in Appendix A, AERE-R-8636 (1977) [24].

620 [26] H.-H. Knitter, M. M. Islam, M. Coppola, “Investigation of Fast Neutron Interaction with U-235 ”,
 621 Z. PHYS. **257**, 108–123 (1972), EXFOR 20394008. See corrections in Appendix A, AERE-R-8636
 622 (1977) [24].

623 [27] M. M. Islam, H.-H. Knitter, “The Energy Spectrum of Prompt Neutrons from the Fission of
 624 Uranium-235 By 0.40-MeV Neutrons”, NUCL. SCI. ENG. **50**, 108–114 (1973), EXFOR 20385003.
 625 See corrections in Appendix A, AERE-R-8636 (1977) [24].

626 [28] A. Lajtai, J. Kecskemeti, J. Safar, P. P. Dyachenko, and V. M. Piksaikin, “Energy Spectrum Mea-
 627 surements of Neutrons for Energies 30 keV–4 MeV from Thermal Fission of Main Fuel Elements”,
 628 NDST 2004, Santa Fe, NM, USA, AIP CONF. PROC. **769**, 613–616 (1985), EXFOR 30704003.

629 [29] A. Lajtai, P.P. Dyachenko, V.N. Kononov, E.A. Seregina, “Low-Energy Neutron Spectrometer
 630 and Its Application for ^{252}Cf Neutron Spectrum Measurements”, NUCL. INST. METH. PHYS.
 631 RES. **A293**, 555–561 (1990), EXFOR 41158.

632 [30] A. Chatillon, G. Baglier, T. Granier, B. Laurent, B. Morillon, J. Taieb, R. C. Haight, M. Devlin, R.
 633 O. Nelson, S. Noda, J. M. O’Donnell, “Measurement of prompt neutron spectra from the $^{239}\text{Pu}(n,f)$
 634 fission reaction for incident neutron energies from 1 to 200 MeV”, PHYS. REV. **C89**, 014611 (2014),
 635 EXFOR 14379.

636 [31] Th. Granier, “Reanalysis of ^{239}Pu Prompt Fission Neutron Spectra”, PHYS. PROCEDIA **64**,
 637 183–189 (2015).

638 [32] H.-H. Knitter, “Measurement of the Energy Spectrum of Prompt Neutrons from the Fission
 639 of Pu 239 by 0.215 MeV Neutrons”, ATOMKERNENERGIE **26**, 76–79 (1975), EXFOR 20576. See
 640 corrections in Appendix A, AERE-R-8636 (1977) [24].

641 [33] P. Marini *et al.* , “Prompt-fission-neutron spectra in the $^{239}\text{Pu}(n,f)$ reaction”, PHYS. REV. C **101**,
 642 044614 (2020).

643 [34] D. Neudecker, “ARIADNE—A Program Estimating Covariances in Detail for Neutron Experi-
 644 ments,” EUROP. PHYS. J. N **4**, 34 (2018).

645 [35] D. Neudecker, A. Lewis, E. Matthews *et al.*, “Templates of Expected Measurement Uncertain-
 646 ties,” Los Alamos National Laboratory Report LA-UR-19-31156 (2019).

647 [36] V. Ya. Baryba, N. V. Kornilov, O. A. Sal’nikov, Report **947** IPPE, Obninsk, Russia (1979) (in
 648 Russian), available in INIS, EXFOR 40740.

649 [37] B. V. Zhuravlev, L. E. Kazakov, V. J. Kononov, N. V. Kornilov, B. D. Kuz’mnin, V. V. Ma-
 650 linovskij, E. D. Poletaev, O. D. Sal’nikov, N. N. Semenova, “Investigations of the Interactions of
 651 Neutrons with ^{238}U Nuclei”, Report **INDC(CCP)-154/L**, IAEA, Vienna, Austria (1980).

652 [38] N. V. Kornilov, V. Ja. Baryba, O. A. Sal'nikov, ALL UNION CONF. ON NEUTRON PHYS., KIEV,
 653 15–19 SEP 1980 **Vol.3**, 104 (1980) (in Russian), EXFOR 40631.

654 [39] M. Baba, H. Wakabayashi, M. Ishikawa, N. Nakashima, N. Ito, N. Hirakawa, “Fission Spectrum
 655 Measurement of ^{232}Th and ^{238}U for 2 MeV Neutrons”, pp.149–159, EXFOR 22112.

656 [40] G. S. Boykov et al., “New Data on Prefission Neutrons”, *Z. PHYS.* **A340**, 79–84 (1991).

657 [41] G. N. Smirenkin, G. N. Lovchikova, A. M. Trufanov, M. I. Svirin, A. V. Polyakov, V. A. Vino-
 658 gradov, V. D. Dmitriev, G. S. Boykov, “Measurement of Energy Spectrum of Neutrons Accompa-
 659 nying Emission Fission of U-238 nuclei”, *YAD. FIZ.* **59**, 1934–1939 (1996) [*PHYS. AT. NUCLEI* **59**,
 660 1865–1870 (1996)], EXFOR 41461.

661 [42] A. M. Trufanov, G. N. Lovchikova, M. I. Svirin, A. V. Polyakov, V. A. Vinogradov, V. D. Dmitriev,
 662 G. S. Boykov, “Investigation of the Spectra of Neutrons Originating from ^{238}U Fission Induced by
 663 5.0- and 13.2-MeV Neutrons”, *YAD. FIZ.* **64**, 3–10 (2001) [*PHYS. AT. NUCLEI* **64**, 1–8 (2001)],
 664 EXFOR 41450.

665 [43] G. N. Lovchikova, A. M. Trufanov, M. I. Svirin, V. A. Vinogradov, A. V. Polyakov, “Spectra and
 666 Mean Energies of Prompt Neutrons from ^{238}U Fission Induced by Primary Neutrons of Energy in
 667 the Region $E_n < 20$ MeV”, *YAD. FIZ.* **67**, 1270–1287 (2004) [*PHYS. AT. NUCLEI* **67**, 1246–1263
 668 (2004)], EXFOR 41447.

669 [44] V. V. Desai, B. K. Nayak, A. Saxena, S. V. Suryanarayana, R. Capote, “Prompt fission neutron
 670 spectra in fast neutron induced fission of ^{238}U ”, *PHYS. REV.* **C92** 014609 (2015).

671 [45] J.W. Boldeman and M.G. Hines, “Prompt Neutron Emission Probabilities Following Sponta-
 672 neous and Thermal Neutron Fission,” *NUCL. SCI. ENG.* **91**, 114–116 (1985); J.W. Boldeman and
 673 R.L. Walsh, “The Energy Dependence of $\bar{\nu}_p$ for Neutron Induced Fission of ^{235}U below 2.0 MeV,” *J.*
 674 *NUCL. ENERGY* **24**, 191–205 (1970).

675 [46] H. Condé, J. Hansén and M. Holmberg, “Prompt $\bar{\nu}_{\text{tot}}$ in Neutron-induced Fission of ^{239}Pu and
 676 ^{241}Pu ,” *J. OF NUCL. ENERGY* **22**, 53–60 (1968).

677 [47] B.C. Diven, H.C. Martin, R.F. Taschek, “Multiplicities of Fission Neutrons,” *PHYS. REV.* **101**
 678 1012–1016 (1956).

679 [48] M. Soleihac, J. Frehaut and J. Gauriau, “Energy Dependence of $\bar{\nu}_p$ for Neutron-induced Fis-
 680 sion of ^{235}U , ^{238}U and ^{239}Pu from 1.3 to 15 MeV,” *J. OF NUCL. ENERGY* **23**, 257–282 (1969);
 681 J. Frehaut, G. Mosinski and M. Soleihac, “Recent Results in $\bar{\nu}_p$ Measurements between 1.5 and
 682 15 MeV,” Topical Conference on $\bar{\nu}_p$ The Average Number of Neutrons Emitted in Fission, France,
 683 1972, Report EANDC(E)-15 “U” (1973).

684 [49] R. Gwin, R.R. Spencer and R.W. Ingle, “Measurements of the Energy Dependence of Prompt
 685 Neutron Emission from ^{233}U , ^{235}U , and ^{239}Pu for $E_n = 0.0005$ to 10 MeV Relative to Emission
 686 from Spontaneous Fission of ^{252}Cf ,” *NUCL. SCI. ENG.* **94**, 365–379 (1986); R. Gwin, R.R. Spencer
 687 and R.W. Ingle, “Measurements of the Energy Dependence of Prompt Neutron Emission from
 688 ^{233}U , ^{235}U , ^{239}Pu , and ^{241}Pu for $E_n = 0.0005$ to 10 eV Relative to Emission from Spontaneous
 689 Fission of ^{252}Cf ,” *NUCL. SCI. ENG.* **87**, 381–404 (1984); R. Gwin, R.R. Spencer, R.W. Ingle et
 690 al., “Measurements of the Average Number of Prompt Neutrons Emitted per Fission of ^{239}Pu and
 691 ^{235}U ,” Oak Ridge National Laboratory ORNL/TM-6246 (1978).

692 [50] J.C. Hopkins and B.C. Diven, “Prompt neutrons from fission,” *NUCLEAR PHYSICS*, **48**, 433 (1963).

693 [51] Z. Huanqiao, X. Jincheng, L. Zuhua et al. , “The Dependence of Average Numbers of Prompt
 694 Fission Neutron of Pu-239 on Incident Fast Neutron Energies,” CHIN. J. OF NUCL. PHYS. **2**, 29
 695 (1980).

696 [52] I. Johnstone, “A Measurement of the Average Number of Prompt Neutrons Emitted in Fission at
 697 High Energy,” Atomic Energy Research Establishment Report A.E.R.E NP/R 1912 (1956).

698 [53] V.I. Kalashnikova, V.I. Lebedev, P.E. Spivak et al. , “Absolute Evaluation of the Average Number
 699 of Neutrons Emitted in the Fission of some Isotopes of Uranium and Plutonium,” Proc. of the USSR
 700 Conf. peaceful Uses of Atomic Energy, USSR 1955, 156 (1955).

701 [54] M.V. Savin, Yu.A. Khokhlov, A.E. Savelév et al. , “Energy Dependence of $\bar{\nu}_{\text{tot}}$ in the Fission of
 702 U^{235} by Fast Neutrons,” SOVIET J. OF NUCL. PHYSICS **16**, 638–640 (1973).

703 [55] P.J. Leroy, “Nombres Moyens de Neutrons Prompts Émis Dans La Fission de ^{238}U , ^{239}Pu ,
 704 ^{232}Th ,” LE JOURNAL DE PHYSIQUE ET LE RADIUM **21**, 617–628 (1960).

705 [56] D.S. Mather, P. Fieldhouse and A. Moat, “Measurement of Prompt $\bar{\nu}_{\text{tot}}$ for the Neutron-induced
 706 Fission of Th^{233} , U^{233} , U^{234} , U^{238} and Pu^{239} ,” NUCL. PHYS. A **66**, 149–160 (1965).

707 [57] L.I. Prokhorova, R.E. Bagdasarov, I.I. Kotukhov et al. , “Yield of Prompt Neutrons $\bar{\nu}_{\text{tot}}$ in the
 708 Fission of U^{235} by Neutrons with Energies up to 1.5 MeV,” ATOMNAYA ÉNERGIYA **30**, 250–257
 709 (1971).

710 [58] B. Nurpeisov, K.E. Volodin, V.G. Nesterov et al. , “Dependence of $\bar{\nu}_{\text{tot}}$ on Neutron Energies up
 711 to 5 MeV for ^{233}U , U^{235} , and ^{239}Pu ,” ATOMNAYA ÉNERGIYA **39**, 199–205 (1975).

712 [59] M.V. Savin, Yu.A. Khokhlov, Yu.S. Zamjatnin et al. , “The Average Number of Prompt Neutrons
 713 in Fast Neutron Induced Fission of U-235, Pu-239 and Pu-240,” IAEA Report IAEA-CN-26/40
 714 (1970).

715 [60] G.N. Smirenkin, I.I. Bondarenko, L.S. Kutsaeva et al. , “Mean Number of Prompt Neutrons in
 716 the Fission of U^{233} , U^{235} , Pu^{239} by 4 and 15 MeV Neutrons,” Sov. ATOMIC ENERGY **4**, 253–255
 717 (1958).

718 [61] M. Soleihac, J. Fréhaut, J. Gauriau et al. , “Average Number of Prompt Neutrons and Relative
 719 Fission Cross-Sections of U-235 and Pu-239 in the 0.3 to 1.4 MeV Range,” Proc. of the Conference
 720 for Nuclear Data for Reactors, Helsinki, **2**, 145– (1970); J.W. Boldeman, J. Fréhaut and R.L. Walsh,
 721 “A Reconciliation of Measurements of $\bar{\nu}_p$ for Neutron-induced Fission of Uranium-235,” NUCL.
 722 SCI. ENG. **63**, 430–436 (1977).

723 [62] K.E. Bolodin, V.F. Kuznetsov, V.G. Nesterov et al. , “Average Number of Prompt Neutrons in
 724 Pu^{239} Fission,” ATOMNAYA ÉNERGIYA **33**, 901–906 (1972).

725 [63] R.L. Walsh and J.W. Boldeman, “The Energy Dependence of $\bar{\nu}_p$ for ^{233}U , ^{235}U and ^{239}Pu below
 726 5.0 MeV,” J. NUCL. ENERGY **25**, 321–330 (1971).

727 [64] S. Okumura, T. Kawano, P. Jaffke, P. Talou, S. Chiba, “ $^{235}\text{U}(\text{n}, \text{f})$ Independent fission product
 728 yield and isomeric ratio calculated with the statistical Hauser-Feshbach theory ” J. NUC. SCI.
 729 TECH. **55**, 1009–1023 (2018).

730 [65] D. Neudecker et al. , “Validating Nuclear Data Uncertainties Obtained from a Statistical Analysis
 731 of Experimental Data with the “Physical Uncertainty Bounds” Method,” EPJ NUCLEAR SCI.
 732 TECHNOL. **6**, 19 (2020).

733 [66] D.E. Vaughan and D.L. Preston, “Physical Uncertainty Bounds (PUB),” Los Alamos National
734 Laboratory Report LA-UR-14-20441.

735 [67] I. Stetcu, P. Talou, T. Kawano, M. Jandel, “Properties of prompt fission γ rays” PHYS. REV. C
736 **90**, 024617 (2014).

737 [68] R. Capote, M. Herman, P. Obložinský et al. , “RIPL—Reference Input Parameter Library for
738 Calculation of Nuclear Reactions and Nuclear Data Evaluations,” NUCL. DATA SHEETS **110**, 3107–
739 3214 (2009).

740 [69] D.G. Madland and J.R. Nix, “New Calculation of Prompt Fission Neutron Spectra and Average
741 Prompt Neutron Multiplicities,” NUCL. SCI. ENG. **81**, 213–271 (1982).

742 [70] C.E. Rasmussen, C.K.I. Williams, “Gaussian Processes for Machine Learning ”, the MIT Press
743 (2006).