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Abstract

The limited driving range due to high costs and low energy densities of batteries constrains 

the battery electric vehicle (BEV) market growth. Lightweighting in theory can reduce energy 

consumption rate and extend the driving range. The knowledge gap is to quantitatively link the 

cost-effectiveness of light-weight technologies with range extension and consumer acceptance of 

BEVs. In this study, a physics-based energy consumption model of BEVs is constructed and 

associated with a statistics-based model on the basis of travel surveys. A perceived cost of 

ownership (PCO) is then developed by adding intangible costs to traditional total cost of 

ownership models. We estimate, at the disaggregate vehicle model and driver level and the 

aggregate market level, 1) the extended range due to lightweighting for a given battery size; and 

2) the optimal electric range based on lightweighting decisions. The cost-effectiveness of 

lightweighting for BEV range extension is found to vary with income-dependent daily range 

limitation value, driving patterns and lightweighting technology costs. In general, adopting 

lightweighting in BEVs is more cost-effective for consumers with higher daily limitation value, 

as well as for those with higher driving intensity or suitable daily driving patterns. When the 

lightweighting involves a higher vehicle production cost, less lightweighting could reduce the 

overall PCO for BEV owners. 4 of the selected top ten BEV models are found to benefit from 

additional 2.09%-4.45% lightweighting. The method built in this study can guide automakers in 

planning R&D investments in battery and lightweighting technologies.

Keywords: Battery electric Vehicle, Battery size, Cost of vehicle ownership, Electric driving 

range, Light-weighting, Optimization
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1. Introduction

The battery electric vehicle (BEV) has been one of the major alternative fuel vehicle 

technologies. According to the International Energy Agency, in 2021, the sales of plug-in electric 

vehicles (BEVs and plug-in hybrid electric vehicles) in the light-duty segment have reached over 

6.6 million, nearly 9% of the global light-duty vehicle market (Paoli and Gül, 2022). The 

cumulative registrations of plug-in electric vehicles have also been over 0.7 million in the U.S. 

by the end of 2021 (Paoli and Gül, 2022). The society has generated a culture starting to value 

electric vehicles as a future purchase option (Jin and Slowik, 2017), and suitable business models 

are invented to promote the convenience of electric vehicle uses (Secinaro et al., 2020).

The BEV with clean electricity is also regarded as one of the effective alternatives to 

decarbonize the transportation sector. The transportation sector has been one of the major carbon 

emitting sectors in the U.S.: it produced over 29% of greenhouse gas (GHG) emissions in 2019 

(U.S. EPA, 2020). The Biden administration pledged to reach net-zero GHG emissions no later 

than 2050 and set a goal of reducing GHG emissions by 50–52% compared to 2005 levels by 

2030 (White House, 2021a). To meet the target, it is expected that a large investment will be into 

the low- or zero-carbon technologies in all industries. Therefore, a strategic transitioning of light-

duty vehicles from conventional internal combustion engine vehicles (ICEVs) to BEVs or other 

alternative fuel vehicles has been a consensus in the U.S. and the world.

However, due to expensive production cost and limited energy density of battery, the 

electric driving range still constrains the large-scale acceptance of BEVs. BEVs with a longer 

electric range are still expensive high-end products, while BEVs with a shorter electric range are 
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unable to meet all the travel demands of general drivers. Several approaches, summarized in 

Table 1, have been developed to address this BEV range anxiety problem. By comparing the 

pros and the cons of these major approaches, we can find that most approaches require long-term 

investments with uncertain returns, such as R&D efforts in hope for battery technology 

breakthroughs. It is impossible to ameliorate the electric range or battery issue in a short period, 

even though these pathways could effectively improve the electric range or permanently solve 

the battery problem. One exception is the vehicle optimal design approach, which aims at 

optimizing vehicle components to maximize value proposition to consumers.  Mechalek et al. 

proposes using quantitative tools and methods to optimize product designs based on cost factors 

and consumer attributes in order to maximize product success in the market (Michalek et al., 

2011). If resulting in cost-effective strategies, the vehicle optimal design approach can achieve 

market impacts as soon as a vehicle design cycle.
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Table 1. Major Approaches on Solving the Electric Range Problem in BEVs.
Approaches Type References Pros Cons
Vehicle 
optimal 
design

Component 
system design

Autonomie, a tool by Argonne, 
is adopted for vehicle system 
energy and cost analysis (Kim 
et al., 2013).

Small 
investment.
Quick return.

Limited 
improvement.

New battery 
materials or 
design.

Developing new li-ion battery 
electrolytes (Xu, 2021).

Solving the 
electric range 
problem 
permanently.

Massive investment.
Long R&D time 
period.

Battery 
technology 
improvement

Battery swapping 
technology

Vallera et al. believes the 
battery swapping technology 
could reduce grid impacts 
(Vallera et al., 2021)

Shorten the 
charging time.
Reduce the 
driver’s range 
anxiety.

Massive investment.
Difficult to 
standardize 
technology

Charging network The Biden Administration plans 
to provide $5 billion to build a 
national charging network 
(White House, 2021b).

Massive investment.
Hard to benefit EVs 
in rural areas.

Infrastructure

Charging 
technology: fast 
charging, extreme 
fast 
charging(xFC), & 
wireless charging

Domínguez-Navarro et al. 
designed a fast-charging station 
(Domínguez-Navarro et al., 
2019). Zeng et al. optimized 
control to improve wireless 
charging efficiency (Zeng et al., 
2021).

Reduce the 
driver’s range 
anxiety.

Expensive 
installations.
Potential battery 
lifetime damage.

Consumer 
awareness 
education

Consumer 
behavior

BEV consumer awareness 
activities can foster
growth of the market and 
understanding how to better 
implement (Jahangir et al., 
2019; Jin and Slowik, 2017; 
Secinaro et al., 2022). 

Cultivate BEV 
culture and help 
the public to 
understand the 
limitations.

Unclear benefit-cost 
balance.

Government 
support

Policy and 
incentives

Ou et al. 2018 quantifies that 
the vehicle policies can bring 
extra BEVs to market (Ou et al., 
2018). 

Financially 
compensate for 
the range 
anxiety.

Massive investment.
Unclear benefit-cost 
balance.

Vehicle optimal design involves many aspects such as compatibility and consistency 

among physical-subsystems (Kim et al., 2013), market or consumer-oriented design (Michalek et 

al., 2011), and optimization under policy constraints (e.g., fuel-saving technology integration to 

meet the fuel economy regulations (Shiau et al., 2009)). As the literature review shows, light-

weighting could impact electricity consumption rates and extend electric range, but has not been 

considered in the BEV range optimization. Therefore, this study creates a method to optimize the 

design of electric range in BEVs by comprehensively considering vehicle dynamic features and 
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performance, more specifically, the fuel consumption rate impacts from the light-weighting 

technologies and materials in vehicles. Called Perceived Cost of Ownership (PCO), this method 

adds optimization and intangible costs such as range anxiety and charging inconvenience to the 

traditional total costs of ownership (Burnham et al., 2021), which usually only consider out-of-

pocket or tangible costs. The PCO model developed in this study can help stakeholders from 

industry and government agencies to understand the value and strategies of diversifying optimal 

BEV ranges for accelerating vehicle electrification, and the role of light-weighting technologies 

in BEV range optimization.

The organization of this paper is as shown as below. Section 1 provides research 

background on the BEV market/technology developments and obstacles, and presents objectives 

and motivations. Section 2 briefly introduces the major literature review and data collections on 

light weighting and cost of ownership in the BEVs. Section 3 describes the analysis methods and 

scenario designs. Section 4 presents scenario analyses and gives the optimized options through 

benefit-cost analysis. The final section summarizes the conclusions and the future work.

2. Literature Review

2.1. Weight impact on vehicle energy consumption

Lightweighting has been a promising approach to meet with more stringent governmental 

regulatory requirements on fuel efficiency and environmental legislations on harmful emission. 

Vehicles with lightweighting reduce the required propulsive energy and may lead to further 

weight reduction through powertrain downsizing without sacrificing dynamic performance. 

Prevailing approaches for reducing vehicle weight include substitution of low-density materials, 
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advanced manufacturing technologies (additive manufacturing, laser welding, High-pressure die 

casting, etc.), and optimal structural designs (size, shape, topology optimization, etc.). A study 

on the historic trend of vehicle weight, fuel efficiency, material compositions, and GHG 

emission was conducted for American and Japanese cars in the past thirty years (Kawajiri et al., 

2020). After investigating the life-cycle analysis on the material substitutions using advanced 

high-strength steel (AHSS), aluminum alloy, carbon fiber reinforced polymer, and magnesium 

alloy, it was concluded that the AHSS remains the most promising for reducing GHG emissions 

with respect to material substitutions and lightweighting design. 

The physics-based relationship between vehicle weight and mass-dependent fuel 

consumption had been formulated based on vehicle dynamics theories with parameters including 

rolling, rotating, and acceleration loads (Kim et al., 2015; Kim and Wallington, 2016). The 

effects of powertrain resizing on the fuel reduction values (FRVs) was studied and compared 

with the mass-induced fuel consumptions without down-resizing powertrains (Kim and 

Wallington, 2016). Del Pero et al., focusing on gasoline turbocharged cars, concluded that the 

FRVs will be improved by downsizing the powertrain after primary weight reduction to maintain 

vehicle performance specified in the preliminary design stage (Del Pero et al., 2017). Similar 

physics-based models were applied to analyze the energy demand (in MJ/100km) of ICEVs 

(Geyer and Malen, 2020a) and BEVs (Geyer and Malen, 2020b) by calculating the force required 

at the driving wheels and the corresponding torque and rotating velocity transmitted through 

powertrain. Variations of the energy demand were plotted as functions of changes in three 

vehicle characteristics (mass, frontal area and rolling resistance) in a range of 40% reduction to 

40% addition with an increment of 10%. Geyer and Malen found that energy demand is most 

sensitive to vehicle mass in the New European Driving Cycle (NEDC) (Geyer and Malen, 
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2020a). It was concluded that the change in vehicle energy demands due to mass reduction (MJ 

per 100 km driven and per 100 kg reduction) are smaller for BEVs with efficient powertrains 

(Geyer and Malen, 2020b).

Compared to the conventional version of ICEVs, a vehicle with considering 

lightweighting can clearly reduce the vehicle’s overall lifecycle energy consumption and 

emissions (Kelly and Dai, 2021). Similar conclusions were achieved by others. A 10% reduction 

in vehicle mass will produce an approximately 6-7% reduction in fuel consumption for passenger 

cars and 4-5% reduction for light-duty trucks (National Research Council, 2015). Actually, 

because of energy consumption saving, the lightweighting version of BEV is also expected to 

have a longer driving distance comparably (Kelly and Dai, 2021). Therefore, the industry 

believes lightweighting remains a crucial approach for lowering fuel consumption (ICEVs) and 

improving driving distance (BEVs) (Bailo et al., 2020). The simulation models by Argonne 

National Laboratory predicted the potential weight of various vehicle classes (compact car, 

midsize car, small SUV, midsize SUV, and pick-up) will be reduced by 10-24% in MY 2045 

(Islam et al., 2020).

2.2. Lightweighting in battery electric vehicles

The BEVs are projected to increase by more than 60% globally in the next two decades 

(Applied Value Group, 2021). By 2040, the automakers will offer only carbon-neutral products 

and most governments will issue policies and legislations to eliminate ICEVs (Applied Value 

Group, 2021). Combined with vehicle lightweighting, increasing energy efficiency through 

electrified powertrains and other technical advancements help reduce GHG emission (Luk et al., 

2017). Specifically, present BEVs are heavier than similar ICEVs due to the batteries, sensors, 
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and infotainment systems, and are restricted to short-distance commutes only.  Combined with 

large improvements in battery technologies, lightweighting plays a crucial role to push BEV 

range to beyond 700 miles and support long range travel (Applied Value Group, 2021). 

Therefore, the lightweighting is important for the development of BEVs. 

Substituting materials for body-in-white and substituting materials for the powertrain 

system, especially battery and motor/generator, play an equally critical role in the cost 

management related to the BEV’s lightweight design. Thus, full vehicle cost trade-offs under 

different material substitution decisions and battery technology improvement scenarios should be 

studied at the same time. For example, Burd et. al. compared the weight reductions from material 

substitution with Advanced High-Strength Steel (AHSS) and aluminum alloys in their 

applications for lightweight design of BEV bodies and closures (Burd et al., 2021). 

Corresponding mass scaling costs of the battery, motor and chassis subsystems were calculated 

and compared for the lightweight designs with AHSS and aluminum. It is found that although 

replacing carbon steel with AHSS will reduce the manufacturing and assembly costs, the 

aluminum version of vehicle body and closure will help reduce the vehicle weight further and 

has advantage on battery and motor cost. So, the substituting materials for body-in-white method 

is still the main pathway for BEV’s lightweighting and is considered by this study.   

For BEVs, the computer simulations based analysis for the structural stiffness, durability, 

dynamic behavior and crashworthiness are often performed (Del Pero et al., 2020).  In the study 

of Del Pero et al., the computer simulations were conducted for energy consumptions of 10 

different BEVs with different technical features (mass, motor power, and power-to-weight ratio).  

The simulations result of energy consumption for BEVs were expressed as functions of car 
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masses and are applied to calculate the Energy Reduction Value (ERV) coefficient (kWh/ (100 

km × 100 kg). Impact Reduction Value (IRV) coefficients, the product of ERV and GWP (the 

Global Warming Potential factor),  were calculated for assessing the environmental impact of 

lightweight design of BEVs (Del Pero et al., 2020). This study uses the similar logic to evaluate 

the lightweighting degree of different BEV models.

2.3. Optimizing cost of ownership by considering lightweighting and electric 

range

Cost of ownership is adopted as an objective function to quantify the light weighting 

impacts on the BEV’s electric range optimization. Therefore, there are two components in the 

objective function: cost related to BEV electric range; and vehicle lightweighting cost. Current 

cost of ownership mostly focuses on tangible cost components such as vehicle purchase price 

and fuel cost and rarely considers intangible costs due to limited driving range and refueling 

inconvenience. Intangible costs related to the vehicle range typically are not considered by cost 

of ownership analysis until the range becomes much more expensive, for example, in the cases 

of BEVs or fuel cell vehicles (FCVs). The combination of limited range and limited 

recharging/refueling availability translates to the range limitation cost and recharging/refueling 

inconvenience cost, which are intangible but have been measured by attempts. Consideration of 

such two intangible costs in the total cost of ownership analysis exists, but rarely. Lin is one of 

pioneers who quantified the intangible costs impacted by the electric range and battery system 

(Lin, 2014). Lin segmented the impacted PCO by three components: battery cost, range 

limitation cost, and energy (electricity) cost for driving the BEV (Lin, 2014). Hao et al. 

developed a Monte Carlo based model for vehicle ownership cost analysis by integrating the 
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electric range optimization with consumer heterogeneity (Hao et al., 2020). With considering the 

cost and benefit analysis, Shi et al developed a physics-based model to investigate the 

relationship between the energy consumption reduction and lightweight rate (Shi et al., 2019).  It 

illustrates that the lightweighting clearly helps reduce BEV energy consumption and battery 

capacity needed for achieving the same driving range. However, Shi et al. also admitted that the 

potential extra cost from the lightweighting technologies could offset the benefits from the 

energy saving. Therefore, a feasible optimization of this relationship is needed.

Lightweighted vehicle means less energy consumed under the same conditions and an 

improvement of driving range of electric vehicles, however the lightweighting also costs much 

and varies by substituted materials. This study summarized the lightweighting degree (%) with 

the extra cost (%) from three different publications into Figure 1 (Bailo et al., 2020; Islam et al., 

2020; Mascarin et al., 2015). The lightweighting degree (%) means the vehicle weight saving 

(%) after using the substitute materials for the baseline vehicles. For example, if the weight of a 

baseline vehicle is 2000 kg and the weight saving is 400 kg after using lightweighting 

technology, then the lightweighting degree is 20%. The extra cost means the extra cost for 

implementing the lightweighting technology. For example, if the production cost of baseline 

vehicle is $ 20,000, the cost with the lightweighting technology is $4000, then the extra cost 

would be 20%.  One important note, the baseline vehicles from these three references are totally 

different. In Mascarin et al.’s work, the baseline vehicle is the 2013 Ford Fusion vehicle model 

(Mascarin et al., 2015). In Islam et al.’ work, the baseline vehicle is an average vehicle for 

different vehicle types in 2015, such as small car, mid-size car, small SUV and mid-size SUV, 

respectively (Islam et al., 2020). In Bailo et al.’s work, the baseline vehicle is an average vehicle 

for different vehicle types in 2020, respectively (Bailo et al., 2020). More details of the relations 
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between lightweighting degree and extra cost are presented in Appendix A-C. Since Macarin et 

al. gives abundant information on the lightweighting, this study uses the fitting curve and 

baseline vehicle proposed by Macarin et al (Mascarin et al., 2015). According to the literature 

review based on the previous studies, this study combinedly associates the PCO on the electric 

vehicles with the lightweighting cost, so as to create a method to improve the electric range of 

BEVs or lower BEV’s battery size.

Figure 1. The relations between lightweighting degree and extra cost revealed by publications 

(Bailo et al., 2020; Islam et al., 2020; Mascarin et al., 2015).
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3. Methodology

3.1. Optimization model

Figure 2. Flowchart for the PCO optimization model with consideration of lightweight and BEV 
driving range.

The analysis flow in this study is described by Figure 2. The critical component is the 

physics-based energy consumption model of electric vehicles which is associated with the 

statistics modeling of the U.S. driving patterns. The physical-based energy consumption 

relationship between vehicle mass and vehicle energy consumption without/with powertrain 

resize has been derived by Kim et al. 2016 (Kim and Wallington, 2016). Accordingly, the mass-

dependent fuel consumption 𝐹𝑤(𝑀) for BEVs formulated as Eqn. (1) (Kim and Wallington, 

2016).

𝐹𝑤(𝑀𝑡) =
1

𝐻𝑓𝜂𝑐𝜂𝑡
∫ 𝐴𝑣 + 𝐵𝑣2 + (1 ― ∅𝜇)𝑎𝑣𝑀𝑡 𝑑𝑡                             (1)

where 𝐻𝑓, 𝜂𝑐, and 𝜂𝑡 are the heating value of fuel, energy conversion efficiency, and 

transmission efficiency. ∅ is the ratio of braking to kinetic energy, and 𝜇 is the regenerative 

braking efficiency. 𝐴 and 𝐵 are coast-down coefficients, which are referred to the U.S. 

Environmental Protection Agency (EPA) for each vehicle model (U.S. Environmental Protection 
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Agency (EPA), 2022). 𝑣 and 𝑎 are vehicle speed, and acceleration, respectively. 𝑀𝑡 is the vehicle 

equivalent test weight (kg). Accordingly, the energy consumption rate by vehicle mass, 𝐹𝑅𝑉 

(L/100km∙100kg) for a specific vehicle model with an equivalent test weight at 𝑚0 (kg), is 

shown in Eqn. (2) (Kim and Wallington, 2016).

𝐹𝑅𝑉 =
𝑑𝐹𝐶(𝑀𝑡)

𝑑𝑀𝑡
|𝑀𝑡=𝑚0 =

𝐹𝑤|𝑀𝑡=𝑚0

𝐹𝑤|𝑀𝑡=𝑚0 + 𝐹𝑥 + 𝐹𝐹

𝐹𝐶|𝑀𝑡=𝑚0

𝜑                            (2)

where, for a specific vehicle model weighting at 𝑚0, 𝐹𝑥 (L) is the mass-independent fuel 

consumption. 𝐹𝐹 (L) is the miscellaneous energy loss which is adjusted to zero by calibrating the 

power demand from accessories (such as heating, ventilation, and air conditioning; electronics) 

in BEVs. 𝐹𝐶 is the energy consumption rate (kWh/km, or gasoline equivalent liter per kilometer, 

LGE/km), which is obtained from the U.S. EPA (U.S. Environmental Protection Agency (EPA), 

2022) and is associated with the vehicle weight, m (kg). 𝜑 is the unit conversion factor.

 
Therefore, 𝐹𝑅𝑉 is the first-order differential equation of 𝐹𝐶 with respect to vehicle 

equivalent test weight—𝑀𝑡. Based on this relationship, it can be deduced that, when 𝐹𝑅𝑉 is a 

positive value, reducing the vehicle weight leads to a lower energy consumption rate. The lighter 

vehicle weight has two unique benefits for BEVs – either extending the electric range or 

reducing the battery capacity or both. Considering the extra weight burden from the battery 

system, such benefits can be much more significant than fuel-saving benefits from reducing the 

weight of conventional gasoline vehicles.

On the other hand, the optimization of electric range based on the U.S. travel patterns has 

been explored by Lin (Lin, 2014), as shown in Eqn. (3).

𝐶𝐵𝐸𝑉(𝑟) = 𝐶𝑏(𝑟) + 𝐶𝑙(𝑟) + 𝐶𝑒(𝑟)                                        (3)
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Where, 𝐶𝐵𝐸𝑉 is the total PCO of vehicle impacted by battery cost (𝐶𝑏), range limitation cost (𝐶𝑙) 

and energy (electricity) cost (𝐶𝑒) for driving the BEV. 𝑟 is the electric range. All the three cost 

components are associated with the electric range.

More specifically, the battery cost 𝐶𝑏(𝑟) ($) is conducted by Eqn. (4).

𝐶𝐵(𝑟) =
𝑟

𝑟0
∙ 𝑆0 ∙ 𝐵 ∙ 𝜎                                                           (4)

Where, 𝑟0 is the electric range (mile) of the baseline, 𝑆0 is the battery size of the baseline (kWh), 

𝐵 is the battery cost ($/kWh), which is believed to reach $132/kWh in 2021 (Henze, 2021). 𝜎 is 

the price markup factor, which is assumed to be 1.2 (Lin, 2014). The electric range, 𝑟, is assumed 

to be linearly correlated with the battery size, 𝐵𝑠 (kWh), as shown in Eqn. (5). Accordingly, 

when the battery size is fixed, the energy consumption rate, 𝐹𝐶 (kWh/km, or gasoline equivalent 

liter per kilometer, LGE/km) will be inversely related to the electric range.

𝑟 =
𝐵𝑠

𝐹𝐶(𝑀)                                                                (5)

The range limitation cost 𝐶𝑙(𝑟) ($) is calculated by Eqn. (6).

𝐶𝑙(𝑟) = 𝐿0∫𝑋𝑚

𝑟𝑑
𝑝(𝑥)𝑑𝑥 + 𝐿1∫𝑋𝑚

𝑟𝑑
𝑥𝑝(𝑥)𝑑𝑥                                     (6)

Where, 𝑥 is the random daily vehicle miles traveled (VMT, mile) that follows a probability 

density function 𝑝(𝑥); 𝑋𝑚 is the maximum daily VMT (miles); 𝑟𝑑 is the range limited per day 

(miles); 𝐿0 and 𝐿1 are the hypothetical fixed and variable range limitation costs ($ and $/mile, 

respectively) that occur as if all days during the vehicle’s lifetime are served by the backup 

vehicle for one mile per day. The probability density function follows the gamma distribution, 

which is common to describe the distribution of the daily driving patterns of the drivers (Greene, 

1985). The average daily VMT in the U.S. – 29.2 miles (Bureau of Transportation Statistics, 

2017), and the daily commute distance 14 miles (StreeLightData, 2018) are used for obtaining 
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the gamma distribution (Lin, 2014). The characteristics of the driving patterns and vehicle use 

are given by Table 2.

Table 2. Major Features of Driving Patterns and Vehicle Use.

The electricity cost 𝐶𝑒(𝑟) ($) is calculated by Eqn. (7).

𝐶𝑒(𝑟) = 𝐿𝑒(𝑟)
𝐿 ∙ 𝑉𝑀𝑇𝑙 ∙ 𝑃𝑒                                                    (7)

Where, 𝐿𝑒(𝑟) is the average daily vehicle miles traveled with electricity (VMT, mile) that 

follows a probability density function 𝑝(𝑥); 𝐿 is the average daily VMT in the U.S. (Bureau of 

Transportation Statistics, 2017); 𝑉𝑀𝑇𝑙 is the discounted lifetime VMT (miles), which is based on 

the assumption of 10 years vehicle lifetime and 7% discount rate; 𝑃𝑒 is the electricity price – 

$0.148/kWh in 2021 (Texas Power, 2021).

In summary, this study builds on and expands Eqn. (1-7) to derive the physical-based 

relationship among vehicle weight (kg), battery size (kWh), and electric range (miles) with 

consideration of intangible electric vehicle usage cost, light weighting manufacturing cost and 

lifetime impacts, as shown in Eqn. (8). 𝑇 is the comprehensive PCO with considering the extra 

cost brought from the vehicle weight changes ∆𝐶𝑤(𝑀𝑡), comparing to it from the original 

Feature Value Source
Driving - Mode (miles) 14.00 (StreeLightData, 2018)
Driving - Mean (miles) 29.20 (Bureau of Transportation Statistics, 2017)
Gamma - Shape Parameter 1.92 Calculated based on driving mode/mean
Gamma - Scale Parameter 15.20 Calculated based on driving mode/mean
Vehicle Lifetime (Years) 10 Assumption
Discount Rate 7% (Congressional Research Service, 2016)
Lifetime Mileage (mi) 74857 Calculated based on lifetime and discount
Daily Range limitation Value for BEV 
(𝐿0) $151 (Lin, 2014)
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vehicle model; and extra intangible electric vehicle usage cost ∆𝐶𝐵𝐸𝑉(𝑀𝑡), compared to it from 

the original vehicle model. The optimization will be the minimization of the summed PCO.

𝑚𝑖𝑛 (𝑇) = 𝑚𝑖𝑛 (∆𝐶𝑤(𝑀𝑡) + ∆𝐶𝐵𝐸𝑉(𝑀𝑡))                                       (8)

3.2. Lightweighting evaluation

To quantify and compare the impacts of BEV weight on the PCO (𝑇), this study selects 

the ten best-selling BEV models in the U.S. in 2021. The study collects the vehicle performance 

features from the U.S. EPA (U.S. Environmental Protection Agency (EPA), 2022), the 

FuelEconomy.gov (fueleconomy.gov, 2020), and public vehicle information websites (White, 

2022). The vehicle performance for these vehicle models is shown in Appendix D.

Different vehicle models are probably produced with various lightweighting materials; 

therefore, there should be a baseline to measure their lightweighting degree. This study uses the 

2013 Ford Fusion vehicle model, used by Mascarin et al. (Mascarin et al., 2015), as the baseline 

of lightweighting degree. It means the lightweighting degree of the 2013 Ford Fusion is 0% 

relative to other vehicle models in this study. In addition, as the battery system takes a heavy part 

of the BEVs, the overall curb weight of a BEV could be larger than the same model with an 

internal combustion engine. Thus, the lightweighting degree discussed in this study refers to curb 

weight for the vehicle non-powertrain part – 𝑀𝑛𝑝 (kg). The curb weight (𝑀𝑐, kg) for the 2013 

Ford Fusion is 1554 kg, and powertrain part is 454 kg (Mascarin et al., 2015). Thus, the non-

powertrain part is 1100 kg.

The quantified measurement index is the weight non-powertrain part per unit volume 

(kg/m3). The vehicle volume is calculated by Eqn. (9).
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𝑉 = 𝑓𝑝 ∙ ℎ                                                                     (9)

Where, 𝑉 is the vehicle volume (m3) which is used for quantifying the lightweighting degree. 𝑓𝑝  

is the vehicle footprint (m2), and ℎ is the vehicle height (m). These values are pulled from the 

database for FuelEconomy.gov (fueleconomy.gov, 2020).

The weight analysis of electrified powertrain (𝑀𝑝) of BEVs are segmented into three 

parts: battery system 𝑀𝑝𝑏, motor system 𝑀𝑝𝑚, and other part 𝑀𝑝𝑜. The weight of battery is 

associated with the battery energy density (𝛿, kWh/kg). The power sources of all the BEV 

models in this study adopt the lithium-ion batteries, which are capable of providing up to 0.25-

0.27 kWh/kg for commercialized use (Persun, 2021). Considering other affiliations in the battery 

system, this study uses 0.17 kWh/kg for the battery system. The motor weight is associated with 

the motor power (𝑃𝑚, kW), this study assumes the power density (𝜀, kW/kg) is 1.216 kW/kg, an 

estimate from the Tesla Model S features (Teslarati, 2013). In addition, the weight (𝑀𝑝𝑜) for 

other parts is assumed to be 306 kg, an estimate from the Tesla Model S features (Teslarati, 

2013). The calculation is shown in Eqn. (10).

𝑀𝑝 = 𝛿 ∙ 𝐵𝑠 +𝜀 ∙ 𝑃𝑚 + 𝑀𝑝𝑜                                                  (10)

Therefore, the weight of vehicle non-powertrain part per unit volume (𝜌𝑛𝑝, kg/m3) is calculated 

by Eqn. (11).

𝜌𝑛𝑝 =
𝑀𝑛𝑝

𝑉 =
𝑀𝑐 ― 𝑀𝑝

𝑉                                                           (11)

Where, 𝑀𝑛𝑝 is the vehicle non-powertrain weight (kg), and 𝑀𝑐 is the vehicle curb weight (kg). 

And the lightweighting degree is obtained by Eqn. (11).

 𝑑𝑖 =
𝜌𝑛𝑝,𝑖 ― 𝜌𝑛𝑝,𝐵

𝜌𝑛𝑝,𝐵
                                                               (12)
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Where, 𝑑𝑖 is the relative vehicle lightweighting degree of vehicle 𝑖 compared to the baseline – 

2013 Ford Fusion. 𝜌𝑛𝑝,𝑖 is the weight of vehicle 𝑖’s non-powertrain part per unit volume (kg/m3). 

𝜌𝑛𝑝,𝐵 is the weight of baseline vehicle’s (2013 Ford Fusion) non-powertrain part per unit volume 

(kg/m3). Figure 3 presents the relative vehicle lightweighting degree (𝑑𝑖) of the top ten best-

selling BEVs in the U.S. The positive percentage value indicates the vehicle’s non-powertrain 

part has a better lightweighting performance than the non-powertrain part of the baseline 

vehicle – 2013 Ford Fusion; and the negative percentage value indicates a worse performance. 

Figure 3 shows only two vehicle models have a worse performance, and these two are both 

luxury cars. The weight information for calculating the relative lightweighting degree is given by 

Appendix E. Based on the relative lightweighting degree information, this study is able to 

calculate the extra cost or saving on lightweighting.

Figure 3. The lightweighting degree of vehicle non-powertrain part for the 2021 ten best-selling 
BEVs in the U.S.

Based on the lightweighting degrees of vehicle non-powertrain part calculated by Eqn. 

(12) and the powertrain weight obtained by Eqn. (10), we can estimate the curb weights for each 

BEV models when their lightweighting degrees are the same as they are for the baseline 
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vehicle – 2013 Ford Fusion, i.e., the lightweighting degree is 0%. The calculation is shown in 

Eqn. (13).

𝑀𝑐0%, 𝑖 =
𝑀𝑐,𝑖 ― 𝑀𝑛𝑝,𝑖

1 ― 𝑀𝐴𝑋(0,𝑑𝑖)
+ 𝑀𝑝,𝑖                                               (13)

Where, 𝑀𝑐0%, 𝑖 is the estimated curb weight (kg) of BEV model 𝑖 when its lightweighting degree 

is 0%. 𝑀𝑐,𝑖 is the curb weight (kg) of BEV model 𝑖, which is given by Appendix D. 𝑀𝑛𝑝,𝑖 is the 

non-powertrain part weight (kg) of BEV model 𝑖. 𝑀𝑝,𝑖 is the powertrain part weight (kg) of BEV 

model 𝑖. 𝑑𝑖 is the lightweighting degree of the non-powertrain part. In addition, it is assumed that 

𝑀𝑐0%, 𝑖 is the same as 𝑀𝑐,𝑖 when the lightweighting degree (𝑑𝑖) is negative. This is because the 

relationship between the lightweighting degree and extra cost is not disclosed in Figure 1.

The test weight when the lightweighting degree is 0% can refer to Eqn. (14). 

𝑀𝑡0%, 𝑖 = 𝑀𝑐0%, 𝑖 + (𝑀𝑡, 𝑖 ― 𝑀𝑐, 𝑖)                                               (14)

Where, 𝑀𝑡0%, 𝑖 is the estimated equivalent test weight (kg) of BEV model 𝑖 when its 

lightweighting degree is 0%. 𝑀𝑡,𝑖 is the equivalent test weight (kg) of BEV model 𝑖, which is 

given by Appendix D. 𝑀𝑐,𝑖 is the curb weight (kg) of BEV model 𝑖. 𝑀𝑛𝑝,𝑖 is the non-powertrain 

part weight (kg) of BEV model 𝑖. The results of the estimated equivalent test weight (kg) of BEV 

models when their lightweighting degrees are 0% are shown by Appendix E. These results are 

used for evaluating the optimized PCO which varies by vehicle mass in Eqn. (8). The vehicle 

weights hereinafter all refer to the vehicle equivalent test weight. 
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4. Results and Discussion

4.1. Impacts of daily range limitation value on BEV’s optimal vehicle weight and 

electric range 

The limited electric range of BEVs can cause range anxiety, which is a psychological fear of 

driving the BEV and being out of power before reaching the destination. One way to measure 

range anxiety is the daily range limitation value, which represents the backup “rental car” 

expenditure if the electric range of BEV cannot meet the driver’s travel demand in some day 

(Lin, 2014). The daily range limitation value is positively correlated with the drivers’ income (or 

time value) and could affect the optimal BEV electric range. Based on the driver’s income, this 

study segments the drivers into five groups, as shown in Table 3. The Group 1, who has the 

highest incomes among the five groups, would have a highest daily range limitation value 

($/day). While the Group 2, who are with the least incomes, whose daily range limitation value is 

least costly. The values of daily range limitation of these five driver groups is estimated by Lin et 

al in their consumer choice model (Lin et al., 2013).

Table 3. Daily Range Limitation Value for Different Driver Groups by Incomes.

Driver Group # Daily Range Limitation Value ($/day)
Group 1 228.74
Group 2 187.88
Group 3 151.11
Group 4 118.48
Group 5 89.09

Regarding the lowest PCO as the optimization objective, the optimal vehicle weight of a 

BEV is found to vary with the daily range limitation value. To validate this statement, this study 

uses BEV model #6 as an example to quantify the probable optimal vehicle weight under the 

assumption of lightweighting-cost trend discussed in Section 3 — Methodology. The vehicle 
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performance features of the BEV model #6 can refer to Appendix D. Figure 4 presents the 

simulation results on the incremental TCO (𝑇): a positive value indicates a relative expenditure, 

and a negative value indicates a relative saving, compared to the PCO by the current vehicle 

model design. Therefore, the adjusted vehicle weight should result in a PCO as small as possible 

in the optimization, which means a best saving. The optimized weight ranges from 1784 kg to 

1793 kg as the daily range limitation value decreases from $228.74 (BEVs for drivers from 

Group 1) to $89.09 (BEVs for drivers from Group 2). After the optimization, the saved cost is 

around $19 to $32. The electric ranges in all these five groups of drivers with different daily 

range limitation values reduced to around 148 mi, and their difference varies small. In addition, 

relative to the current vehicle equivalent test weight – 1758 kg, the optimal weight can be 30-40 

kg heavier so that the comprehensive PCO (𝑇) obtained by Eqn. (8) can be the lowest. This 

finding suggests that, under the assumed lightweighting-cost trend and from the PCO 

perspective, the BEV model #6 spends too much on the vehicle lightweighting when designing 

this vehicle. In addition, compared the optimal vehicle weight among the five groups of drivers 

with different daily range limitation values, the Group 1 drivers who are with higher incomes and 

higher range limitation value expect a lighter vehicle weight than the Group 5 drivers who are 

with lower incomes and lower range limitation value. This is because the Group 1 drivers are 

more willing/capable to pay more money for time-saving, and their larger value of range anxiety 

brings about a more urgent need on the longer electric range of BEVs. This requires the BEV to 

implement more lightweighting technology to save energy consumption, so that the BEVs can be 

equipped with extended electric range while the battery size keeps the same.
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Figure 4. The optimal PCO and electric range for vehicle model #6 varies by the BEV driver’s 
daily range limitation value.

4.2. Impacts of driving patterns on optimal vehicle weight and electric range 

As shown in Figure 4, the BEV weights vary as the driver travel patterns are different. Three 

categories of travel patterns are assumed. (a) The average-traveling driver, whose travel pattern 

is discussed in Table 2; (b) The frequent-traveling driver, whose daily mean travel distance is 

50% more than it is for the average-traveling driver, and all other features are the same; (c) The 

mild-traveling driver, whose daily mean travel distance is 50% less than it is for the average-

traveling driver, and all other features are the same. These three types of drivers are assumed 

with the same daily range limitation value at $151.11 (“early majority”). Clearly, the optimal 

electric range for the frequent-traveling driver is more than it is for the average-traveling driver 

and the mild-traveling driver, respectively. This is because the frequent-traveling driver has the 

longest annual VMT than others and is eager for more electric range of the BEV. 
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A lighter vehicle can save more energy and provide longer electric range, thus, the expected 

ideal vehicle weight for vehicle model #6 is smaller than the current vehicle equivalent test 

weight (1758 kg) and the ideal vehicle weight for the average/mild-traveling driver. Moreover, 

because of the lightweighting, the value of the incremental PCO indicates this optimized vehicle 

weight and electric range can save the frequent-traveling driver around $339 totally. It means 

that the lightweighting technology contribute more on saving the driver’s cost when the BEV 

model is targeting on the frequent-traveling drivers; and for the average-traveling driver and the 

mild-traveling driver, the unnecessary emphasis of BEV lightweighting for the vehicle model #6 

might not lead to a reduction of drivers’ overall PCO.

Figure 5. The optimal PCO and electric range for vehicle model #6 varies by the BEV driver’s 
travel pattern.

4.3. Optimized results for different vehicle models

The comprehensive optimization of BEV PCO with consideration of vehicle driving range 

and vehicle lightweighting is discussed in this section. Because the PCO varies as the BEV 
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driving pattern changes, it is important to define the driver scenario before discussing the optimal 

vehicle electric range. The daily range limitation value for BEVs is assumed to be $151.11 

(“early majority”), as presented in Table 3. This study calculates the vehicle PCO varying with 

the vehicle weight for the top ten best-selling BEV models in the 2021 U.S. market. Figure 6 

shows the simulation results. Because the current vehicle equivalent test weights are different for 

all the ten vehicle models, the x-axis in Figure 6 shows the vehicle weight ratio which is the 

vehicle equivalent test weight relative to the Current Vehicle Equivalent Test Weight. The 

Current Vehicle Equivalent Test Weight is the equivalent test weight for the current vehicle 

model. The relative PCO is at zero when the ratio is 1. As the vehicle equivalent test weight 

changes away from the Current Vehicle Equivalent Test Weight, the relative PCO would 

increase or decrease. The optimal design is reached when the relative PCO is at the minimum of 

the curve.

Figure 6. The incremental PCO with respect to the vehicle weight ratio of the ten BEV models, 
respectively.
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It shows that, from the perspective of the PCO, the BEV model is not necessarily to be with 

more lightweighting or more electric range. As shown in Table 4, for the Vehicle Models #1-4 

and 10, the optimized result is that the vehicle weights increase, and the electric ranges reduce 

relative to the current model features. This is because, as the less lightweighting technology used 

in the BEV design can help reduce the vehicle price accordingly, the electric range could be 

compromised as the vehicle becomes heavier, the overall PCO can still save some. At the same 

time, for the Vehicle Models #5-9, it is suggested that the vehicle models should still need more 

lightweighting so as to further decrease the PCO relative to the current model design.

Table 4. Simulation Results for Top Ten Best-selling BEVs in the 2021 U.S. Market.

Vehicle#

Current 
Equivalent 
Test Weight 
(kg)

Current 
Electric 
Range 
(mi)

Optimized 
Weight 
Changes 
(kg)

Optimized 
Electric Range 
Changes (mi)

Incremental 
PCO Saved 
($)

Vehicle Model #1 2155 326 +34 -3 26
Vehicle Model #2 1928 353 +107 -10 285
Vehicle Model #3 2381 230 +163 -8 476
Vehicle Model #4 1758 259 +145 -9 575
Vehicle Model #5 2268 260 -75 +4 129
Vehicle Model #6 1758 149 -31 -1 26
Vehicle Model #7 2722 218 -123 +4 396
Vehicle Model #8 2381 200 -106 +4 466
Vehicle Model #9 2155 402 -45 +5 96
Vehicle Model #10 1814 258 +93 -4 243
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5. Conclusions

The objective of this study is to construct a method to quantify the weight impacts on BEV’s 

PCO and to determine the optimal electric range accordingly. This method comprehensively 

associates the physical relationship on vehicle energy consumption rate as well as the economics 

on vehicle PCO. It can be used to generate optimization-based insights to how lightweighting 

technology can add lifetime vehicle ownership to accelerate adoption of BEVs. In addition, this 

study uses the methods to quantify the optimal vehicle weight and electric range for top ten best-

selling BEVs in the 2021 U.S. market. It concludes that the optimal design of vehicle electric 

range and integration of vehicle lightweighting technology should consider the driver incomes 

(daily range limitation value) and user driving patterns. As the daily range limitation value or the 

user type changes from $228.74 (BEVs for drivers with highest incomes – Group 1) to $89.09 

(BEVs for drivers with least incomes – Group 5), the BEV can ease on lightweighting, as it 

requires less on the electric range. This is because the range anxiety of the Group 1 drivers is 

more costly. The frequent-traveling driver could require more on BEV lightweighting than the 

mild-traveling driver does, because of the higher demand on electric range from the frequent-

traveling driver. Considering the optimization of the vehicle weight and electric range for these 

ten BEV models, we find that it is not always necessary to emphasize the vehicle lightweighting 

for BEVs; when the lightweighting involves higher vehicle production cost, less lightweighting 

could reduce the overall PCO to BEV owners.

The major caveat of this study is the relations between vehicle lightweighting degree and 

extra cost needed, which are generated from the literature review. This relation is very likely to 

change as auto manufacturer, technology evolution, or materials selection varies. Therefore, the 
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optimal results on vehicle weight and electric range for the BEV model could be different if the 

relation alters. However, the mathematical derivations of the equations in this method, and the 

general conclusions achieved by this study are consistent. In sum, the contribution of this study 

is that it builds a mathematical framework to quantify the BEV optimal weight and electric 

range; the corresponding model can contribute to the decision-making on the design of BEV 

performance and features by the auto manufacturers. In the future work, we will consider the 

lightweighting impacts on the optimization of battery sizing and capacity in electric vehicles, and 

as more is learnt about the lightweighting cost, the analysis and the model will be updated and 

improved.
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Appendix A Relation between lightweighting degree (%) and extra cost (%) 

revealed by Mascarin et al (Mascarin et al., 2015).

 
Lightweighting Degree 
(lbs.)

Lightweighting 
Degree (%)

Extra Cost 
($)

Extra Cost 
(%)

Baseline Vehicle
2013 Ford Fusion  0 0.00% $15,724 0.00%
Substituted Materials
Optimized Steel 
1 106 3.20% $15,522 -1.28%
Optimized Steel 
2 462 14.00% $15,389 -2.13%
Optimized Steel 
3 546 16.50% $15,291 -2.75%
Aluminum 
Intensive 1 367 11.10% $16,070 2.20%
Aluminum 
Intensive 4 1175 35.60% $16,706 6.25%
MultiMaterial 1 167 5.00% $16,107 2.44%
MultiMaterial 2 701 21.20% $16,484 4.83%
MultiMaterial 3 812 24.60% $16,833 7.05%
MultiMaterial 4 1220 36.90% $20,036 27.42%
Carbon 1 462 14.00% $21,705 38.04%
Carbon 4 1271 38.50% $22,307 41.87%
Carbon 5 1493 45.20% $25,211 60.33%
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Appendix B Relation between lightweighting degree (%) and extra cost (%) 

revealed by Islam et al (Islam et al., 2020).

Vehicle Type* Baseline MY# 2025 MY 2030 MY 2035 MY 2050
Lightweighting Degree 0% 4% 5% 5% 5%

Compact car (Low)
Extra cost 0% 8% 11% 11% 10%
Lightweighting Degree 0% 11% 18% 19% 19%

Compact car (High)
Extra cost 0% 15% 24% 26% 21%
Lightweighting Degree 0% 8% 10% 10% 10%

Midsize car (Low)
Extra cost 0% 15% 19% 19% 17%
Lightweighting Degree 0% 16% 25% 30% 32%

Midsize car (High)
Extra cost 0% 20% 31% 37% 32%
Lightweighting Degree 0% 7% 10% 14% 18%

Small SUV (Low)
Extra cost 0% 11% 15% 22% 25%
Lightweighting Degree 0% 12% 18% 22% 28%

Small SUV (High)
Extra cost 0% 13% 19% 23% 24%
Lightweighting Degree 0% 11% 13% 17% 21%

Midsize SUV (Low)
Extra cost 0% 17% 19% 26% 28%
Lightweighting Degree 0% 13% 20% 24% 30%

Midsize SUV (High)
Extra cost 0% 13% 20% 24% 25%
Lightweighting Degree 0% 12% 14% 17% 22%

Pickup (Low)
Extra cost 0% 19% 23% 28% 31%
Lightweighting Degree 0% 12% 21% 24% 28%

Pickup (High)
Extra cost 0% 12% 22% 25% 24%

* There are two types of technology projection scenarios: Low—lightweighting 
technology evolution develops low; High—lightweighting technology evolution develops 
high.
# MY—model year.
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Appendix C Relation between lightweighting degree (%) and extra cost (%) 

revealed by Bailo et al (Bailo et al., 2020).

 Lightweighting Degree Extra Cost
Baseline 0% 0%
Scenario 1* (Low#) 0.69% 5.42%
Scenario 2 (Low) 22.84% 118.05%
Scenario 3 (Low) 4.86% 13.08%
Scenario 1 (High) 0.69% 4.81%
Scenario 2 (High) 22.84% 109.89%
Scenario 3 (High) 4.86% 12.38%

# There are two types of projection scenarios: Low—electrification technology evolution 
develops low; High—electrification technology evolution develops high.

* Three types of lightweighting materials penetration scenarios: 1, 2, and 3. The 
penetration scenario is presented below:

Scenario Expected Material Trend
Baseline 2020 Body: HSS, AHSS, UHSS Closures: HSS, low Al
Scenario 1 Body: HSS, AHSS, UHSS Closures: HSS, Al
Scenario 2 Body: Aluminum, AHSS, UHSS Closures: Al, comp, Mag
Scenario 3 Body: AHSS, UHSS, low Al Closures: Al



Appendix D Vehicle Performance Features (all units have been translated to metric units) of Vehicle Models Used 

for Lightweighting-Electric Range Relationship Quantification

No. Vehicle Maker Vehicle Model
1 Tesla Model Y Long Range AWD
2 Tesla Model 3 Long Range AWD
3 Ford Mach-E
4 CHEVROLET BOLT EV
5 Volkswagen ID.4 AWD Pro
6 NISSAN LEAF
7 AUDI Audi e-tron Quattro Sportback
8 Porsche Taycan 4S Perf Battery
9 Tesla Model S Long Range
10 HYUNDAI Kona Electric

No. Sales in 
2021

Battery 
Size 
(kWh)

Electric 
Range 
(miles)

Coast-down 
Coefficient 
(A, N)

Coast-down 
Coefficient 
(B, N/(m/s))

Coast-down 
Coefficient 
(C, N/(m/s)2)

Equivalent 
Test Weight 
(kg)

Curb 
Weight 
(kg)

Energy 
Consumption 
rate 
(Leq/100km)

Footprint 
(m2)

Height 
(m)

1 172,700 75 326 152.44 3.18 0.32 2155 2012 1.88 4.79 1.62
2 128,600 82 353 155.60 0.86 0.33 1928 1828 1.76 4.54 1.44
3 27,140 91 230 208.04 2.59 0.46 2381 1993 2.42 4.83 1.60
4 24,803 66 259 126.29 2.01 0.43 1758 1616 1.99 3.90 1.60
5 16,742 82 260 126.11 4.43 0.36 2268 2141 2.42 4.39 1.64
6 14,239 40 149 115.16 3.43 0.43 1758 1588 2.12 4.20 1.56
7 10,921 95 218 159.00 3.85 0.40 2722 2608 3.05 4.85 1.66
8 9,419 79 200 186.70 4.32 0.27 2381 2247 2.98 4.97 1.38
9 9,100 100 402 128.95 4.57 0.25 2155 2215 1.96 5.03 1.45
10 8,936 64 258 110.58 -1.99 0.53 1814 1685 1.96 4.10 1.55
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Appendix E Vehicle Weight Information (all units have been translated to metric units)

No.

Equivalent 
Test Weight 
(kg)

Curb 
Weight 
(kg)

Battery 
System 
Weight 
(kg)

Motor 
System 
Weight 
(kg)

Powertrain 
Other Part 
Weight (kg)

Powertrain 
Weight 
(kg)

Non -
powertrain 
Weight (kg)

Lightweight
ing Degree

Equivalent Test Weight if 
Lightweighting Degree is 
0% (kg)

1 2155 2012 450 115 306 871 1142 11.15% 2298
2 1928 1828 492 154 306 952 876 19.17% 2135
3 2381 1993 546 156 306 1008 985 22.96% 2675
4 1758 1616 396 123 306 825 792 23.14% 1996
5 2268 2141 492 185 306 983 1158 2.82% 2302
6 1758 1588 240 90 306 636 952 12.05% 1888
7 2722 2608 570 103 306 979 1629 -22.10% 2722
8 2381 2247 475 148 306 929 1318 -16.18% 2381
9 2155 2215 600 159 306 1065 1150 4.29% 2206

10 1814 1685 384 123 306 813 872 17.19% 1995


