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Abstract

The limited driving range due to high costs and low energy densities of batteries constrains
the battery electric vehicle (BEV) market growth. Lightweighting in theory can reduce energy
consumption rate and extend the driving range. The knowledge gap is to quantitatively link the
cost-effectiveness of light-weight technologies with range extension and consumer acceptance of
BEVs. In this study, a physics-based energy consumption model of BEVs is constructed and
associated with a statistics-based model on the basis of travel surveys. A perceived cost of
ownership (PCO) is then developed by adding intangible costs to traditional total cost of
ownership models. We estimate, at the disaggregate vehicle model and driver level and the
aggregate market level, 1) the extended range due to lightweighting for a given battery size; and
2) the optimal electric range based on lightweighting decisions. The cost-effectiveness of
lightweighting for BEV range extension is found to vary with income-dependent daily range
limitation value, driving patterns and lightweighting technology costs. In general, adopting
lightweighting in BEVs is more cost-effective for consumers with higher daily limitation value,
as well as for those with higher driving intensity or suitable daily driving patterns. When the
lightweighting involves a higher vehicle production cost, less lightweighting could reduce the
overall PCO for BEV owners. 4 of the selected top ten BEV models are found to benefit from
additional 2.09%-4.45% lightweighting. The method built in this study can guide automakers in

planning R&D investments in battery and lightweighting technologies.

Keywords: Battery electric Vehicle, Battery size, Cost of vehicle ownership, Electric driving

range, Light-weighting, Optimization
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1. Introduction

The battery electric vehicle (BEV) has been one of the major alternative fuel vehicle
technologies. According to the International Energy Agency, in 2021, the sales of plug-in electric
vehicles (BEVs and plug-in hybrid electric vehicles) in the light-duty segment have reached over
6.6 million, nearly 9% of the global light-duty vehicle market (Paoli and Giil, 2022). The
cumulative registrations of plug-in electric vehicles have also been over 0.7 million in the U.S.
by the end of 2021 (Paoli and Giil, 2022). The society has generated a culture starting to value
electric vehicles as a future purchase option (Jin and Slowik, 2017), and suitable business models

are invented to promote the convenience of electric vehicle uses (Secinaro et al., 2020).

The BEV with clean electricity is also regarded as one of the effective alternatives to
decarbonize the transportation sector. The transportation sector has been one of the major carbon
emitting sectors in the U.S.: it produced over 29% of greenhouse gas (GHG) emissions in 2019
(U.S. EPA, 2020). The Biden administration pledged to reach net-zero GHG emissions no later
than 2050 and set a goal of reducing GHG emissions by 50-52% compared to 2005 levels by
2030 (White House, 2021a). To meet the target, it is expected that a large investment will be into
the low- or zero-carbon technologies in all industries. Therefore, a strategic transitioning of light-
duty vehicles from conventional internal combustion engine vehicles (ICEVs) to BEVs or other

alternative fuel vehicles has been a consensus in the U.S. and the world.

However, due to expensive production cost and limited energy density of battery, the
electric driving range still constrains the large-scale acceptance of BEVs. BEVs with a longer

electric range are still expensive high-end products, while BEVs with a shorter electric range are
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unable to meet all the travel demands of general drivers. Several approaches, summarized in
Table 1, have been developed to address this BEV range anxiety problem. By comparing the
pros and the cons of these major approaches, we can find that most approaches require long-term
investments with uncertain returns, such as R&D efforts in hope for battery technology
breakthroughs. It is impossible to ameliorate the electric range or battery issue in a short period,
even though these pathways could effectively improve the electric range or permanently solve
the battery problem. One exception is the vehicle optimal design approach, which aims at
optimizing vehicle components to maximize value proposition to consumers. Mechalek et al.
proposes using quantitative tools and methods to optimize product designs based on cost factors
and consumer attributes in order to maximize product success in the market (Michalek et al.,
2011). If resulting in cost-effective strategies, the vehicle optimal design approach can achieve

market impacts as soon as a vehicle design cycle.
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Table 1. Major Approaches on Solving the Electric Range Problem in BEVs.

Approaches | Type References Pros Cons

Vehicle Component Autonomie, a tool by Argonne, | Small Limited

optimal system design is adopted for vehicle system investment. improvement.

design energy and cost analysis (Kim Quick return.
etal., 2013).

Battery New battery Developing new li-ion battery Solving the Massive investment.

technology materials or electrolytes (Xu, 2021). electric range Long R&D time

improvement | design. problem period.
permanently.
Battery swapping | Vallera et al. believes the Shorten the Massive investment.
technology battery swapping technology charging time. Difficult to
could reduce grid impacts Reduce the standardize
(Vallera et al., 2021) driver’s range technology
anxiety.
Infrastructure | Charging network | The Biden Administration plans | Reduce the Massive investment.
to provide $5 billion to build a driver’s range Hard to benefit EVs
national charging network anxiety. in rural areas.
(White House, 2021b).
Charging Dominguez-Navarro et al. Expensive
technology: fast designed a fast-charging station installations.
charging, extreme | (Dominguez-Navarro et al., Potential battery
fast 2019). Zeng et al. optimized lifetime damage.
charging(xFC), & | control to improve wireless
wireless charging | charging efficiency (Zeng et al.,

2021).

Consumer Consumer BEV consumer awareness Cultivate BEV Unclear benefit-cost

awareness behavior activities can foster culture and help | balance.

education growth of the market and the public to
understanding how to better understand the
implement (Jahangir et al., limitations.

2019; Jin and Slowik, 2017;
Secinaro et al., 2022).

Government | Policy and Ou et al. 2018 quantifies that Financially Massive investment.

support incentives the vehicle policies can bring compensate for Unclear benefit-cost
extra BEVs to market (Ou et al., | the range balance.

2018). anxiety.

Vehicle optimal design involves many aspects such as compatibility and consistency

among physical-subsystems (Kim et al., 2013), market or consumer-oriented design (Michalek et

al., 2011), and optimization under policy constraints (e.g., fuel-saving technology integration to

meet the fuel economy regulations (Shiau et al., 2009)). As the literature review shows, light-

weighting could impact electricity consumption rates and extend electric range, but has not been
considered in the BEV range optimization. Therefore, this study creates a method to optimize the

design of electric range in BEVs by comprehensively considering vehicle dynamic features and
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performance, more specifically, the fuel consumption rate impacts from the light-weighting
technologies and materials in vehicles. Called Perceived Cost of Ownership (PCO), this method
adds optimization and intangible costs such as range anxiety and charging inconvenience to the
traditional total costs of ownership (Burnham et al., 2021), which usually only consider out-of-
pocket or tangible costs. The PCO model developed in this study can help stakeholders from
industry and government agencies to understand the value and strategies of diversifying optimal
BEYV ranges for accelerating vehicle electrification, and the role of light-weighting technologies

in BEV range optimization.

The organization of this paper is as shown as below. Section 1 provides research
background on the BEV market/technology developments and obstacles, and presents objectives
and motivations. Section 2 briefly introduces the major literature review and data collections on
light weighting and cost of ownership in the BEVs. Section 3 describes the analysis methods and
scenario designs. Section 4 presents scenario analyses and gives the optimized options through

benefit-cost analysis. The final section summarizes the conclusions and the future work.

2. Literature Review

2.1. Weight impact on vehicle energy consumption

Lightweighting has been a promising approach to meet with more stringent governmental
regulatory requirements on fuel efficiency and environmental legislations on harmful emission.
Vehicles with lightweighting reduce the required propulsive energy and may lead to further
weight reduction through powertrain downsizing without sacrificing dynamic performance.

Prevailing approaches for reducing vehicle weight include substitution of low-density materials,
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advanced manufacturing technologies (additive manufacturing, laser welding, High-pressure die
casting, etc.), and optimal structural designs (size, shape, topology optimization, etc.). A study
on the historic trend of vehicle weight, fuel efficiency, material compositions, and GHG
emission was conducted for American and Japanese cars in the past thirty years (Kawajiri et al.,
2020). After investigating the life-cycle analysis on the material substitutions using advanced
high-strength steel (AHSS), aluminum alloy, carbon fiber reinforced polymer, and magnesium
alloy, it was concluded that the AHSS remains the most promising for reducing GHG emissions

with respect to material substitutions and lightweighting design.

The physics-based relationship between vehicle weight and mass-dependent fuel
consumption had been formulated based on vehicle dynamics theories with parameters including
rolling, rotating, and acceleration loads (Kim et al., 2015; Kim and Wallington, 2016). The
effects of powertrain resizing on the fuel reduction values (FRVs) was studied and compared
with the mass-induced fuel consumptions without down-resizing powertrains (Kim and
Wallington, 2016). Del Pero et al., focusing on gasoline turbocharged cars, concluded that the
FRVs will be improved by downsizing the powertrain after primary weight reduction to maintain
vehicle performance specified in the preliminary design stage (Del Pero et al., 2017). Similar
physics-based models were applied to analyze the energy demand (in MJ/100km) of ICEVs
(Geyer and Malen, 2020a) and BEVs (Geyer and Malen, 2020b) by calculating the force required
at the driving wheels and the corresponding torque and rotating velocity transmitted through
powertrain. Variations of the energy demand were plotted as functions of changes in three
vehicle characteristics (mass, frontal area and rolling resistance) in a range of 40% reduction to
40% addition with an increment of 10%. Geyer and Malen found that energy demand is most

sensitive to vehicle mass in the New European Driving Cycle (NEDC) (Geyer and Malen,
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2020a). It was concluded that the change in vehicle energy demands due to mass reduction (MJ
per 100 km driven and per 100 kg reduction) are smaller for BEVs with efficient powertrains

(Geyer and Malen, 2020b).

Compared to the conventional version of ICEVs, a vehicle with considering
lightweighting can clearly reduce the vehicle’s overall lifecycle energy consumption and
emissions (Kelly and Dai, 2021). Similar conclusions were achieved by others. A 10% reduction
in vehicle mass will produce an approximately 6-7% reduction in fuel consumption for passenger
cars and 4-5% reduction for light-duty trucks (National Research Council, 2015). Actually,
because of energy consumption saving, the lightweighting version of BEV is also expected to
have a longer driving distance comparably (Kelly and Dai, 2021). Therefore, the industry
believes lightweighting remains a crucial approach for lowering fuel consumption (ICEVs) and
improving driving distance (BEVs) (Bailo et al., 2020). The simulation models by Argonne
National Laboratory predicted the potential weight of various vehicle classes (compact car,
midsize car, small SUV, midsize SUV, and pick-up) will be reduced by 10-24% in MY 2045

(Islam et al., 2020).

2.2. Lightweighting in battery electric vehicles

The BEVs are projected to increase by more than 60% globally in the next two decades
(Applied Value Group, 2021). By 2040, the automakers will offer only carbon-neutral products
and most governments will issue policies and legislations to eliminate ICEVs (Applied Value
Group, 2021). Combined with vehicle lightweighting, increasing energy efficiency through
electrified powertrains and other technical advancements help reduce GHG emission (Luk et al.,

2017). Specifically, present BEVs are heavier than similar ICEVs due to the batteries, sensors,
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and infotainment systems, and are restricted to short-distance commutes only. Combined with
large improvements in battery technologies, lightweighting plays a crucial role to push BEV
range to beyond 700 miles and support long range travel (Applied Value Group, 2021).

Therefore, the lightweighting is important for the development of BEVs.

Substituting materials for body-in-white and substituting materials for the powertrain
system, especially battery and motor/generator, play an equally critical role in the cost
management related to the BEV’s lightweight design. Thus, full vehicle cost trade-offs under
different material substitution decisions and battery technology improvement scenarios should be
studied at the same time. For example, Burd et. al. compared the weight reductions from material
substitution with Advanced High-Strength Steel (AHSS) and aluminum alloys in their
applications for lightweight design of BEV bodies and closures (Burd et al., 2021).
Corresponding mass scaling costs of the battery, motor and chassis subsystems were calculated
and compared for the lightweight designs with AHSS and aluminum. It is found that although
replacing carbon steel with AHSS will reduce the manufacturing and assembly costs, the
aluminum version of vehicle body and closure will help reduce the vehicle weight further and
has advantage on battery and motor cost. So, the substituting materials for body-in-white method

is still the main pathway for BEV’s lightweighting and is considered by this study.

For BEVs, the computer simulations based analysis for the structural stiffness, durability,
dynamic behavior and crashworthiness are often performed (Del Pero et al., 2020). In the study
of Del Pero et al., the computer simulations were conducted for energy consumptions of 10
different BEVs with different technical features (mass, motor power, and power-to-weight ratio).

The simulations result of energy consumption for BEVs were expressed as functions of car
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masses and are applied to calculate the Energy Reduction Value (ERV) coefficient (kWh/ (100
km % 100 kg). Impact Reduction Value (IRV) coefficients, the product of ERV and GWP (the
Global Warming Potential factor), were calculated for assessing the environmental impact of
lightweight design of BEVs (Del Pero et al., 2020). This study uses the similar logic to evaluate

the lightweighting degree of different BEV models.

2.3. Optimizing cost of ownership by considering lightweighting and electric
range

Cost of ownership is adopted as an objective function to quantify the light weighting
impacts on the BEV’s electric range optimization. Therefore, there are two components in the
objective function: cost related to BEV electric range; and vehicle lightweighting cost. Current
cost of ownership mostly focuses on tangible cost components such as vehicle purchase price
and fuel cost and rarely considers intangible costs due to limited driving range and refueling
inconvenience. Intangible costs related to the vehicle range typically are not considered by cost
of ownership analysis until the range becomes much more expensive, for example, in the cases
of BEVs or fuel cell vehicles (FCVs). The combination of limited range and limited
recharging/refueling availability translates to the range limitation cost and recharging/refueling
inconvenience cost, which are intangible but have been measured by attempts. Consideration of
such two intangible costs in the total cost of ownership analysis exists, but rarely. Lin is one of
pioneers who quantified the intangible costs impacted by the electric range and battery system
(Lin, 2014). Lin segmented the impacted PCO by three components: battery cost, range
limitation cost, and energy (electricity) cost for driving the BEV (Lin, 2014). Hao et al.

developed a Monte Carlo based model for vehicle ownership cost analysis by integrating the
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electric range optimization with consumer heterogeneity (Hao et al., 2020). With considering the
cost and benefit analysis, Shi et al developed a physics-based model to investigate the
relationship between the energy consumption reduction and lightweight rate (Shi et al., 2019). It
illustrates that the lightweighting clearly helps reduce BEV energy consumption and battery
capacity needed for achieving the same driving range. However, Shi et al. also admitted that the
potential extra cost from the lightweighting technologies could offset the benefits from the
energy saving. Therefore, a feasible optimization of this relationship is needed.

Lightweighted vehicle means less energy consumed under the same conditions and an
improvement of driving range of electric vehicles, however the lightweighting also costs much
and varies by substituted materials. This study summarized the lightweighting degree (%) with
the extra cost (%) from three different publications into Figure 1 (Bailo et al., 2020; Islam et al.,
2020; Mascarin et al., 2015). The lightweighting degree (%) means the vehicle weight saving
(%) after using the substitute materials for the baseline vehicles. For example, if the weight of a
baseline vehicle is 2000 kg and the weight saving is 400 kg after using lightweighting
technology, then the lightweighting degree is 20%. The extra cost means the extra cost for
implementing the lightweighting technology. For example, if the production cost of baseline
vehicle is $ 20,000, the cost with the lightweighting technology is $4000, then the extra cost
would be 20%. One important note, the baseline vehicles from these three references are totally
different. In Mascarin et al.’s work, the baseline vehicle is the 2013 Ford Fusion vehicle model
(Mascarin et al., 2015). In Islam et al.” work, the baseline vehicle is an average vehicle for
different vehicle types in 2015, such as small car, mid-size car, small SUV and mid-size SUV,
respectively (Islam et al., 2020). In Bailo et al.’s work, the baseline vehicle is an average vehicle

for different vehicle types in 2020, respectively (Bailo et al., 2020). More details of the relations
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between lightweighting degree and extra cost are presented in Appendix A-C. Since Macarin et
al. gives abundant information on the lightweighting, this study uses the fitting curve and
baseline vehicle proposed by Macarin et al (Mascarin et al., 2015). According to the literature
review based on the previous studies, this study combinedly associates the PCO on the electric
vehicles with the lightweighting cost, so as to create a method to improve the electric range of

BEVs or lower BEV’s battery size.
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Figure 1. The relations between lightweighting degree and extra cost revealed by publications

(Bailo et al., 2020; Islam et al., 2020; Mascarin et al., 2015).
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3. Methodology

3.1. Optimization model

Calculate lightweighting degree, estimated
» curb weight, and estimated equivalent test
weight (kg) of each BEV model Changes of PCO ($) with respect
to BEV equivalent weight (kg)
for five driver groups

A4

A 4

Changes of PCO (§) with respect

Top ten best-selling to BEV equivalent weight (kg)

Calculate perceived cost of ownership

y

A4

BEVs in USA (2021) | (pCO) for three driving patterns
A A F
Optimized PCO ($) with respect
Batterv Three Five driver »| to vehicle weight ratios for the
! . 7
cost, range | | different groups tenn BEV models
, limitation driving based on ¥
COst, z:mld patterns income Calculate vehicle weight
electricity ratio for each BEV model
cost

Figure 2. Flowchart for the PCO optimization model with consideration of lightweight and BEV
driving range.

The analysis flow in this study is described by Figure 2. The critical component is the
physics-based energy consumption model of electric vehicles which is associated with the
statistics modeling of the U.S. driving patterns. The physical-based energy consumption
relationship between vehicle mass and vehicle energy consumption without/with powertrain
resize has been derived by Kim et al. 2016 (Kim and Wallington, 2016). Accordingly, the mass-
dependent fuel consumption F,,,(M) for BEVs formulated as Eqn. (1) (Kim and Wallington,

2016).

1
F,(M,) = Hfmmf(Av + Bv? + (1 — Qu)avM,)dt (1)

where Hp, 1., and 1, are the heating value of fuel, energy conversion efficiency, and

transmission efficiency. @ is the ratio of braking to kinetic energy, and u is the regenerative
braking efficiency. A and B are coast-down coefficients, which are referred to the U.S.

Environmental Protection Agency (EPA) for each vehicle model (U.S. Environmental Protection
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Agency (EPA), 2022). v and a are vehicle speed, and acceleration, respectively. M, is the vehicle
equivalent test weight (kg). Accordingly, the energy consumption rate by vehicle mass, FRV
(L/100km-100kg) for a specific vehicle model with an equivalent test weight at mg (kg), is

shown in Eqn. (2) (Kim and Wallington, 2016).

pry < FeMD) _ Fuwlm=m, Felm=m, )
B th IMt:mO B leMtsz + Fx + FF 2 ( )

where, for a specific vehicle model weighting at mg, F, (L) is the mass-independent fuel

consumption. F (L) is the miscellaneous energy loss which is adjusted to zero by calibrating the
power demand from accessories (such as heating, ventilation, and air conditioning; electronics)
in BEVs. F is the energy consumption rate (kWh/km, or gasoline equivalent liter per kilometer,
Lge/km), which is obtained from the U.S. EPA (U.S. Environmental Protection Agency (EPA),

2022) and is associated with the vehicle weight, m (kg). ¢ is the unit conversion factor.

Therefore, FRV is the first-order differential equation of F with respect to vehicle
equivalent test weight—M,. Based on this relationship, it can be deduced that, when FRV is a
positive value, reducing the vehicle weight leads to a lower energy consumption rate. The lighter
vehicle weight has two unique benefits for BEVs — either extending the electric range or
reducing the battery capacity or both. Considering the extra weight burden from the battery
system, such benefits can be much more significant than fuel-saving benefits from reducing the

weight of conventional gasoline vehicles.

On the other hand, the optimization of electric range based on the U.S. travel patterns has

been explored by Lin (Lin, 2014), as shown in Eqn. (3).

Cpev(r) = Cp(r) + Ci(r) + Co(1) (3)
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Where, Cggy is the total PCO of vehicle impacted by battery cost (Cj), range limitation cost (C;)
and energy (electricity) cost (C,) for driving the BEV. r is the electric range. All the three cost

components are associated with the electric range.

More specifically, the battery cost Cp,(r) ($) is conducted by Eqn. (4).
r
Cs(r)=7."So"B 0 (4)
Where, 1 is the electric range (mile) of the baseline, S is the battery size of the baseline (kWh),
B is the battery cost ($/kWh), which is believed to reach $132/kWh in 2021 (Henze, 2021). ¢ is
the price markup factor, which is assumed to be 1.2 (Lin, 2014). The electric range, r, is assumed
to be linearly correlated with the battery size, B; (kWh), as shown in Eqn. (5). Accordingly,

when the battery size is fixed, the energy consumption rate, F (kWh/km, or gasoline equivalent

liter per kilometer, Lgg/km) will be inversely related to the electric range.

B,
"= oo (5)

The range limitation cost C;(r) ($) is calculated by Eqn. (6).

Xom Xom
Ci(r) = Lofrd p(x)dx + Llfrd xp(x)dx (0)
Where, x is the random daily vehicle miles traveled (VMT, mile) that follows a probability

density function p(x); X, is the maximum daily VMT (miles); r4 is the range limited per day
(miles); Ly and Lq are the hypothetical fixed and variable range limitation costs ($ and $/mile,
respectively) that occur as if all days during the vehicle’s lifetime are served by the backup
vehicle for one mile per day. The probability density function follows the gamma distribution,
which is common to describe the distribution of the daily driving patterns of the drivers (Greene,
1985). The average daily VMT in the U.S. — 29.2 miles (Bureau of Transportation Statistics,

2017), and the daily commute distance 14 miles (StreeLightData, 2018) are used for obtaining
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the gamma distribution (Lin, 2014). The characteristics of the driving patterns and vehicle use

are given by Table 2.

Table 2. Major Features of Driving Patterns and Vehicle Use.

Feature Value Source

Driving - Mode (miles) 14.00 (StreeLightData, 2018)

Driving - Mean (miles) 29.20 (Bureau of Transportation Statistics, 2017)
Gamma - Shape Parameter 1.92 Calculated based on driving mode/mean
Gamma - Scale Parameter 15.20 Calculated based on driving mode/mean
Vehicle Lifetime (Years) 10 Assumption

Discount Rate 7% (Congressional Research Service, 2016)
Lifetime Mileage (mi) 74857 Calculated based on lifetime and discount
Daily Range limitation Value for BEV

(Lo) $151 (Lin, 2014)

The electricity cost C,(r) ($) is calculated by Eqn. (7).

L.
Ce(r)=—""VMT," P, (7
Where, L.(r) is the average daily vehicle miles traveled with electricity (VMT, mile) that

follows a probability density function p(x); L is the average daily VMT in the U.S. (Bureau of
Transportation Statistics, 2017); VMT) is the discounted lifetime VMT (miles), which is based on
the assumption of 10 years vehicle lifetime and 7% discount rate; P, is the electricity price —

$0.148/kWh in 2021 (Texas Power, 2021).

In summary, this study builds on and expands Eqn. (1-7) to derive the physical-based
relationship among vehicle weight (kg), battery size (kWh), and electric range (miles) with
consideration of intangible electric vehicle usage cost, light weighting manufacturing cost and
lifetime impacts, as shown in Eqn. (8). T is the comprehensive PCO with considering the extra

cost brought from the vehicle weight changes AC,,(M;), comparing to it from the original
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vehicle model; and extra intangible electric vehicle usage cost ACggy (M,), compared to it from
the original vehicle model. The optimization will be the minimization of the summed PCO.

min (T) = min (AC,,(M:) + ACggy(M¢)) (8)

3.2. Lightweighting evaluation

To quantify and compare the impacts of BEV weight on the PCO (T), this study selects
the ten best-selling BEV models in the U.S. in 2021. The study collects the vehicle performance
features from the U.S. EPA (U.S. Environmental Protection Agency (EPA), 2022), the
FuelEconomy.gov (fueleconomy.gov, 2020), and public vehicle information websites (White,

2022). The vehicle performance for these vehicle models is shown in Appendix D.

Different vehicle models are probably produced with various lightweighting materials;
therefore, there should be a baseline to measure their lightweighting degree. This study uses the
2013 Ford Fusion vehicle model, used by Mascarin et al. (Mascarin et al., 2015), as the baseline
of lightweighting degree. It means the lightweighting degree of the 2013 Ford Fusion is 0%
relative to other vehicle models in this study. In addition, as the battery system takes a heavy part
of the BEVs, the overall curb weight of a BEV could be larger than the same model with an
internal combustion engine. Thus, the lightweighting degree discussed in this study refers to curb
weight for the vehicle non-powertrain part — M,,,, (kg). The curb weight (M, kg) for the 2013
Ford Fusion is 1554 kg, and powertrain part is 454 kg (Mascarin et al., 2015). Thus, the non-

powertrain part is 1100 kg.

The quantified measurement index is the weight non-powertrain part per unit volume

(kg/m?3). The vehicle volume is calculated by Eqn. (9).
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V=fp-h )
Where, V is the vehicle volume (m?) which is used for quantifying the lightweighting degree. fp
is the vehicle footprint (m?), and h is the vehicle height (m). These values are pulled from the

database for FuelEconomy.gov (fueleconomy.gov, 2020).

The weight analysis of electrified powertrain (M,,) of BEVs are segmented into three
parts: battery system M,,;,, motor system M,,,,, and other part M,,,. The weight of battery is
associated with the battery energy density (8, kWh/kg). The power sources of all the BEV
models in this study adopt the lithium-ion batteries, which are capable of providing up to 0.25-
0.27 kWh/kg for commercialized use (Persun, 2021). Considering other affiliations in the battery
system, this study uses 0.17 kWh/kg for the battery system. The motor weight is associated with
the motor power (P,,,, kW), this study assumes the power density (&, kW/kg) is 1.216 kW/kg, an
estimate from the Tesla Model S features (Teslarati, 2013). In addition, the weight (M,,,) for
other parts is assumed to be 306 kg, an estimate from the Tesla Model S features (Teslarati,
2013). The calculation is shown in Eqn. (10).

M,=6Bs+e: Py + My, (10)
Therefore, the weight of vehicle non-powertrain part per unit volume (p,,,,, kg/m?) is calculated

by Eqn. (11).

Where, M,,, is the vehicle non-powertrain weight (kg), and M. is the vehicle curb weight (kg).

And the lightweighting degree is obtained by Eqn. (11).

Pnp,i — Pnp,B

di=""p" (12)
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Where, d; is the relative vehicle lightweighting degree of vehicle i compared to the baseline —
2013 Ford Fusion. p,,,; is the weight of vehicle i’s non-powertrain part per unit volume (kg/m>).
Pnp,s 18 the weight of baseline vehicle’s (2013 Ford Fusion) non-powertrain part per unit volume
(kg/m?3). Figure 3 presents the relative vehicle lightweighting degree (d;) of the top ten best-
selling BEVs in the U.S. The positive percentage value indicates the vehicle’s non-powertrain
part has a better lightweighting performance than the non-powertrain part of the baseline

vehicle — 2013 Ford Fusion; and the negative percentage value indicates a worse performance.
Figure 3 shows only two vehicle models have a worse performance, and these two are both
luxury cars. The weight information for calculating the relative lightweighting degree is given by
Appendix E. Based on the relative lightweighting degree information, this study is able to

calculate the extra cost or saving on lightweighting.
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Figure 3. The lightweighting degree of vehicle non-powertrain part for the 2021 ten best-selling

BEVs in the U.S.
Based on the lightweighting degrees of vehicle non-powertrain part calculated by Eqn.
(12) and the powertrain weight obtained by Eqn. (10), we can estimate the curb weights for each

BEV models when their lightweighting degrees are the same as they are for the baseline
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vehicle — 2013 Ford Fusion, i.e., the lightweighting degree is 0%. The calculation is shown in

Eqn. (13).

Mc,i _Mn i
Meow,i = T maxcos T Mp.i (13)

1— MAX(0,d)) pi
Where, Mg, ; 1s the estimated curb weight (kg) of BEV model i when its lightweighting degree
is 0%. M ; is the curb weight (kg) of BEV model i, which is given by Appendix D. M,,,, ; is the
non-powertrain part weight (kg) of BEV model i. M,, ; is the powertrain part weight (kg) of BEV
model i. d; is the lightweighting degree of the non-powertrain part. In addition, it is assumed that

M09, ; 1s the same as M ; when the lightweighting degree (d;) is negative. This is because the

relationship between the lightweighting degree and extra cost is not disclosed in Figure 1.

The test weight when the lightweighting degree is 0% can refer to Eqn. (14).
Moy, i = Mcoos, i + (Me,i — M, 1) (14)

Where, M, ; is the estimated equivalent test weight (kg) of BEV model i when its
lightweighting degree is 0%. M, ; is the equivalent test weight (kg) of BEV model i, which is
given by Appendix D. M is the curb weight (kg) of BEV model i. My, ; is the non-powertrain
part weight (kg) of BEV model i. The results of the estimated equivalent test weight (kg) of BEV
models when their lightweighting degrees are 0% are shown by Appendix E. These results are
used for evaluating the optimized PCO which varies by vehicle mass in Eqn. (8). The vehicle

weights hereinafter all refer to the vehicle equivalent test weight.



Ou, Zhang, Lin, & Davis 21

4. Results and Discussion

4.1. Impacts of daily range limitation value on BEV’s optimal vehicle weight and

electric range

The limited electric range of BEVs can cause range anxiety, which is a psychological fear of
driving the BEV and being out of power before reaching the destination. One way to measure
range anxiety is the daily range limitation value, which represents the backup “rental car”
expenditure if the electric range of BEV cannot meet the driver’s travel demand in some day
(Lin, 2014). The daily range limitation value is positively correlated with the drivers’ income (or
time value) and could affect the optimal BEV electric range. Based on the driver’s income, this
study segments the drivers into five groups, as shown in Table 3. The Group 1, who has the
highest incomes among the five groups, would have a highest daily range limitation value
($/day). While the Group 2, who are with the least incomes, whose daily range limitation value is
least costly. The values of daily range limitation of these five driver groups is estimated by Lin et
al in their consumer choice model (Lin et al., 2013).

Table 3. Daily Range Limitation Value for Different Driver Groups by Incomes.

Driver Group # Daily Range Limitation Value ($/day)
Group 1 228.74
Group 2 187.88
Group 3 151.11
Group 4 118.48
Group 5 89.09

Regarding the lowest PCO as the optimization objective, the optimal vehicle weight of a
BEYV is found to vary with the daily range limitation value. To validate this statement, this study
uses BEV model #6 as an example to quantify the probable optimal vehicle weight under the

assumption of lightweighting-cost trend discussed in Section 3 — Methodology. The vehicle
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performance features of the BEV model #6 can refer to Appendix D. Figure 4 presents the
simulation results on the incremental TCO (T): a positive value indicates a relative expenditure,
and a negative value indicates a relative saving, compared to the PCO by the current vehicle
model design. Therefore, the adjusted vehicle weight should result in a PCO as small as possible
in the optimization, which means a best saving. The optimized weight ranges from 1784 kg to
1793 kg as the daily range limitation value decreases from $228.74 (BEVs for drivers from
Group 1) to $89.09 (BEVs for drivers from Group 2). After the optimization, the saved cost is
around $19 to $32. The electric ranges in all these five groups of drivers with different daily
range limitation values reduced to around 148 mi, and their difference varies small. In addition,
relative to the current vehicle equivalent test weight — 1758 kg, the optimal weight can be 30-40
kg heavier so that the comprehensive PCO (T) obtained by Eqn. (8) can be the lowest. This
finding suggests that, under the assumed lightweighting-cost trend and from the PCO
perspective, the BEV model #6 spends too much on the vehicle lightweighting when designing
this vehicle. In addition, compared the optimal vehicle weight among the five groups of drivers
with different daily range limitation values, the Group 1 drivers who are with higher incomes and
higher range limitation value expect a lighter vehicle weight than the Group 5 drivers who are
with lower incomes and lower range limitation value. This is because the Group 1 drivers are
more willing/capable to pay more money for time-saving, and their larger value of range anxiety
brings about a more urgent need on the longer electric range of BEVs. This requires the BEV to
implement more lightweighting technology to save energy consumption, so that the BEVs can be

equipped with extended electric range while the battery size keeps the same.
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Figure 4. The optimal PCO and electric range for vehicle model #6 varies by the BEV driver’s
daily range limitation value.
4.2. Impacts of driving patterns on optimal vehicle weight and electric range

As shown in Figure 4, the BEV weights vary as the driver travel patterns are different. Three
categories of travel patterns are assumed. (a) The average-traveling driver, whose travel pattern
is discussed in Table 2; (b) The frequent-traveling driver, whose daily mean travel distance is
50% more than it is for the average-traveling driver, and all other features are the same; (c) The
mild-traveling driver, whose daily mean travel distance is 50% less than it is for the average-
traveling driver, and all other features are the same. These three types of drivers are assumed
with the same daily range limitation value at $151.11 (“early majority”). Clearly, the optimal
electric range for the frequent-traveling driver is more than it is for the average-traveling driver
and the mild-traveling driver, respectively. This is because the frequent-traveling driver has the

longest annual VMT than others and is eager for more electric range of the BEV.
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A lighter vehicle can save more energy and provide longer electric range, thus, the expected
ideal vehicle weight for vehicle model #6 is smaller than the current vehicle equivalent test
weight (1758 kg) and the ideal vehicle weight for the average/mild-traveling driver. Moreover,
because of the lightweighting, the value of the incremental PCO indicates this optimized vehicle
weight and electric range can save the frequent-traveling driver around $339 totally. It means
that the lightweighting technology contribute more on saving the driver’s cost when the BEV
model is targeting on the frequent-traveling drivers; and for the average-traveling driver and the
mild-traveling driver, the unnecessary emphasis of BEV lightweighting for the vehicle model #6

might not lead to a reduction of drivers’ overall PCO.
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Figure S. The optimal PCO and electric range for vehicle model #6 varies by the BEV driver’s
travel pattern.

4.3. Optimized results for different vehicle models

The comprehensive optimization of BEV PCO with consideration of vehicle driving range

and vehicle lightweighting is discussed in this section. Because the PCO varies as the BEV
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driving pattern changes, it is important to define the driver scenario before discussing the optimal
vehicle electric range. The daily range limitation value for BEVs is assumed to be $151.11
(“early majority”), as presented in Table 3. This study calculates the vehicle PCO varying with
the vehicle weight for the top ten best-selling BEV models in the 2021 U.S. market. Figure 6
shows the simulation results. Because the current vehicle equivalent test weights are different for
all the ten vehicle models, the x-axis in Figure 6 shows the vehicle weight ratio which is the
vehicle equivalent test weight relative to the Current Vehicle Equivalent Test Weight. The
Current Vehicle Equivalent Test Weight is the equivalent test weight for the current vehicle
model. The relative PCO is at zero when the ratio is 1. As the vehicle equivalent test weight
changes away from the Current Vehicle Equivalent Test Weight, the relative PCO would

increase or decrease. The optimal design is reached when the relative PCO is at the minimum of

the curve.
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Figure 6. The incremental PCO with respect to the vehicle weight ratio of the ten BEV models,
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It shows that, from the perspective of the PCO, the BEV model is not necessarily to be with
more lightweighting or more electric range. As shown in Table 4, for the Vehicle Models #1-4
and 10, the optimized result is that the vehicle weights increase, and the electric ranges reduce
relative to the current model features. This is because, as the less lightweighting technology used
in the BEV design can help reduce the vehicle price accordingly, the electric range could be
compromised as the vehicle becomes heavier, the overall PCO can still save some. At the same
time, for the Vehicle Models #5-9, it is suggested that the vehicle models should still need more

lightweighting so as to further decrease the PCO relative to the current model design.

Table 4. Simulation Results for Top Ten Best-selling BEVs in the 2021 U.S. Market.

gur{‘enlt ¢ glu n;eflt ?Vp'fh;llized Optimized Incremental
Vehicle# Tgsli“\,:/e?glh ¢ R:IfgI:c Che;%ges Electric Ralfge PCO Saved

(kg) (mi) (kg) Changes (mi) | ($)
Vehicle Model #1 2155 326 +34 -3 26
Vehicle Model #2 1928 353 +107 -10 285
Vehicle Model #3 2381 230 +163 -8 476
Vehicle Model #4 1758 259 +145 -9 575
Vehicle Model #5 2268 260 =75 +4 129
Vehicle Model #6 1758 149 -31 -1 26
Vehicle Model #7 2722 218 -123 +4 396
Vehicle Model #8 2381 200 -106 +4 466
Vehicle Model #9 2155 402 -45 +5 96
Vehicle Model #10 1814 258 +93 -4 243
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5. Conclusions

The objective of this study is to construct a method to quantify the weight impacts on BEV’s
PCO and to determine the optimal electric range accordingly. This method comprehensively
associates the physical relationship on vehicle energy consumption rate as well as the economics
on vehicle PCO. It can be used to generate optimization-based insights to how lightweighting
technology can add lifetime vehicle ownership to accelerate adoption of BEVs. In addition, this
study uses the methods to quantify the optimal vehicle weight and electric range for top ten best-
selling BEVs in the 2021 U.S. market. It concludes that the optimal design of vehicle electric
range and integration of vehicle lightweighting technology should consider the driver incomes
(daily range limitation value) and user driving patterns. As the daily range limitation value or the
user type changes from $228.74 (BEVs for drivers with highest incomes — Group 1) to $89.09
(BEVs for drivers with least incomes — Group 5), the BEV can ease on lightweighting, as it
requires less on the electric range. This is because the range anxiety of the Group 1 drivers is
more costly. The frequent-traveling driver could require more on BEV lightweighting than the
mild-traveling driver does, because of the higher demand on electric range from the frequent-
traveling driver. Considering the optimization of the vehicle weight and electric range for these
ten BEV models, we find that it is not always necessary to emphasize the vehicle lightweighting
for BEVs; when the lightweighting involves higher vehicle production cost, less lightweighting

could reduce the overall PCO to BEV owners.

The major caveat of this study is the relations between vehicle lightweighting degree and
extra cost needed, which are generated from the literature review. This relation is very likely to

change as auto manufacturer, technology evolution, or materials selection varies. Therefore, the
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optimal results on vehicle weight and electric range for the BEV model could be different if the
relation alters. However, the mathematical derivations of the equations in this method, and the
general conclusions achieved by this study are consistent. In sum, the contribution of this study
is that it builds a mathematical framework to quantify the BEV optimal weight and electric
range; the corresponding model can contribute to the decision-making on the design of BEV
performance and features by the auto manufacturers. In the future work, we will consider the
lightweighting impacts on the optimization of battery sizing and capacity in electric vehicles, and
as more is learnt about the lightweighting cost, the analysis and the model will be updated and

improved.
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Appendix A Relation between lightweighting degree (%) and extra cost (%)

revealed by Mascarin et al (Mascarin et al., 2015).

Lightweighting Degree | Lightweighting Extra Cost | Extra Cost
(Ibs.) Degree (%) (S) (%)
Baseline Vehicle
2013 Ford Fusion | 0| 0.00% | $15,724 | 0.00%
Substituted Materials
Optimized Steel
1 106 3.20% $15,522 -1.28%
Optimized Steel
2 462 14.00% $15,389 -2.13%
Optimized Steel
3 546 16.50% $15,291 -2.75%
Aluminum
Intensive 1 367 11.10% $16,070 2.20%
Aluminum
Intensive 4 1175 35.60% $16,706 6.25%
MultiMaterial 1 167 5.00% $16,107 2.44%
MultiMaterial 2 701 21.20% $16,484 4.83%
MultiMaterial 3 812 24.60% $16,833 7.05%
MultiMaterial 4 1220 36.90% $20,036 27.42%
Carbon 1 462 14.00% $21,705 38.04%
Carbon 4 1271 38.50% $22,307 41.87%
Carbon 5 1493 45.20% $25,211 60.33%




Ou, Zhang, Lin, & Davis 37

Appendix B Relation between lightweighting degree (%) and extra cost (%)

revealed by Islam et al (Islam et al., 2020).

Vehicle Type* Baseline | MY#2025 | MY 2030 | MY 2035 | MY 2050

Compact car (Low) Lightweighting Degree 0% 4% 5% 5% 5%

Extra cost 0% 8% 11% 11% 10%

Lightweighting D 09 119 189 19% 19%

Compact car (High) Elgt Welgt B 0; 15; 24; 26‘; 21‘;

Xtra cos () () () () ()

Midsize car (Low) Lightweighting Degree 0% 8% 10% 10% 10%

Extra cost 0% 15% 19% 19% 17%

Lightweighting D 9 169 259 30% 32%

Midsize car (High) ightweighting Degree 0% 6% 5% o )

Extra cost 0% 20% 31% 37% 32%

Lightweighting D 9 79 109 14% 18%

Small SUV (Low) ightweighting Degree 0% % 0% ) o

Extra cost 0% 11% 15% 22% 25%

Lightweighting D 0% 12% 18% 22% 28%

Small SUV (High) Elgt Welgt e O‘; 13‘V0 19‘;J 23‘;J 24‘;

Xtra cos () (¢} () () ()

Midsize SUV (Low) Lightweighting Degree 0% 11% 13% 17% 21%

Extra cost 0% 17% 19% 26% 28%

Lightweighting D 09 139 209 24% 30%

Midsize SUV (High) Elgt Welgt B 0; 13; 20; 24‘70 25‘;

Xtra cos () () () () ()

Lightweighting D 09 129 149 179 22%

Pickup (Low) Elgt WEIgt B 0; 19;’ 23; 28;’ 31‘;

Xtra cos () () () () ()

. . Lightweighting Degree 0% 12% 21% 24% 28%
Pickup (High)

Extra cost 0% 12% 22% 25% 24%

* There are two types of technology projection scenarios: Low—Ilightweighting
technology evolution develops low; High—lightweighting technology evolution develops
high.

# MY—model year.
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Appendix C Relation between lightweighting degree (%) and extra cost (%)

revealed by Bailo et al (Bailo et al., 2020).

Lightweighting Degree Extra Cost
Baseline 0% 0%
Scenario 1* (Low#) 0.69% 5.42%
Scenario 2 (Low) 22.84% 118.05%
Scenario 3 (Low) 4.86% 13.08%
Scenario 1 (High) 0.69% 4.81%
Scenario 2 (High) 22.84% 109.89%
Scenario 3 (High) 4.86% 12.38%

# There are two types of projection scenarios: Low—electrification technology evolution
develops low; High—electrification technology evolution develops high.

* Three types of lightweighting materials penetration scenarios: 1, 2, and 3. The
penetration scenario is presented below:

Scenario Expected Material Trend

Baseline 2020 Body: HSS, AHSS, UHSS Closures: HSS, low Al

Scenario 1 Body: HSS, AHSS, UHSS Closures: HSS, Al

Scenario 2 Body: Aluminum, AHSS, UHSS Closures: Al, comp, Mag
Scenario 3 Body: AHSS, UHSS, low Al Closures: Al




Appendix D Vehicle Performance Features (all units have been translated to metric units) of Vehicle Models Used

for Lightweighting-Electric Range Relationship Quantification

No. Vehicle Maker Vehicle Model
1 Tesla Model Y Long Range AWD
2 Tesla Model 3 Long Range AWD
3 Ford Mach-E
4 CHEVROLET BOLT EV
5 Volkswagen ID.4 AWD Pro
6 NISSAN LEAF
7 AUDI Audi e-tron Quattro Sportback
8 Porsche Taycan 4S Perf Battery
9 Tesla Model S Long Range
10 HYUNDAI Kona Electric
) . Energy
Sales in B.attery Electric Coast-Qown Coast-(!own Coast-Qown Equwaleznt Cul:b Consumption Footprint  Height
No. 2021 (SIK:I b gf:il;gse) (Cli)eli\'li;luent (CB()elflf/i(cl::e/l;;) (CCoe]i\'Ii;l(cIl::/l;;z) '(l"kest Weight Weight rate (m?) (m)
’ ( ’ &) (ke) (Leo/100km)
1 172,700 75 326 152.44 3.18 0.32 2155 2012 1.88 4.79 1.62
2 128,600 82 353 155.60 0.86 0.33 1928 1828 1.76 4.54 1.44
3 27,140 91 230 208.04 2.59 0.46 2381 1993 2.42 4.83 1.60
4 24,803 66 259 126.29 2.01 0.43 1758 1616 1.99 3.90 1.60
5 16,742 82 260 126.11 4.43 0.36 2268 2141 2.42 4.39 1.64
6 14,239 40 149 115.16 3.43 0.43 1758 1588 2.12 4.20 1.56
7 10,921 95 218 159.00 3.85 0.40 2722 2608 3.05 4.85 1.66
8 9,419 79 200 186.70 4.32 0.27 2381 2247 2.98 4.97 1.38
9 9,100 100 402 128.95 4.57 0.25 2155 2215 1.96 5.03 1.45
10 8,936 64 258 110.58 -1.99 0.53 1814 1685 1.96 4.10 1.55
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Appendix E Vehicle Weight Information (all units have been translated to metric units)

Battery Motor

Equivalent Curb System System Powertrain Powertrain Non - Equivalent Test Weight if
Test Weight Weight Weight Weight Other Part  Weight powertrain  Lightweight Lightweighting Degree is
No. (kg) (kg) (kg) (kg) Weight (kg) (kg) Weight (kg) ing Degree 0% (kg)

1 2155 2012 450 115 306 871 1142 11.15% 2298
2 1928 1828 492 154 306 952 876 19.17% 2135
3 2381 1993 546 156 306 1008 985 22.96% 2675
4 1758 1616 396 123 306 825 792 23.14% 1996
5 2268 2141 492 185 306 983 1158 2.82% 2302
6 1758 1588 240 90 306 636 952 12.05% 1888
7 2722 2608 570 103 306 979 1629 -22.10% 2722
8 2381 2247 475 148 306 929 1318 -16.18% 2381
9 2155 2215 600 159 306 1065 1150 4.29% 2206
10 1814 1685 384 123 306 813 872 17.19% 1995



