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High-fidelity hypersonic aerodynamic simulations require extensive computational resources,
hindering their usage in hypersonic vehicle design and uncertainty quantification. Projection-
based reduced-order models (ROMs) are a computationally cheaper alternative to full-order
simulations that can provide major speedup with marginal loss of accuracy when solving many-
query problems such as design optimization and uncertainty propagation. However, ROMs
can present robustness and convergence issues, especially when trained over large ranges of
input parameters and/or with few training samples.

This paper presents the application of several different residual minimization-based ROMs
to hypersonic flows around flight vehicles using less training data than in previous work.
The ROM demonstrations are accompanied by a comparison to fully data-driven approaches
including kriging and radial basis function interpolation. Results are presented for three test
cases including one three-dimensional flight vehicle. We show that registration-based ROMs
trained on grid-tailored solutions can compute quantities of interest more accurately than
data driven approaches for a given sparse training set. We also find that the classic ¢> state
error metric is not particularly useful when comparing different model reduction techniques
on sparse training data sets.

Nomenclature

= Residual minimization weight matrix

= Constant for kriging square exponential kernel
= ith conservation equation weightings

Specific heat at constant volume

= Cell volume scaling matrix

Basis scaling matrix

= Total energy per unit mass

= Axial force

= Residual vector

= Approximate residual vector

Clipping function

= Identity matrix

= Length scale for kriging square exponential kernel
a = Mach number

= Number of states

ny = Number of turbulent transport equations

Nuain = Number of training points
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ny, = Number of conserved quantities

Ny = Number of parameters

p = Number of columns in reduced-basis matrix @
P, = sampling matrix

R™™ = gpace of n X m real-valued matrices

r = Dummy variable for interpolation functions
T = Gas temperature

u; = Conserved quantity i

u; = jth conserved quantity field for approximate state vector £
i = ith conserved quantity field for approximate state vector X’
Vi = Fluid velocity in jth cartesian direction

x; = jth generalized coordinate

x = State vector

x = Generalized coordinate vector

x = Approximate state vector

Xsnap = Snapshot matrix

Z = Dummy generalized coordinate vector

a; = jth interpolation function weight

EF, = Axial force error

Eyx = State error

€ = Radial basis function shape factor

u = Input parameter

J7i = Input parameter mean

H = Vector of parameters

yii = Vector of normalized parameters

v = Regularization parameter

P = Fluid density

o = Standard deviation

[ = Reduced-basis matrix

@ = Unscaled reduced-basis matrix

o0, = Reduced-basis matrix for residual snapshots
[on = Turbulent transport scalar ¢

b4 = Radial basis function

b 4 = Test basis matrix

Q; = Cell Volume i

Subscripts

+ = Strictly positive

FOM = Full order model projection

local = Local in parameter space

min = Minimum allowable value

n = Nearest neighbor

ref = Reference quantity

wall = quantity on a wall

Superscripts

0 = Initial Guess

L. Introduction
Hypersonic aerodynamics simulations are an important part of designing reentry vehicles, missiles, and launch
vehicles. It is critical that designers are able to accurately predict forces and heating while in the design stage without
conducting expensive, time-consuming tests. Because of this, there is an increasing reliance on computational models
for design and analysis of hypersonic configurations [[1].
One of the main challenges associated with hypersonic aerodynamics simulations is their large computational cost:
due to the many disparate length scales, typical simulation grids must be highly refined close to the body and near shock



locations, leading to a very large state space. This makes it computationally expensive to even deploy simplified models
such as Reynolds-Averaged Navier-Stokes (RANS) simulations. In addition, to design hypersonic vehicles, engineers
need to iterate through hundreds or thousands of designs, each requiring simulations at a variety of speeds, air densities,
air temperatures, angles of attack, and airfoil configurations [2], and/or varying flight conditions, vehicle geometry
deformations, turbulence model parameters, and boundary layer transition locations. The large number of known and
uncertain parameters makes the design of hypersonic vehicles a many-query problem, because it requires a large number
of model evaluations with different parameters u. It can be computationally demanding or prohibitively expensive
to run full-order models (FOMs) across the parameter space to identify optimal designs and uncertainty estimates.
Therefore, there is a strong need for simplified models that run within a reasonable time frame while maintaining high
levels of accuracy.

Projection-based reduced-order models (ROMs) are a promising alternative to the full-order models (FOMs) for
many-query problems [3H9] due to their reduced computational cost. These ROMS project the governing equations onto
a subspace constructed using a limited number of full-order simulations. Therefore, the ROM maintains knowledge of
the physical governing equations while operating in a much lower dimensional subspace than the FOM. This gives
ROMs high accuracy and robustness without needing a large training set. Galerkin projection [10-12] is the basic
projection-based method but can perform poorly for convection dominated nonlinear systems including compressible
fluid flow simulations [13]]. Least-squares Petrov-Galerkin projection (LSPG) is a ROM variant that projects the
fully discretized equations onto the basis and has been shown to have improved stability and accuracy over Galerkin
projection ROMs [5,[13]. Another promising approach for hypersonic flows is the £! minimization approach proposed
by Refs. [14, [15]]. This approach utilizes a reduced basis comprised of snapshots and utilizes £' projection to make
ROMs robust for shock-dominated flows. To date, the approach has been demonstrated on 1D unsteady and 2D steady
transonic flows.

None of the above approaches directly enforce conservation laws; these methods may violate conservation laws
while minimizing an objective function. Conservative least-squares Petrov-Galerkin projection (C-LSPG) is LSPG with
a constraint that enforces conservation over the computational domain or subsets of it [16}[17]. The ROMs in Ref. [17]]
also apply a clipper function to the state approximation to ensure that physical positivity constraints are satisfied. In this
paper, we demonstrate LSPG ROMs with the clipper function to develop accurate models in hypersonic aerodynamics.

There are few examples of projection-based ROMs for hypersonic applications. Refs. [18H20] apply Galerkin
projection ROMs to thermal modeling in hypersonic flows. Ref. [[17]] shows that C-LSPG ROMs are viable in hypersonic
aerodynamic applications, demonstrating that ROMs can be over 2000 times faster than the FOM with state errors of
approximately 0.1%. However, Ref. [[17] considers a relatively small range of parameters, which means that a large
amount of training data (at least thousands of FOM solutions) would be required to cover the entire flight envelope of a
given vehicle.

A major weakness of projection-based ROMs using fixed grids is that they only allow for solutions that lie in a linear
subspace. A linear basis is often insufficient to capture the dynamics in hypersonic flows, which generally have a large
Kolmogorov N-width due to the change in position of shockwaves as input parameters and/or time are varied. If a ROM
is tested on a problem with a shock location different from any of the FOMs used to compute the basis, the ROM will be
unable to correctly model the shock location. To address this issue, authors have proposed methods including ROMs
with an adaptive linear basis [21423]], ROMs with nonlinear manifolds as a basis (see [24] and the references within), or
registration-based ROMs [25H29]].

This work demonstrates a registration-based ROM using grid tailoring to determine the snapshot grid displacement
as a function of input parameters. Our approach shares similarities with [25]], as well as [28]. Following [25]], we
transform our snapshots such that the shockwaves are in the same position, construct a basis, then transform the basis to
move the shockwaves to the correct position. Following [28], we use FOM snapshots that are solved on tailored grids,
not interpolated on to them.

This work uses grid tailoring to put the shock at a specified location in the grid during the FOM simulations.
Misalignment between the grid and shock can result in large variations in the surface heat flux, but grid tailoring
modifies the grid to align with the shock to reduce errors [30,131]]. Grid tailoring has been used in a number of studies
of hypersonic flow simulations [30438]].

Our paper expands on Ref. [17] by further developing robust ROMs for hypersonic aerodynamic applications. In the
present work, we specifically address the following new directions:

» Larger parameter ranges and/or sparser snapshot sampling than in the previous work,

* Different choices of the low-dimensional state approximation used by the ROM, most notably one which leverages

grid tailored FOM solutions,



* Different choices of interpolations for the initial guess used in the ROM minimization problem,

e Comparison of the accuracy of the ROM to additional interpolation.

This paper starts with a brief summary of the grid tailored finite-volume approach used for the FOM in section I}
This is followed by a description of steady residual minimization ROM approaches in section Section [[V] contains
studies of the ROM for three hypersonic applications, a blunt wedge in section [[V.C| a 2D axisymetric flow around the
nose cone of the HIFiRE-1 flight vehicle in section and a 3D flow around the HIFiRE-1 in section Section[V]
wraps up the paper with some conclusions and potential directions for future work on model reduction for hypersonic
aerodynamic simulations.

II. Full-order model: finite-volume discretization of hypersonic aerodynamic flows
In this paper, we consider high-Mach external aerodynamics with enthalpy not sufficiently high to drive dissociation
of the gas we consider (air). Hence, we solve the perfect gas, compressible Reynolds-Averaged Navier—Stokes (RANS)
equations for conserved quantities
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where p is density of the fluid, pv; is the fluid density times the fluid velocity v, pE is the fluid density times the total
energy per unit mass E, and ¢, is a set of scalars that belongs to the turbulent transport equations and 7, is the number
of turbulent transport equations. For the full set of governing equations, please consult Refs. [[17] and/or [39].

We consider steady-state solutions of the Navier—Stokes or RANS equations, which can be expressed as the solution
of the following system.

Slx;p) =0, 2

where f(-,-) € RY is the residual vector, which is a function of the state vector x € R" and the vector of system
parameters g € R". The governing equations are discretized with a cell-centered finite volume method [40, 41]].
Therefore, the state vector x is comprised of each conserved quantity at each cell center, while the residual vector f is
comprised of the discretized conservation laws (the governing equations) at each cell center. A more detailed derivation
of @) is included in Ref. [17].

A. Grid tailoring

Past studies have shown that misalignment between the grid and a bow shock wave can lead to large errors,
particularly for heat flux [42]. Grid tailoring was introduced by Ref. [30] to modify the mesh to be aligned with the
shock. Note that grid tailoring moves existing nodes; it does not add nodes to the mesh, making it an r-adaptation
approach.

The procedure used for the results presented in this paper is very similar to that used by Ref. [30]. Each grid tailoring
has several parameters: the number of buffer cells Ny, the maximum initial spacing in the wall normal direction wg 4,
the shock criterion S, and the number of smoothing iterations Ny;,00¢,- The shock detection condition given in Eq. E]is
used to find the first cell of the shock detected along a line from the inlet to the vehicle surface, such as the lines shown

in Fig. [T}

Ma - Ma;
Shock detection condition = M > S 3)

Maipjer

The grid tailoring algorithm is given as:



Fig.1 Examples of mesh lines used for grid tailoring of a blunt wedge. The inlet boundary is the left edge and
the blunt wedge is in the bottom right corner.

1) From each face on the body, find a mesh line connecting adjacent cell centers from the surface to the inlet, like
those shown in Fig.

2) Find the first cell along each mesh line with the Mach number meeting the shock detection condition given in
Eqn.[3] The location of that cell is assigned to a face-centered surface quantity shocks.

3) Interpolate shock from faces to nodes.

4) Apply a smoothing algorithm that successively replaces each value of shock, with the average of its neighbors
and itself a total of Ng00r5 times.

5) Find mesh lines along nodes from the surface to the inlet.

6) Redistribute nodes. Set the first cell width to the smaller of y* = 1 or wo 4. Next ensure that there are Ny, cells
between the inlet and the cell centered at shock,. Cells between the shock and surface grow with a constant
growth factor.

7) Apply nearest neighbor interpolation to transfer variable values from previous mesh.

Grid tailoring can be applied multiple times to get a smooth grid that is well aligned with the shock; in practice
applying grid tailoring twice is generally sufficient. Grid tailoring should be applied after the shock has stopped moving
in a pseudo-time simulation.

Fig.[2a]shows the Mach number around a bow shock overlaid on the grid of a converged simulation without tailoring,
and the shock is clearly misaligned with the grid. After tailoring is applied twice, the shock and grid are well aligned, as
shown in Fig[2b] Furthermore, the grid has a finer resolution near the shock because the grid is used more efficiently in
the tailored simulations, as there are fewer mesh cells between the inlet and the shock.

Grid tailoring adds computational cost because the residual must be sufficiently converged after each round of grid
tailoring. However, grid tailoring has multiple benefits, including:

* Significantly more accurate heat flux computations

* A single grid can be used over a large Mach number range

* The grid is used more efficiently, resulting in finer mesh resolution in the shock and boundary layer.

* The boundary layer is ensured to have a specified resolution, at least for the first cells off the wall (e.g. y* <= 1).

II1. Reduced-order model: steady-state residual minimization
The following section discusses each component of the steady-state reduced-order models considered in this paper.



(a) Without grid tailoring (b) With grid tailoring

Fig. 2 Bow shock without and with grid tailoring, colored by Mach number

A. State Approximation and Basis
Projection-based reduced-order models rely on approximating the high-fidelity state as:

x(p) = X(p) = h(x'(n)) = h(xeet(p) + ®E(p)), “4)

where ® € RV*P is the reduced-basis matrix of dimension p < N, X € RP denotes the generalized coordinates, and h
is a nonlinear transformation function to be defined in section [III.A.3| The classic approach uses h(x) = x, resulting in
a linear affine approximation. Note that the approximation Eq. @) can also be used for reducing the cost of surrogate
models by interpolating the reduced coordinates X rather than the full state x.

This basis @ can be computed in a variety of ways during the offline stage, e.g., eigenmode analysis, Proper
Orthogonal Decomposition (POD) [43]], reduced-basis method 145}, or a dictionary of solution snapshots [15]].
Typically, ® is orthonormal, and @’ ® = I. Note that it does not need to be orthonormal for residual minimization
approaches discussed in section [[TLB]

The following section discusses two classes of approaches used to compute the basis ®@. We only consider linear
subspace approximations in this paper due to their low computational cost and relative ease of implementation. We
consider both of these in combination with grid tailoring to obtain a registration-based ROM.

1. Proper-Orthogonal Decomposition

POD modes are the most popular choice of basis for model reduction since they provide the optimal state
approximation (in an L? sense) for a given subspace dimension p [43]. The POD modes are the columns of the left
singular vector matrix U corresponding to the p leading singular values obtained from the singular value decomposition

vzv’ = Dr_nlax(Xsnap - xref)- (5)

where Xgpap € RN*mwin js the snapshot matrix, in which the ith column corresponds to a FOM solution x? at parameter
values pt;. D pax € RV*N is a diagonal matrix with the maximum absolute value of each conserved quantity along the
main diagonal. These maxima are computed over all cells in all training snapshots. The reference state x,.r is simply the
mean of all snapshots. Note that this is one relatively straightforward and convenient choice for the reference state; other
choices may prove better, and will be the subject of future studies. It should be pointed out that the snapshot mean does
not have to be physically or statistically meaningful. Therefore, our choice of x.¢f is nothing more than a convenient
reference point in phase space to center our snapshot data.



To account for the scaling of the snapshot data, the basis @ is defined as

®=D,,; D, (6)

where @ is the first p columns of U.

The normalization by D, is done because using dimensional quantities is standard practice for hypersonic CFD
codes, especially for cases with non-equilibrium thermochemical effects. Normalizing snapshot data prior to computing
POD modes increases numerical robustness. This is because reducing the range of variable scales makes the normalized,
centered snapshot matrix Eq. (3)) better conditioned than the centered, unscaled snapshot matrix (Xsnap = Xref)-

Because of the diagonal matrix in Eq. (@), the basis ® is not orthonormal (®T® £ I, so projections need to be
done with the Moore-Penrose pseudo inverse of ®. Since D, is diagonal we can write the pseudo inverse as an £
projection onto ®

£(p) = (®) (x(p) — Xeer) = D D}, (x(p1) = Xrer)- (7

2. Local Dictionary

When the shockwave location varies with g or time for unsteady cases, POD modes can provide a poor approximation
of snapshots [[15]. These issues arise in part from the truncation of the POD basis to p columns: since the leading
POD modes tend to be smooth, it is difficult to approximate sharp discontinuities such as shocks with them, resulting in
oscillations near the shockwave. Note that this issue is similar in nature to the inability of a finite number of Fourier
modes to approximate square waves.

The dictionary approach proposed by Refs. [14}[15] avoids these overshoots by not conducting any data compression.
Furthermore, it uses local data, preventing snapshot data far away in parameter space (snapshots with very different
shock wave configurations) from negatively impacting the accuracy of the approximation Eq. (). We define our local
dictionary basis as

(I)(IJ) = Xlocal(l-l) _xref(ﬂn)lT (8)

where p,, is the nearest parameter to u for which a FOM snapshot is available, x.¢(u,,) is the snapshot corresponding
to i,,, Xiocal € RV*P is a dictionary of the p snapshots whose parameters u are closest to y,, by some definition of
distance, and 1 € R? is a vector of 1s. Since the parameters can be defined in units with vastly different scales, we
compute distances in parameter space between normalized parameter vectors f1, with each normalized parameter i
defined as

=

H—H

o ()

where i is the mean and o (u) is the standard deviation of parameter yu in the training set.
Note that it is not guaranteed that the columns of Xj.c, are linearly independent, which can lead to some numerical

issues [[14}[15]. These issues can be overcome by orthogonalizing the dictionary via QR-decomposition.

j €))

3. Clipping Function

One of the shortcomings of an affine linear trial subspace used to compute the approximate state is that there exists
some X such that ¥ will contain some non-physical local phenomena such as regions of negative density or temperature.
Refs. [46, Section VLE] and [17] shows that ensuring ¥ does not have non-physical local flow features can significantly
improve the robustness of LSPG and Galerkin ROMs.

The clipping function k.;;, (¥) considered in this paper is designed specifically for the case of a single-specie
calorically perfect gas; clipping functions for flows with thermal and/or chemical nonequilibrium are being investigated
in an ongoing effort to enable ROMs for higher speed/enthalpy flight regimes.

The perfect gas clipping function k;; ), (¥) we consider is designed to enforce fluid density p > p,, and temperature
T > Tuin in the flowfield represented by ¥. The density field i; is computed by

i1 = max(Pmin, i), (10)

where p;,i, > 0 is a minimum density that should be very small relative to the free stream density and i’ is the density
field computed from the linear affine approximation in Eq. (@),



f,:xref(l-l)"'q)ﬁ(ﬂ) (11)

The clipper for T > T,,,;5, is derived from the definition of the total energy per unit mass E for a perfect gas

1
C\,TZE—E(VJ'VJ'). (12)

where ¢, is the constant volume specific heat and v; is the fluid velocity. Since ¢y > 0, a lower bound for temperature,
Tonin, can be enforced by setting

1
ii5 = max ﬁlchmin+2—~ [ﬁ§+ﬂ§+ﬁi] L s, (13)
Ui
Note the presence of i rather than i}, this term is included because the density clipping function must be applied

before the energy clipping function. Therefore, h¢;;p (%) is of the form hs(h;(%’)), where Z = hy(£’) applies Eq. (I0)
to X', and ¥ = hs(Z) applies Eq. (I3) to Z.

4. Grid approximation

When simulations are grid tailored, the grid is different for each FOM solution snapshot, so running a ROM requires
generating a new grid. A grid can be generated based on the parameters by either computing POD modes of the grid
displacements from the training set or by creating a local dictionary of grid displacements. In this paper we consider a
local dictionary with a reference state of zero, since the snapshots are of grid displacements, not node positions.

(I)grid (ﬂ) = Xgrid,local(ﬂ) (14)

Where Xgridjocal € R3nsriaXPgrid ig 3 matrix comprised of p,;q vectors of grid displacements in the x-,y- and z-directions,
Ngria 1 the number of nodes in the grid, and pg,;4 is the number of snapshots contained in the grid displacement
dictionary. As for the state dictionary, the grid displacement dictionary columns are the pg,;q nearest neighbors in
parameter space to u,,, the closet point in parameter space to u with a snapshot.

While a POD basis can be formed for the grid displacements, it is found that the local dictionary approach works
just as well or better for the small amount of training data considered in this paper. Therefore, we proceed with the local
dictionary, since it does not require computing an SVD of grid displacement data.

5. Basis variables
We consider bases computed from snapshots comprised of conserved or primitive variables, where primitive
variables are defined as

0
V1
V2
V3
T
o1

5)

P,
Since the FOM residual f is a function of conserved variables, an approximate state computed with primitive variables
needs to be converted to conserved variables. To simplify notation, this transformation, combined with the appropriate

clipper function, is defined as & (x). Note that in the case where primitive variables are used for the basis, temperature
can be clipped directly

T = max (Tin, T') , (16)



B. Residual Minimization Reduced-Order Modeling Approaches

This paper considers ROMs that can be expressed as a residual minimization problem. In the case of a steady
simulation, we substitute the approximation x < ¥ into the FOM steady-state equations Eq. (Z), and subsequently
minimize the residual in a weighted ¢ P_norm, i.e.,

£ = argmin||A f (h(xrer(p) + ®Z; 1))l p. A7)

ZERP

where A = I, for example.

The nonlinearity of f requires evaluating f and the corresponding Jacobian 9 f/dx for each nonlinear solver
iteration. The computational cost of this scales with N, which limits the computational efficiency of the ROM. To ensure
that the ROM incurs an N-independent operation count, the weighting matrix A should be sparse in the sense that it
has a small number of nonzero columns. In this case, one can set A = (P, ®,)*P, and A = P, in the case of gappy
POD and collocation, respectively. Here, P, € {0, 1}"»*N denotes a sampling matrix comprising selected rows of the
N X N identity matrix, while ®, € RN*Pr is a p,-dimensional reduced-basis matrix constructed for the residual f.
Employing the gappy POD approximation results in the GNAT reduced-order model [6].

Note that we do not use hyper-reduction for the results presented in this paper; applying hyper-reduction to the
grid-tailored ROM approaches is left for future work. Fortunately, cost reductions can be achieved for steady ROMs
without hyper-reduction since they do not use the same pseudo-time-stepping approach as the FOM, which requires
hundreds or thousands of iterations [17]. The direct solver approaches used for the ROM requires far fewer evaluations
of f and the corresponding Jacobian 9 f/dx, resulting in substantial cost reductions, as shown in [17] and section[[V}

1. Least-Squares Petrov—Galerkin Projection
LSPG corresponds to Eq. (T7) with P = 2, or an £* minimization of the discrete residual. The first-order optimality
conditions can be determined analytically and correspond to a projection equation of the form

P AL (h(xrer(p) + @3 ) =0, (18)

for which the optimal choice of test basis ¥ € RV*P is

of
Y=A——
ox

oh

- (19)
(%) ox

&

This is in contrast to a Galerkin ROM, for which ¥ = ®. The Petrov-Galerkin projection is better suited for systems
with asymmetric Jacobian matrices d f /dx, most notably advection-dominated systems including Navier-Stokes solvers
for practical aerodynamic applications. It is important to note that the test basis for LSPG also includes the Jacobian of
the variable transformation and clipping function /. This implies that one should choose & (x) to be differentiable with
respect to x, however we consider a piecewise differentiable & without issue in this study.

We also considered C-LSPG, a version of LSPG with a conservation constraint proposed in Refs. [16]] that has
previously been applied to steady hypersonic aerodynamics [17]. However, we found that C-LSPG has robustness issues
for a number of the applications considered in this paper, therefore we leave a more in-depth investigation of C-LSPG to
future work.

C. Interpolation methods for model reduction

One fully data-driven alternative to the ROMs presented in section [III.B|is to use interpolation to compute the
generalized coordinates X. We consider several different interpolation schemes in this paper to 1) provide initial guesses
for the ROMs and 2) provide a comparison for the accuracy of the ROMs. The convergence properties and accuracy of
a ROM can be strongly dependent on the initial guess £°(y). Interpolation methods are negligible in computational
cost relative to ROMs and are therefore excellent candidates to compute £°(y). At the same time, the low cost of
interpolation methods on low-dimensional subspaces make them the clear choice when their accuracy is similar to that
of the ROM.

Each interpolation scheme can be written as

(p) =g(®(u;), j1;, 1) (20)



where g(-, -, -) is the interpolating function and ¥ (y;) are the generalized coordinate values at the training set parameters
;- Note that that parameter space is normalized as for the dictionary by Eq. (9) to improve the conditioning of the
interpolation scheme.

For a potentially non-orthonormal basis, ®, each £ (y;) is computed by

() = OF (x (1) — xrer(py)), Q1)

where ()" is the Moore-Pentrose pseudo-inverse. For a local dictionary basis Eq. (8], this reduces to

1 ifi=j
Xi(u;) = , 22
i(H) {o ifi# j 2
where £; is the ith component of X.
A variety of interpolation methods are available and are tested in this study for interpolating the generalized
coordinates. A summary of each method is given here.

1. Inverse Distance Interpolation

Two previous works used inverse distance interpolation to construct the initial guess [[17, 47]. Inverse distance
interpolation constructs a smooth interpolating function using weights linearly dependent on the inverse distance
between each sampling point and training data. The interpolating function is

Myrain

2(p) = ) ak(py), (23)
i=1
where n,iy 1S the number of parameter points in the training set. The weights «; are found with Equation [2_7f]
Ul = 1
- n‘m/nll,u v””{ _ 24)
Zj=l 1/”# - /‘l”2

2. Kriging

Kriging, also called Gaussian process regression, is a nonparametric interpolation method that predicts distributions
at sampling points by performing inference over function distributions. A detailed explanation of kriging is given in
[48]. Kriging does not have hyperparameters, but requires a kernel function to define similarity between points. The
kernel function used in this work is the widely used squared exponential kernel
o 12
i — j I

k(r) = Cexp ——), (25)

212

where the characteristic length scale / and constant value C are learned during the inference step. Kriging has been used
in Ref. [49] to construct an initial guess for steady ROMs.

3. Radial Basis Function interpolation
Radial basis function interpolation uses a weighted sum of radial basis functions to construct a smooth interpolating
function for each generalized coordinate X; () , given by

Rirain

7(m) = Y (it = ), (26)
i=1

where W(r) is the radial basis function. For this study, a quadratic basis function is used,

W(r) = [(2)2 +1

where € is the shape parameter. The weights a; for the jth generalized coordinate £; are found by solving the system

0.5
27

10



Wl = foll2 Wlay = follz - Wlliy,, — foll2 @o £ (ko)
Wl =l Yl -l - Wlliy,, — il @i £ (1)
. : . . = : (28)
Wl — Byl Wl = g llz oo Wl = g2 ] @ 2j (Hnyin)

where 7,y is the number of points included in the training set.

The shape parameter € in Eqn. [27] controls the width of the Gaussian basis function. For € — 0, the basis functions
are very narrow and the interpolation function is zero everywhere except close to the known points x;. For € — oo,
the matrix in Eqn. [2§]is ill-conditioned. In practice, the shape parameter should be set as high as possible while
maintaining a condition number sufficiently below numerical precision [50]. In this work, the shape parameter is fixed
at 20. Computing the weights @; can be done in the offline stage, keeping the online computational costs low.

IV. Reduced-order model numerical experiments

The following section discusses the common features of the numerical experiments conducted to test the accuracy,
performance, and robustness of the various ROM techniques discussed in the previous sections. These experiments make
use of two codes being developed at Sandia National Laboratories, namely SPARC and Pressi SPARC (Sandia Parallel
Aerodynamics and Reentry Code) is a compressible CFD code focused on aerodynamics and aerothermodynamics
problems. It solves the compressible Navier—Stokes and Reynolds-Averaged Navier—Stokes (RANS) equations on
structured and unstructured grids using a cell-centered finite volume discretization scheme [39]]. Its target use cases are
transonic flows to support gravity bomb analyses and hypersonic flows for re-entry vehicle analyses.

Pressio is an open-source C++11 header-only library aimed at enabling parallel, scalable, and performant ROM
capabilities to be adopted by any C++ application with a minimally intrusive API Pressio. The main design principle
behind Pressio is to require an application to only expose, for a given state x, time ¢, and parameters u, the velocity vector
f(x,t; p) and the action of the Jacobian matrix 0 f(x,t; y)/dx. Exposing from SPARC the required functionalities
was relatively easy, since it involved the creation of a new adapter class and no changes to the original SPARC code. We
remark that while in this work we limit our attention to LSPG, the same interface developed in SPARC can now be used
to run any of the ROM methods supported in Pressio.

A. Full-Order Models

We demonstrate the application of grid-tailored ROMs on three test cases: a two-dimensional blunt wedge, a
two-dimensional HiFIRE-1 nose cone, and a three-dimensional HiFIRE-1 cone and body. Unless otherwise stated, all
cases were run until the residual £? norm decreased by 7 orders of magnitude.

We consider cases with and without grid tailoring. Grid tailoring is applied twice for all cases; further details
including the number of smoothing iterations are detailed in the following sections. The difference in Qols between the
grid tailored and non-tailored simulations is analyzed by considering a relative difference,

|Q0lqitored — Q0lnon-tailored|
|Q011ail()red|

(29)

B. Reduced-Order Models

We apply ROMs to the three cases mentioned above. For each case, different ROM setups are compared for a fixed
training set. ROMs are considered for:

* Training FOMs with and without grid tailoring

* LSPG and C-LSPG

* Inverse distance, kriging and RBF interpolation for initial guesses

The nonlinear least-squares problem arising from LSPG is solved via a QR-based Gauss-Newton, while the one
stemming from C-LSPG is solved via normal equations. The Gauss-Newton solver used is provided by Pressio, and is
run until the relative residual £2 norm from the residual defined in Equationfalls below 1079 or after 100 iterations,
unless otherwise specified. Note that 100 iterations is a relatively large number of iterations selected to prevent the
ROM nonlinear solver from running infinitely long.

*https://github.com/Pressio

11



The selection of the weighting matrix A in is crucial for the accuracy and speed of LSPG and C-LSPG. Similarly
to Ref. [17], we set A = D € RV*N where D € RV*N is defined as

Di+jnu,i+jnu = Ci|Qj|, I € N(}’lu), ] S N(NQ) (30)

This is a diagonal matrix whose elements correspond to the size of each cell volume || and a conservation equation
weight ¢;. Each ¢; should be chosen to normalize the contributions from the discrete residuals of each governing
equation. In practice, a good choice of ¢; is the reciprocal of the maximum value of the ith conserved quantity, as in
(6). It is found that this choice of A vastly improves the convergence rate of Gauss—Newton iteration, along with the
accuracy of the ROM solution, as observed in Ref. [[17].

The clipping functions and are applied with p,,;,, = 107® and 7;,,;,, = 100.

The ROM state initial guess and grid are generated by using an interpolation method on the dictionary of grid
displacements ®g,;4(p) and the state dictionary ®(u), respectively. In all the cases presented here, the same
interpolation method is used for both the state initial guess and grid. In this work, the ROM grid is fixed and not
modified in the residual minimization.

The interpolations were implemented in Python. A custom inverse distance interpolation scheme was used, the
scikit-learn package was used for kriging [51], and the scipy package was used for RBF interpolation [52].

1. Error Metrics
We measure the accuracy of the ROM with the following error metrics. Firstly, the state £2 error, defined as

_ () —x()l2

x = s 31
Gl ©1)

where x (u) and % () are the full state computed with the FOM and some approximation with (@), respectively. Although

this metric does not have a physical interpretation, it provides a means of verifying the LSPG ROM, since the state £

error should decrease as p is increased. Note that the state £> error is very close to the £> error of conserved energy, pE,

since pE is much larger in magnitude than the other conserved quantities. The vector X (u) is usually the ROM solution,

but we also compute X () for other states as well, such as the interpolated state used as an initial guess for the ROM.
Secondly, we compute the axial force, defined as

_IF) = ()
Fe(wl

where F, (u) and F, (p) are the integrals of axial force computed with the FOM and some corresponding approximation
with (@), respectively. Similarly, the integrated heat flux error is defined as

EF, (32)

s — |Qwall(/~l) - Qwall(ﬂ)|
Ot Qwan (]

where Q. 411 () is the integrated heat flux over the surface computed with the FOM and O, 4y () is the integrated
heat flux of an approximation.

(33)

C. 2D Wedge

The two-dimensional blunt wedge is shown in Figure[3] This case is a simple geometry that is representative of the
nose or leading edge of many hypersonic vehicles. The corresponding free stream conditions considered in this study
are listed in Table[Tl

The blunt wedge mesh, shown in Fig. [3 has 100,000 cells, corresponding to a state-space size of 500,000 with
n, =5 since we are considering laminar flow. The flow is solved using pseudo-time stepping with a backward Euler
time step and scheduled increases in CFL number. The convergence criteria are a reduction in relative residual by 7
orders of magnitude or 5,000 pseudo-time steps. Convergence is achieved in around 400-500 steps for the range of
freestream velocities and densities considered.

Figure ] shows the flow field for three different simulations at different freestream Mach numbers and densities.
Note that the position of the bow shock changes significantly with freestream Mach number. For a fixed freestream
Mach number, the boundary layer thickens as density decreases. In Fig.[5] we plot the axial force, Fy, to show that

12
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(a) Geometry, units in mm (b) Mesh

Fig.3 2D Blunt Wedge

Table 1 Free stream flow conditions for the two-dimensional blunt wedge.

Density 0.035 to 0.085 kg /m?
Velocity 885.23 t0 2803.21 m/s
Mach Number 30t09.5

Angle of attack 0.0°

Temperature 216.66 K

Reynolds Number 1.5 x107 1/m

@ Masw = 30,p0 =0b) Maw = 90,p0 =€) Maw = 90, p0 =
0.035kg /m> 0.035kg/m> 0.085kg/m>

Fig. 4 Representative visualizations of the blunt wedge simulations for three choices of free-stream Mach
number and density. The other freestream properties are those listed in Table[T} The figures are color-coded by
the local Mach number Ma.
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Fig. 5 Axial force and integrated heat flux as a function of freestream density p., and Mach number Ma.,
from 2D wedge.

Table 2  Grid tailoring parameters for the two-dimensional wedge case.

Parameter Ist tailoring 2nd tailoring
Number of buffer cells Ny, 5 5

Maximum initial spacing wo_max None None

Shock criterion S, 0.01 0.01
Number of smoothing iterations No0rh 10 5

(some) quantities of interest (Qols) vary nonlinearly over the range of freestream densities and velocities. Specifically,
it appears that F, varies linearly with freestream density for a fixed freestream Mach number, but nonlinearly with
freestream Mach number for a fixed freestream density.

A separate suite of simulations are performed with grid tailoring, where each simulation is grid tailored twice with
the tailoring parameters shown in Table[2} The grid tailored simulations achieve convergence in less than 3000 iterations.
Fig.[6]shows the Mach number flow field from a grid tailored simulation. The grid nodes are moved so that the bow
shock location is aligned with the grid, resulting in a shock location at approximately 5 cells from the inlet. Some slight
oscillations are observed along the inlet near the top of the domain because the bow shock location prior to tailoring is
not a smooth field, and even after the smoothing operation some oscillations in the inlet location remain. Applying
grid tailoring twice makes the inlet location smoother and aligns the grid with the bow shock better than just one grid
tailoring, but some oscillations remain.

Fig.[7| shows the relative difference for axial force and integrated heat flux for each simulation. The maximum
relative difference in axial force is 0.0013, while the maximum relative difference in integrated heat flux is 0.32. The

results are in agreement with previous works observing that grid tailoring affects the surface heat flux more than pressure
and shear stress [42].

1. Reduced-order model accuracy

The training set for the blunt wedge case is a set of 12 FOMs on a 3 X 4 grid in parameter space. Specifically, the
parameters of the training set are the combinations of p., = 0.04, 0.06, & 0.08 kg/m?> and Ma., = 3.0, 5.0, 7.0, & 9.0.
The test set consists of 142 other parameters combinations spaced on a regular grid in parameter space. All ROMs are
run until the relative residual £? norm falls below 107> or after 100 iterations.

As discussed in section the most popular basis for projection-based ROMs are POD modes computed over
the entire training set as the basis. A localized basis can be more accurate by preventing data far away in parameter
space from affecting a solution. This is particularly useful for simulations with hyperbolic governing equations, such as

14



Fig. 6 Full-order simulation of blunt wedge with grid tailoring at Ma., = 9.0, po, = 0.085kg/m> The other
freestream properties are those listed in tableE} The figure is color-coded by the local Mach number Ma.
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Fig. 7 Relative difference in Qols between grid tailored and non-tailored simulations, where the relative
difference is defined in Eq. (29).
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Fig. 8 Heat flux o, using global POD basis and local dictionary basis. Both cases use grid tailoring, 3
modes (p = 3), 4 nearest grid snapshots, conserved variables, LSPG, and RBF interpolation. Training cases are
indicated by black X’s.

Table3 Qol errors from selected blunt wedge initial guesses (IG) and ROMs shown in Figs. E]and comparing
grid-tailored and non-tailored ROMs. The percentage of ROMs in which a Qol is improved relative to the initial
guess is abbreviated as %cl. “% Converged” shows the percentage of cases that converged. The label <X%
denotes the percentage of cases with errors below X%c.

Grid Model % Converged i EQwan

<5% <1% %l <5% <2% %l
Tailored 1G 99% 72% - 61%  20%
Tailored ROM 100% 100%  94%  68%  69%  30%  58%
Non-tailored 1G 65% 35% - 44%  32%
Non-tailored ROM 87% 69% 27%  54%  28%  23%  37%

supersonic flow simulations [[14]. We have observed that for the hypersonic cases tested here, using a local dictionary
basis is generally more accurate than a global POD basis, consistent with the findings of Refs. [[14} 15 25]. Since the
dictionary approach is not novel to this work, we show just one test case using a global POD basis. Fig. [§]shows a
comparison of integrated heat flux error €¢,,,, for a case that uses 3 global POD modes and a case that uses a local
dictionary with the 4 nearest snapshots (p = 3) as the basis. The local dictionary case has a lower error throughout most
of parameter space. In the rest of this work, all the ROMs presented use a dictionary basis. Note that in cases where all
the snapshots are used, the dictionary is a global dictionary and the basis spans the same subspace as an untruncated
POD basis. In those cases, the untruncated POD basis has been observed to produce identical ROM results to the
dictionary.

Grid Tailoring We demonstrate the effect of grid tailoring on the initial guess and ROMs in the following section.
The ROM setups use conserved variables, LSPG, p = 8, and RBF interpolation.

We first examine the initial guesses of axial force shown in Figs. [9aland[9d] and it is obvious that the grid tailored
surrogates have much higher accuracy. Interestingly, for the grid tailored initial guess, the axial force error along
constant density (vertical lines) have very low error when there are training cases at the same density. The bow shock
moves as the Mach number changes, so surrogates without grid tailoring cannot accurately resolve the bow shock,
which can result in high errors. The heat flux error £g,,,,, from the initial guesses in Figs. [0b|and [O¢]also show that
interpolating over the grid tailored initial guesses is much more accurate than using the non-tailored initial guesses.

The first and third rows of Table[3|show data from the initial guesses. The grid tailored initial guess has 72% of cases
with e below 1%, while only 35% of cases with a non-tailored initial guess have er_below 1%. For the heat flux error
£0,..u» applying grid tailoring increases the number of cases with errors below 5% from 44% to 61%. Grid tailoring
reduced the number of cases with g, .., below 1%, but also drastically reduced the number of cases with high g, .,

The state errors &y of the initial guesses with and without grid tailoring are shown in Figs.[9c|and[Of] The state error
is much lower for the grid tailored ROMs throughout almost the entire parameter space. However, it is important to note
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Fig. 9 Blunt wedge errors sr , €9, ., and &x for selected initial guesses demonstrating the effect of grid
tailoring. All cases use conserved variables, p = 8, and RBF interpolation. Training cases are indicated by black
X’s.

Table 4 State errors from selected blunt wedge initial guesses (IG) and ROMs shown in Table@

Median state error

Grid Model % Converged -
Model Proj.
Tailored 1G 0.0089  0.0046
Tailored ROM 100% 0.0071  0.0046
Non-tailored 1G 0.1099  0.0055
Non-tailored ~ ROM 87% 0.0918  0.0055

17



107!

107* [T ] []
9 SEXEIExEEIER oNsEEEsEEN»
s 8 1071 N _ 84
g o g g g o
g7 3 g7 5 S/ EsxNEE*EEE*N ]
E] L, 0 S x S , 0
Z6 1072 ¢ Z6 2 26 10 2
5} 5 %} 102 & O o
5 € S5 % ke SsExEEExEEExE @
4 4{mmEm 4
o EELES IR ES I 1 KX |
3 10-3 3{xm 10-3 ErSENxEENxE §
0.04  0.06  0.08 0.04 0.06 0.08 0.04 006 008
Freestream Density Freestream Density
(a) ef,_, Tailored (c) &y, Tailored
10! 101
9 9 9
8 [ 8 j. . 8
5 [ ] I - g g 3 5
E7{ R EEXxEEExE e £7 ] g7 g
2 1072 & 2 3 2 102 2
ZoEEEEENEN 8 =6 = <6 g
S mm = 5 g mm 8 S g
S5 ESEEEXERNExE =51 % I =5
LLL]
i NEEEEEEEEEE 4@ m 4
EEEE 11 3
R EI T TET T T F7 ) PP 3{ExmE 10-3
0.04 006  0.08 0.04 0.06 0.08 0.04 0.06  0.08
Freestream Density Freestream Density Freestream Density
(d) ef, , Non-tailored (e) £g,,.,;» Non-tailored (f) x, Non-tailored

Fig. 10 Blunt wedge errors sr_, £, .,,» and &, for selected ROMs demonstrating the effect of grid tailoring.
All cases use conserved variables, p = 8, LSPG, and RBF interpolation. Training cases are indicated by black
X’s. The cases with no error shown failed.

that the state error is not clearly correlated with either Qol error. Some correlations can be observed, particularly for
force error, but we cannot in general assume that cases with low state error have low Qol errors. For this reason, we do
not believe that state error alone is a good metric by which to analyze ROM accuracy.

The ROM Qol errors are next examined in Fig. [T0]and the second and fourth rows of Tables[3] The axial force
error €, of the grid tailored ROM in Fig. @ is significantly lower than the initial guess errors in Fig. @ throughout
most of parameter space, particularly at medium and low Mach numbers. In contrast, the non-tailored ROM resulted in
13% of the high Mach number cases failing to converge. A number of cases with Mach numbers below 7.5 have lower
errors than the initial guess, but almost all the high Mach number cases which converged still give high errors. The
statistics in Table[3|show that 100% of the grid tailored ROMs have axial force errors &, below 1%, but only 27% of
the non-tailored ROMs do. 69% of the grid tailored ROMs have heat flux error £¢, ,, below 5%, but only 28% of the
non-tailored ROMs have this. 68% of the grid tailored ROMs have a lower axial force error than their initial guesses
and 58% have a lower heat flux error, so the grid tailored ROMs are a generally an improvement over the initial guess.
However, the non-tailored ROMs improve the Qol errors only 54% of the time for axial force and 37% of the time for
heat flux, so it is generally better to just use the initial guess as a surrogate when grid tailoring is not applied.

Table A shows the median state errors of the model (initial guess or ROM) and the median projected state error. The
median errors are used instead of the mean because a number of the ROM cases failed to converge, so the mean cannot
be computed. The projected state error is the lowest possible state error achievable with a given basis. The median
state error for both grid tailored and non-tailored ROMs is lower than the corresponding initial guess, but the median
state error decreases only marginally with the non-tailored ROMs. This again shows that state error alone is not a great
metric for ROM accuracy, it should be used in conjunction with assorted Qol errors.

Basis variable set We next demonstrate the effect of conservative and primitive variable bases. An examination of the
initial guess errors in Fig. [T shows that the primitive variable initial guess is more accurate than conserved variables at
predicting all three errors. The axial force error is only slightly more accurate, but the heat flux error and state errors
are significantly more accurate when a primitive variable basis is used. However, Fig.[T2]shows that the conservative
variable ROM has significantly lower axial force errors er_, while the primitive variable ROM has lower heat flux errors
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Fig.11 Blunt wedge errors r_, £¢,,..,;» and &, for selected initial guesses demonstrating conserved vs primitive
variables. All cases use grid tailoring, p = 8, and RBF interpolation. Training cases are indicated by black X’s.

Fig. 12 Blunt wedge Qol errors for selected ROM solutions demonstrating conserved vs primitive variables.
All cases use grid tailoring, LSPG, p = 8, and RBF interpolation. Training cases are indicated by black X’s.
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Table 5 Qol errors from selected blunt wedge initial guesses (IG) and ROMs shown in Figs. and
comparing primitive vs conserved variables. All cases use grid tailoring, LSPG, p = 8, and RBF interpolation.
The percentage of ROMs in which a Qol is improved relative to the initial guess is abbreviated as Yol. “%o
Converged” shows the percentage of cases that converged. The label <X % denotes the percentage of cases with
errors below X%.

Variables Model % Converged EF i

<5% <1% %ol <5%  <2% %ol
Conserved IG 99% 72% - 61%  20%
Conserved ROM 100% 100%  94%  68%  69%  30%  58%
Primitive IG 100%  85% - 89%  37%
Primitive ROM 100% 99% T7%  47%  90%  43%  61%

Table 6  State errors from selected blunt wedge initial guesses (IG) and ROMs shown in Table

Median state error

Variables Model % Converged

Model Proj.
Conserved 1G 99% 0.0089  0.0046
Conserved ROM 100% 0.0071  0.0046
Primitive 1G 100% 0.0037  0.0032
Primitive ROM 100% 0.0051 0.0032

£0,,.; and state errors &,. This shows that the choice of variables used for a basis in a ROM or surrogate model can
have a major effect on the accuracy, but different Qols may require different choices of variables for the highest accuracy.
It may not always be possible to find a single ROM setup that is best for minimizing all errors, and aiming to minimize
the state error can lead to a ROM setup with higher Qol errors.

The statistics in Table [5|reinforce this. The conserved variable ROM has the best accuracy at predicting axial force
with 100% of cases having eF, below 1%. However, the primitive variable ROM has 90% of cases having &g, ,,, below
5%, versus 69% for the conserved variable ROM. Interestingly, the primitive variable ROM has a slightly higher median
state error than the initial guesses, as shown in Table[6] This can occur because there is a nonlinear relationship between
the residual and the approximate state, so minimizing the residual does not guarantee that the state error decreases.
Despite this, the axial force and heat flux error are reduced by the ROM in 47% and 61% of cases, respectively, showing
again that judging the ROM on state error alone can be misleading.

Initial guess interpolation method A comparison of the three interpolation methods described in section are
shown in Fig.[13] When the axial force error £f, from the initial guesses are compared (Figs. [13a] [[3b] & [I3d), it
can be seen that RBF interpolation is the most accurate interpolation, followed by Kriging, and then inverse distance
interpolation. In all three cases, the ROM improves £f_; the RBF interpolation and Kriging lead to almost identical
results, while the ROM solution from inverse distance interpolation is less accurate. Table[7]shows that the same trends
hold for other Qols. The heat flux error and state errors (see Table 8] are lowest for RBF interpolation and highest for
inverse distance interpolation.

Kriging is a popular interpolation method that has been shown to be an accurate predictor for many datasets, but
it generally requires large datasets to give accurate results [53]]. It may be possible to increase the accuracy by using
a different kernel function than the squared exponential kernel, but the optimal kernel would be problem-dependent.
Inverse distance interpolation has been shown in a variety of studies to have poor accuracy in comparison with other
methods [[54} 55], but is a popular interpolation method due to its simplicity. However, using an inaccurate interpolation
method can give misleading results about the relative accuracy of the ROM. For example, if we examine the percentage
of cases in which the gr_ is improved by a ROM, Table|7|shows that 98% of cases with inverse distance interpolation
have lower ROM error than the initial guess, whereas only 68% of cases with RBF interpolation are improved. Therefore,
if ROM results are compared only to an initial guess using RBF interpolation, it may appear that the ROM improves
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Fig.13 Blunt wedge axial force error r_for selected initial guesses and ROM solutions demonstrating various
interpolation methods. All cases use grid tailoring, conserved variables, LSPG, and p = 8. Training cases are
indicated by black X’s.

Table 7  Qol errors from selected blunt wedge initial guesses (IG) and ROMs shown in Fig. comparing
interpolation methods. All cases use grid tailoring, conserved variables, LSPG, and p = 8. The percentage of
ROMs in which a Qol is improved relative to the initial guess is abbreviated as %ol. “% Converged” shows the
percentage of cases that converged. The label <X % denotes the percentage of cases with errors below X %e.

Interpolation ~ Model % Converged o EQwan

<5% <1% %l <5% <2% %ol
RBF 1G 99% 72% - 61%  20%
RBF ROM 100% 100%  94%  68%  69%  30%  58%
Kriging G 61% 6% -  S51% 11%
Kriging ROM 100% 100%  94%  99%  30% 4% 24%
Inverse Dist. 1G 15% 2% - 8% 3%
Inverse Dist. ROM 100% 100%  77%  98% 8% 3% 68%
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Table 8 State errors from selected blunt wedge initial guesses (IG) and ROMs shown in Table

Median state error

Interpolation ~ Model % Converged

Model Proj.
RBF 1G 0.0089  0.0046
RBF ROM 100% 0.0071  0.0046
Kriging 1G 0.0428  0.0046
Kriging ROM 100% 0.0073  0.0046
Inverse Dist. 1G 0.2172  0.0046
Inverse Dist. ROM 100% 0.0079  0.0046

Table 9 Errors from selected blunt wedge initial guesses (IG) and ROMs shown in Figs. (14|and All cases
use grid tailoring, LSPG, conserved variables, and RBF interpolation. The percentage of ROMs in which a Qol
is improved relative to the initial guess is abbreviated as %I. %0 Converged shows the percentage of cases that
converged. The label <X % denotes the percentage of cases with errors below X%.

» Model % Converged EF, E0van Median state erfor
<5% <1% Yol <5%  <2% %ol Model Proj.
3 IG 80% 37% - 66%  33% 0.0173  0.0063
3 ROM 100% 100%  94%  80%  84% 38% 58%  0.0103  0.0063
8 IG 99% 72% - 61%  20% 0.0089  0.0046
8 ROM 100% 100%  94%  68%  69%  30% 58% 0.0071  0.0046
11 IG 99% 75% - 72%  28% 0.0090  0.0040
11 ROM 100% 100%  100%  68%  69%  38% 57% 0.0074  0.0040

errors by a large margin, whereas a well-designed surrogate model might have lower errors than the ROM in much of
parameter space.

Basis size The last study we perform with the blunt wedge examines the impact of the basis size on accuracy. Fig.
shows plots of er,_ and &g, ,,, from initial guess surrogates using p = 3, 8, & 11. The &F, is highest for p = 3 and very
similar for p = 8 and p = 11. However, it is unclear from Fig. [T4] which surrogate is most accurate at predicting &g,,.,, -
The surrogates with p = 8 and p = 11 result in high errors for extrapolative cases, but the surrogate with p = 3 has a
number of cases with high errors for some interpolative cases.

The statistics in Table@] show the initial guess with p = 11 is marginally more accurate for €, than p = 8. However,
the statistics for £¢,,,,, do not present an obvious best case. The initial guess with p = 11 has the highest number of
cases with gg,, .., < 5%, but p = 3 has the highest number of cases with g, ,, < 2%.

The ROM solutions in Fig. [I5] show that a large basis is best for predicting &, , but the smallest basis is most
accurate at predicting &¢,,,,,- Table[9|backs up these conclusions, showing that 100% of cases with p = 11 have &F,
below 1%, and 84% of cases with p = 3 have g¢, ,, below 5%.

Flow visualizations Finally, we consider flow visualizations of the ROM results for the wedge at Ma. = 8.0,
Poo = 0.035kg/m>. These conditions are ones for which the grid tailored ROM is accurate, 1-2% error for both Qols.
This is more accurate than the initial guess, for which er_ ~ 1 - 2% and &g, ,;, ® 6 — 7%.

Fig.|16|shows that the tailored grid for the ROM matches the grid computed by the FOM very well. Additionally,
the flow fields are very similar for the FOM, ROM and RBF initial guess, although it appears that the freestream Mach
number is slightly under-predicted by RBF and the ROM. Without grid tailoring, the ROM slightly overpredicts the
freestream Mach number, and there is a large spike in Mach number just upstream of the rounded tip of the wedge. This
spike is not present in the grid tailored ROM, an example of the relative robustness of the grid tailored ROM.

Differences between the ROM with and without grid tailoring can also be seen in the surface quantities. Fig.[T7]
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(b) IG (¢) ROM

(d) Grid tailored FOM (e) Grid tailored IG (f) Grid tailored ROM

Fig. 16 Mach contours for the wedge at Ma., = 8.0, po, = 0.035kg/m>. ROM results are for the p = 3 LSPG
ROM with a conserved variable basis and RBF initial guess. IG is short for "initial guess''.

Table 10  Average simulation times and ROM speedup

Configuration Simulation Number of cores Average time Speedup
FOM 16 101.0s -
ROM 16 3.7s 27.5

Blunt Wedge

shows heat flux on the wedge surface, along with the heat flux error of the ROMs and initial guesses. We see that the
grid tailored ROM is more accurate than the initial guess over the entire surface. The improvement in accuracy is largest
for heat flux, the ROM reduces the maximum error, near the front of the wedge, from around 8% to 3%. The ROM
reduces the error below 1% on much of the wedge, while the initial guess error is around 4-5% in the same region. In
contrast, the ROM without tailoring is considerably less accurate than the initial guess; it exceeds 10% over the entire
surface while the initial guess was around 5% on most of the surface.

Overall, these visualizations show the ability of the grid tailored ROM to compute flow fields and surface quantities
to higher levels of accuracy than a simple interpolation like RBF. They also show the importance of using grid tailoring in
conjunction with residual minimization; if the shock is not properly resolved, the ROM provides a poorer approximation
of the surface quantities on the wedge. This is because grid tailoring positions the shock accurately, lowering the
residuals near the shock wave. This causes the residual minimization at the heart of LSPG to focus more on reducing
residuals in other regions of the flow, such as near the wall.

2. Reduced-order model performance

The average simulation times and ROM speedup are given in Table[I0} The ROM speedup is defined as the ratio of
the FOM simulation time to the ROM simulation time. The ROMs in Table [I0|have the setups identified to produce the
best results, specifically a conserved variable basis with 3 modes, a LSPG solver, and RBF interpolation for the initial
guess.

The reasons a speed-up is obtained despite the lack of hyper-reduction is mostly due to the use of a direct nonlinear
solver in the ROM in place of a pseudo-time-stepping approach like the one used for the FOM, as discussed in
section [[I[.B] The LSPG ROM only requires 25 nonlinear iterations at most for the cases considered, while the FOM
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Table 11 Free stream flow conditions for the two-dimensional HIFiRE-1.

Density 0.040 to 0.080 kg/m>
Velocity 1622.91 to 2803.22 m /s
Mach Number 5.5t09.5

Angle of attack 0.0°

Temperature 226.46 K

Reynolds Number 1.5 x107 1/m

Fig. 18 Baseline mesh for 2D HiFIRE without grid tailoring.

requires 400-500 iterations per grid, or 1,200-1,500 iterations total. Fewer nonlinear solver iterations means fewer
evaluations of the residual f and the corresponding Jacobian 0 f/dx, the cost of which scale with state size N, so any
reduction in residual and Jacobian evaluations will substantially reduce the cost of the ROM.

3. Summary
The following is a summary of lessons learned from the blunt wedge case:
* Grid-tailored ROMs have better convergence and accuracy than non-tailored ROMs
 Conserved variable ROMs achieve higher accuracy at predicting axial force, while primitive variable ROMs have
more accurate heat flux predictions.
* A large basis achieves higher accuracy for axial force, but a local basis may be better for predicting heat flux.
These conclusions hold only for the blunt wedge case; we find in examining other cases that some of the conclusions
change based on the specific case.

D. 2D HIFiRE-1 Nose

The second flow configuration is a two-dimensional simulation of the HIFIRE-1 (Hypersonic International Flight
Research Experiment) nose cone [56]. The nose cone has a 7° taper angle with a rounded nose and a length of 11.8
cm from the nose to the end of the cone. The geometry is axisymmetric with zero angle of attack, so the simulations
require a mesh only on one side of the centerline, shown in Fig.[I8] The 2D HiFIRE-1 mesh is much more refined in
the direction away from the wall in comparison to the 2D wedge case. The mesh has 32,512 cells, but the spacing in
the wall tangent direction is coarser, so there are more cells between the body and the inlet. Simulations without grid
tailoring have a maximum y+ of 0.81.

Simulations are run at the range of flight conditions shown in Table[T1] These conditions include the baseline case
for which the grid was designed, run 30 of the experimental results presented in Ref. [57]. Two suites of FOMs are run
at various freestream Mach numbers and densities, one set with no grid tailoring, and one where simulations are tailored
twice, with the tailoring parameters given in Table[T2] In both cases, the FOM is run until the relative residual is reduced
by 7 orders of magnitude. Simulations are run using the S-A turbulence model [58]], so there are six conserved variables.

Fig.[I9]shows four simulations at two different Mach numbers with and without grid tailoring. The shock location
moves slightly closer to the surface as the Mach number is increased and grid tailoring moves the inlet closer to the
shock, but the shock is reasonably well aligned with the grid even without tailoring. The grid tailoring parameters used
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(a) Ma = 6.0, non-tailored (b) Ma = 9.0, non-tailored

(¢) Ma = 6.0, tailored (d) Ma = 9.0, tailored

Fig. 19 Two-dimensional HIFiRE-1 simulations with and without grid tailoring with varying inlet Mach
numbers. Simulations are run at p., = 0.06 kg/m?>. Figures are colored by Mach number.

Table 12  Grid tailoring parameters for the two-dimensional HIFiRE-1.

Parameter Ist tailoring 2nd tailoring
Number of buffer cells Ny, 10 10
Maximum initial spacing wo_max 10 m 10°m
Shock criterion S, 0.01 0.01
Number of smoothing iterations Ngmoorn 5 5

are shown in Table[12]

Fig. 20]shows the relative differences between the tailored and non-tailored FOMs. The maximum relative difference
in axial force is 0.00039, while the maximum relative difference in integrated heat flux is 0.0037. The Qols are almost
identical in the grid-tailored and non-tailored simulations because the meshes are very refined and the shock is well
aligned with the grid prior to any tailoring. However, the differences can be significant close to the stagnation point. For
example, the relative difference of the maximum heat flux on the surface is between 0.0017 and 0.129. The location of
maximum surface heat flux occurs on the blunt nose close to the stagnation point. Since the blunt nose is small, errors
in maximum surface heat flux do not significantly affect the integrated heat flux errors.

Fig. 2T]shows the axial force and integrated heat flux at various freestream Mach numbers and densities. There are
obvious nonlinearities in the integrated heat flux, and the axial force also exhibits nonlinear behavior.

1. Reduced-order model accuracy

The accuracy of the ROM is studied by considering a small, four snapshot training set comprised of FOM solutions
near each corner of parameter space at Ma = 6.5, 8.5 and p = 0.048, 0.072 kg/m>. Since the training set has 4
snapshots, a POD basis with p = 3 will have no information compression; it can reconstruct all 4 snapshots with
machine precision accuracy. Because of this, the ROM results are virtually identical for POD and the dictionary with
p = 3. In this case, this means that the dictionary is the superior option, since it does not require the offline computation
of a singular value decomposition.

The ROM errors presented in Table[T3]reveal some similarities but several key differences to the behaviors observed
for the 2D wedge case. The main similarity is that RBF is overall the most accurate interpolant in both state error and
Qol. However, kriging is slightly more accurate for heat flux; for the same grid tailored primitive variable basis, 42% of
the kriging cases have errors less than 5%, versus 38% for RBF. As observed for the 2D wedge case, inverse distance
interpolation is substantially less accurate than either Kriging or RBF.

Unlike the 2D wedge case, grid tailoring does not make a substantial difference in the Qol accuracy of the initial
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Fig. 21 Axial force and integrated heat flux from 2D HiFIRE-1 tailored simulations.

Table 13  Errors from 2D HIFiRE-1 initial guesses.

Grid Variables  Interpolation Er EQwan Median
% <1% <5% <2% state error
Tailored Conserved RBF 96% 29% 26% 8% 0.0264
Tailored Primitive RBF 99% 40% 38% 16%  0.0204
Tailored Primitive  Inverse dist.  19% 3% 13% 5% 0.0716
Tailored Primitive Kriging 84% 26% 42% 19%  0.0254
Non-tailored Conserved RBF 96% 28% 22% 7% 0.0481
Non-tailored  Primitive RBF 98% 38% 39% 17%  0.0310
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Table 14  Qol errors from 2D HIFiRE-1. The percentage of ROMs in which the Qol is improved relative to
the initial guess is abbreviated as “%ol.

Grid Variables ROM Interpolation % Cony- e EQwan
erged <5% <1% %I <5% <2% %ol
Tailored Conserved LSPG RBF 100%  38% 15% 16% 30% 14% 45%
Tailored Primitive LSPG RBF 100%  100% 50% 55% 44% 20% 61%
Tailored Primitive LSPG Inverse Dist.  100%  86% 37% 93% 42% 20% 81%
Tailored Primitive LSPG Kriging 100%  100% 49% 71% 45% 16% 54%
Non-tailored Primitive LSPG RBF 100%  73% 17% 19% 22% 5% 23%
Non-tailored Conserved LSPG RBF 100%  28% 7% 4% 17% 9% 30%

Table 15  State errors from 2D HIFiRE-1. The percentage of ROMs in which the Qol is improved relative to
the initial guess is abbreviated as “%ol.

Grid Variables ROM Interpolation %o Conv- State Error.
erged Model Proj.

Tailored Conserved LSPG RBF 100%  0.0164 0.0107
Tailored Primitive LSPG RBF 100% 0.0185 0.0135
Tailored Primitive LSPG Inverse Dist.  100%  0.0214 0.0135
Tailored Primitive LSPG Kriging 100%  0.0187 0.0135
Non-tailored Primitive LSPG RBF 100%  0.0362 0.0267
Non-tailored Conserved LSPG RBF 100%  0.0693 1.9092

guess interpolations. The number of cases with low Qol errors er, and &g, ,,, are within 1-2% of one another for
tailored and non-tailored cases, independent of the basis variables used. However, the median state error is relatively
large for both primitive and conserved variable bases without tailoring. This discrepancy in Qol errors and state errors is
because the state error includes the error in approximating the bow shock wave, while the Qol errors are only impacted
by the flow field near the vehicle surface. Another difference with the 2D wedge case is that the primitive variable basis
is slightly more accurate than the conserved variable basis for axial force. It is substantially more accurate for heat flux,
with 38% of cases with errors under 5% versus 29% for the conserved variable basis.

As seen for the initial guesses, the results in Tables[T4]and[T5]are similar to those for the 2D wedge in a few respects.
One similarity is that C-LSPG is not as consistently accurate or robust as LSPG for this case. As observed for the 2D
wedge, the ROM residual does not converge below the targeted reduction of 6 orders of magnitude for many cases.
Because of this, most C-LSPG ROMs are less accurate than the corresponding initial guess. A second similarity is that
RBF is still the best initial guess interpolation, leading to higher accuracy in the initial guess itself as well as the ROM.
Additionally, a kriging initial guess leads to ROMs of similar accuracy to the RBF initial guess, but inverse distance
initial guesses lead to less accurate ROMs.

The main difference with the 2D wedge case is that the primitive variable basis is far better for the ROMs. Although
both bases result in ROMs with lower median state errors &, than the initial guess, the primitive variable ROM is much
more accurate in £r,, 100% versus 38% of cases with less than 5% error, and somewhat more accurate in g, ,;;, 44%
versus 30% of cases with less than 5% error. The primitive variable ROM increases accuracy over the initial guess for
both Qols over 50% of the time, while the conserved variable ROM only improves on the initial guess in 16% of cases
for er, and 45% of cases for £g,,,,,. Taken together, these numbers make the case that the primitive variable basis leads
to more accurate ROMs than the conserved variable basis for the 2D HIFiRE-1.

A number of error surface plots are included to reinforce and elaborate on the takeaways from the tables. Fig.[22]
shows RBF initial guess state errors £,. We focus on RBF since it is the most accurate interpolant for this case. As in
Table[I3] these plots show that &, is lower for the primitive variable basis, and that grid tailoring leads to lower state
errors. However, the difference in state error level is smaller for the primitive variable basis than the conserved variable
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Fig. 23 2D HIFiRE-1 axial force errors cr, for selected initial guesses and ROM solutions. All cases use RBF
interpolation. Training cases are indicated by black X’s.

basis.

Figure 22] also shows how the &, varies throughout parameter space. All cases have lower &, near the training
points, and &, are at their largest near the minimum Mach number of 5.5 and in between the training Mach numbers of
6.0 and 9.0. For a given Mach number, €, is roughly constant, independent of density. This is because the bow shock
wave location changes with Mach number, not density, and therefore the linear basis is best suited to represent states at
the same Mach number as the training data. It is interesting that this same trend is observed with and without grid
tailoring; this shows that grid tailoring reduces the error at cases with Mach numbers that differ from the training set,
but does not entirely eliminate the limited accuracy with which linear bases resolve shockwaves.

Fig. 22]also shows the corresponding ROM state errors. These plots show how the error is the same or less than the
initial guess when using LSPG. The grid tailored LSPG ROMs are more accurate than the non-tailored LSPG ROMs.
Grid tailored LSPG ROMs with primitive and conserved variable bases have similar or improved &, for most cases. In
particular, g, is lower for the ROMs outside of the training set, showing the ability of the ROM to extrapolate.

Visualizing Qol error surfaces reveal interesting trends in where the ROM is accurate. Fig.[23]shows that the RBF
interpolation only computes accurate axial forces in a few areas of parameter space. The most accurate predictions occur
in two C-shaped troughs, one occuring at low freestream density, and one at higher densities. There does not appear to
be any obvious correlation between the &, and g, fields, showing that ROM accuracy cannot be judged by state error
alone. Finally, as observed for the state error, grid tailoring does not make a large difference for the initial guess.

Fig. 23] shows that grid tailored primitive ROMs are more accurate than the initial guess at higher densities, higher
mach numbers, and at the lowest densities and Mach numbers. This again shows the predictive capability of the ROM,
in the form of high accuracy at the edge or outside of the training set. In a region encompassing densities of 0.05 and
0.06 and between Mach 5.5 and 8.5, it appears that ROM is not much better or slightly less accurate than the initial
guess. Note that this also corresponds to the region with the highest Qol errors, including some near 5%. Overall, the
grid tailored LSPG ROM with a primitive variable basis was the most accurate relative to the initial guesses and the
other ROMs.
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Fig. 24 2D HIFiRE-1 heat flux errors ¢, for selected initial guesses and ROM solutions. All cases use RBF
interpolation. Training cases are indicated by black X’s.

The grid tailored conserved variable ROM computes accurate axial forces in much smaller regions of parameter
space than the primitive variable ROM. Fig. @ shows that low values of ef,_ are obtained in a small region with high
densities and Mach numbers, but that the grid tailored, conserved variable ROM does significantly worse than the initial
guess everywhere else. The non-grid tailored ROMs are both worse than the initial guess throughout most of parameter
space, with some exceptions. There is a small, diagonal region in which g¢_ is very low for the non-tailored, primitive
variable ROM, but the ROM is much worse than the initial guess elsewhere. Overall, the most accurate and robust ROM
is the grid tailored LSPG with a primitive variable basis.

As observed for axial force, the initial guess and ROM only compute accurate values of integrated heat flux over
small areas of parameter space. This can be seen in Fig.[24] As observed for axial force, the grid tailored ROM with a
primitive variable basis has the largest regions of low errors &g, and improves upon the corresponding initial guess
for cases with high densities. The grid tailored ROM with a conserved variable basis improves upon its initial guess in
some regions, but is notable worse in others. The same observation can be made for both non-tailored ROMs. Judging
by £¢,,..:> the most accurate and robust ROM is the grid tailored LSPG with a primitive variable basis.

Finally, we consider some visualizations for the HIFIiRE-1 at Ma., = 9.5, pe = 0.072kg/m> to highlight the
advantages of grid tailoring for ROMs. This case is outside of the training set, so it shows the predictive capability of
the ROM. Fig.[23]shows that while the grid tailored ROM captures the shock accurately, the non-tailored case is unable
to, as evidenced by the region of high Mach number upstream of the shock.

The region near the shock is not the only place in which the non-tailored ROM struggles. Fig.[26]shows that while
the grid tailored ROM mostly improves upon the initial guess when computing heat flux, the non-tailored ROM is worse.
Also it is interesting to note that the initial guess gives similar results with and without tailoring. This likely due to the
similar boundary layer resolution with and without tailoring. Overall, these results show that grid tailoring is crucial for
the robustness of the ROM when strong shock waves are present in the flow field.
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Table 16 Average simulation times and ROM speedup

Configuration Simulation Number of cores Average time Speedup
FOM 32 104.5s -
ROM 32 32s 33.0

2D HiFIRE-1

6 8.
- |

(a) 3D HiFIRE-1 mesh (b) Mach Contours

Fig. 27 Mach number from 3D HiFIRE-1 FOM at Alt = 25km, Ma =7, AoA = 6°.

2. Reduced-order model performance

The average simulation times and ROM speedup are given in Table[T6] The ROM speedup is defined as the ratio of
the FOM simulation time to the ROM simulation time. The ROMs in Table[I6] have the setups identified to produce the
best results, specifically a primitive variable basis with 3 modes, a LSPG solver, and RBF interpolation for the initial
guess. This speed up is only slightly larger than that obtained for the blunt wedge in section[[V.C]

3. Summary
The following is a summary of lessons learned from the 2D HIFiRE-1 case:
* The more refined grid near the wall and shock leads to similar state errors €, for grid tailored and non-tailored
interpolations.
 Overall, grid tailored ROMs are more accurate than non-tailored ROMs.
» Low state errors &, do not necessarily correspond to low Qol errors e and g9, ;-
* Grid tailored ROMs with a primitive variable basis are more accurate than those with a conserved variable basis
in state and Qol errors. However, there are large regions in which the ROM and initial guess had errors exceeding
5% for both Qols.
While a few of these lessons are consistent with those from the 2D wedge case, there a few differences, most notably
the clear superiority of primitive variable basis for the state error and both Qol errors for the 2D HIFiRE-1.

E. 3D HIFiRE-1 Forebody

The third case considered in this paper is a three-dimensional simulation of the HiFIRE-1 vehicle nose and body. A
three-dimensional computational domain allows us to vary the angle of attack (AoA), so for this case we vary three
parameters: altitude, Mach number, and AoA. Fig. 27ashows a view of the mesh and Fig. [27b|shows the Mach number
from one of the FOMs. The mesh has 1,572,864 cells and the maximum y+ in non-tailored simulations is 1.03. All
simulations are run until the relative residual is reduced by 9 orders of magnitude. Simulations are run using the S-A
turbulence model assuming a fully turbulent boundary layer.

Grid tailoring is applied twice for the three-dimensional HiIFIRE-1, and Table [T8]shows the grid tailoring parameters.
The relative difference varies between 8.8 x 1075 to 8.3 x 10~ for axial force, and 9.8 x 10~ to 0.0013 for integrated
heat flux. Grid tailoring makes little difference to the Qols for this case because the non-tailored grid is already well
aligned with the shock and the grid is refined near the wall. Similar to the 2D HiFIRE-1 case, the maximum surface
heat flux is much more affected by grid tailoring, with a relative difference as high as 0.031.

The 3D HiFIRE-1 case is run at varying altitude, Mach number, and AoA with ranges given in Table[I7} To generate
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Table 17 Free stream flow conditions for the three-dimensional HiFIRE-1.

Altitude 251028 km
Mach Number 7.0t09.0
Angle of attack 0.0° to 6.0°
Temperature 216.66 K
Reynolds Number 1.5 x107 1/m

Table 18  Grid tailoring parameters for the three-dimensional HiFIRE-1.

Parameter Ist tailoring 2nd tailoring
Number of buffer cells Ny, 5 5

Maximum initial spacing wo max 10°%m 10°m
Shock criterion S, 0.001 0.001
Number of smoothing iterations Ngpoorn, 10 5

the training and test sets, 27 FOMs were run on a 3x 3x3 grid in parameter space, and an additional 12 FOMs were run
with random parameter values inside the specified ranges, for a total of 39 FOMs. The training set consists of the eight
FOMs at the corners of the parameter space and the other 31 FOMs form the test set.

1. Reduced-order model accuracy

We test a variety of ROM setups with various basis variables, interpolation methods, dictionary sizes, and grid-
tailoring. Table[I9]shows results from the initial guess surrogates, and Tables [20]and 21]show error statistics from the
ROM solutions. The most accurate initial guess surrogate for the two Qols is non-tailored with primitive variables and
RBF interpolation. The initial guesses with grid tailoring, primitive variables, RBF interpolation, and 4 or 7 modes
are nearly as accurate for e and have the same percentage of cases with gg, ., < 5% and g, ,, < 2%. Note that
interpolation surrogates with and without grid-tailoring are expected to have almost identical errors for a well-resolved
grid. The initial guess interpolants are identical with and without grid-tailoring, so if the mesh resolution is such that
Qols are almost identical between the grid-tailored and non-tailored simulations, the initial guess surrogates will also be
nearly identical.

Consistent with our previous findings, RBF interpolation is the most accurate, followed by kriging, then inverse
distance interpolation. We also observe that the initial guesses with conserved variables have high errors.

The ROM results in Tables [20] and 21| show that the ROM in the second row with grid-tailoring, primitive variables,
LSPG, p = 7, and RBF interpolation is most accurate at predicting both the axial force and integrated heat flux. The
axial force error g, is improved over the initial guess in 80% of cases, and the heat flux error &g, ,, is improved

Table 19  Errors from 3D HiFIRE-1 initial guesses.

Medi
Grid Variables p Interpolation EF EQwan edian
<5% <1% <5% <2% state error
Tailored Primitive RBF 90% 13% 61% 19% 0.0135

4

Tailored Primitive 7 RBF 87% 13% 61% 19%  0.0132

Tailored Primitive 7 Kriging 77% 16% 48% 32%  0.0184

Tailored Primitive 7 Inversedist. 13% 6% 3% 0% 0.0754
7 RBF 35% 0% 0% 0% 0.0423
7 RBF 97% 13% 61% 19%  0.0169
7

RBF 35% 0% 0% 0% 0.0600

Tailored Conserved
Non-tailored  Primitive

Non-tailored Conserved
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Table 20  Qol errors from 3D HiFIRE-1. The percentage of ROMs in which the Qol is improved relative to
the initial guess is abbreviated as “Ycl. Note that the “% Converged” is omitted because all ROMs considered for
this case converged.

Grid Variables ROM p TP EFs EQwan
olation <5% <1% %I <5% <2% %I
Tailored Primitive LSPG 4  RBF 100% 38% 80% 74% 54% 67%
Tailored Primitive  LSPG 7 RBF 100% 38% 80% 74% 58% 77%
Tailored Primitive LSPG 7 Kriging 100% 38% 87% 77% 45% 80%
Tailored Primitive LSPG 7 Inv. dist. 100% 35% 90% 58% 23% 97%
Tailored Conserved LSPG 7  RBF 48% 3% 80% 19% 3% 67%
Non-tailored Primitive LSPG 7  RBF 39% 10% 26% 42% 16% 32%
Non-tailored Conserved LSPG 7  RBF 22% 3% 22% 19% 6% 32%

Table 21 State errors from 3D HiFIRE-1.

Grid Variables ROM p [nerp- StaweError
olation Model Proj.
Tailored Primitive LSPG 4 RBF 0.0213 0.0131
Tailored Primitive LSPG 7 RBF 0.0194 0.0129
Tailored Primitive LSPG 7 Kriging 0.0195 0.0129
Tailored Primitive LSPG 7 Inv. dist. 0.0327 0.0129
Tailored Conserved LSPG 7 RBF  0.0333 0.0250
Non-tailored Primitive LSPG 7 RBF  0.0694 0.0167
Non-tailored Conserved LSPG 7 RBF  0.0913 0.0412
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Table 22  Average simulation times and ROM speedup

Configuration Simulation Number of cores Average time Speedup
FOM 64 41.6 min -
ROM 64 0.41 min 102

3D HiFIRE-1

in 77% of cases. The ROM with p = 4 has similar Qol errors as the comparable case with p = 7, but it has higher
state errors g,. Note that the ROM with Kriging interpolation initial guesses has similar accuracy for axial force and
slightly more cases with hear flux errors below 5%; however it has fewer cases with errors below 2%. The ROMs with
conserved variables are much less accurate, as are the non-tailored ROMs. Out of the non-tailored ROMs, the LSPG
ROM with a primitive variable basis is most accurate for ef_, and the LSPG ROM with a primitive variable basis has
lowest errors of £¢,, .,,- However, in all the non-tailored setups, the percentage of ROMs that improve each Qol error is
below 50%, implying that the ROMs are ineffective and a well-designed surrogate model is superior to non-tailored
ROMs in the majority of cases.

Fig.[28]shows the initial guess and ROM errors for the non-tailored case with LSPG, a p = 7 primitive variable
basis, and RBF interpolation. All three error metrics have less accurate ROM solutions than the initial guess for a
large majority all of the cases. There are four cases which have low state errors in the initial guess; they are the four
edge cases for which there are training cases at the same Mach number and AoA. Since the shock location does not
move when the freestream density changes, those four cases have shocks at the same location as some of the training
snapshots, so they are expected to have low state errors &, with non-tailored simulations. Those four cases also have
low Qol errors in the ROM solutions.

Fig. 29| shows results for the most accurate grid-tailored case, which uses LSPG, a p = 7 primitive variable basis,
and RBF interpolation. Both axial force and heat flux are much better predicted with the ROM than the initial guess.
The ROM state error &, remains almost unchanged or increases slightly from the initial guess even though the Qol
errors decreased, showing again that the state error alone is not a good indicator of ROM accuracy.

Finally, we consider flow visualizations of the ROM results at Alt = 26.5km, Ma = 8, and AoA = 3°. Fig.
shows Mach contours and heat flux contours for the FOM, initial guess, and ROM with and without grid tailoring.
Interestingly, the grid tailored ROM has a smoother looking mesh than the corresponding FOM. This is because the
limited grid displacement data that is used to interpolate the mesh for the ROM does not contain the oscillations seen in
the FOM for this flight condition. The most obvious difference between the flow fields can be seen in the bow shock
structure. In Figs. and the shock on top of the vehicle is poorly approximated as multiple discontinuities, in
contrast to the grid tailored initial guess and ROM, which capture the upper shock well.

Inspecting the flow near the nose reveals more issues with the shockwave. Figs.[3Tb|and show that interpolation
and the ROM are unable to accurately capture the bow shock without grid-tailoring. The bow shock is approximated
as two discontinuities, most noticeably downstream of the rounded tip. This “staircase’” approximation of the shock
is similar to results shown in [25] for ROMs without any mesh deformation. In contrast, Figs. 3Te] and B1f] both
approximate the shock well, with a single discontinuity in the correct position.

Since grid tailoring positions the shock accurately, the residual minimization at the heart of LSPG is more focused
on residuals in other regions of the flow, such as near the wall. Fig.|32|shows that the ROM reduced errors in heat flux
on most of the vehicle surface, with one exception just downstream of the nose tip. By lowering the error on the bottom
of the vehicle, where the heat flux is highest (see Fig. [32a), the ROM is able to improve the accuracy of integrated
heat flux substantially. Although the error is reduced on top, it is still relatively high (>10%) along much of the top
centerline, especially just aft of the nose tip. This corresponds to a region with low heat flux, as shown in Fig. [32a]
likely due to an adverse pressure gradient brought about by the nonzero angle of attack. Despite this minor shortcoming,
these results show the advantages of incorporating residual minimization in model reduction; if implemented correctly,
with the right basis, residual minimization uses the governing equations to choose the best possible solution using the
limited data available to it.

2. Reduced-order model performance

The average simulation times and ROM speedup are given in Table[22] The ROM speedup is defined as the ratio of
the FOM simulation time to the ROM simulation time. The ROMs in Table 22]have the setups identified to produce the
best results, specifically a primitive variable basis with 7 modes, a LSPG solver, and RBF interpolation for the initial
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Fig.28 Errors sy, sr ,and gg , for the 3D HiFIRE-1 projectile using non-tailored simulations with primitive
variables, LSPG, p = 7, and RBF interpolation. The figures on the left show the initial guess errors and the
figures on the right show ROM solution errors. Training cases are indicated by black X’s.
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Fig.29 Errorsey,sr ,and gg,, , for the 3D HIFIRE-1 projectile using grid-tailored simulations with primitive
variables, LSPG, p = 7, and RBF interpolation. The figures on the left show the initial guess errors and the
figures on the right show ROM solution errors. Training cases are indicated by black X’s.
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Fig. 30 Mach number and wall heat flux for the 3D HiFIRE-1 at Alt = 26.5km, Ma = 8, AoA = 3°. ROM
results are for C-LSPG with a p = 7 primitive variable basis. The initial guess (IG) is with RBF interpolation.
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Fig. 31 Mach number and wall heat flux for the nose region of 3D HiFIRE-1 at Alr = 26.5km, Ma = 8,
AoA = 3°. ROM results are for LSPG with a p = 7 primitive variable basis. The initial guess (IG) is with RBF
interpolation.
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Fig. 32 Wall heat flux errors for the grid tailored 3D HiFIRE-1 at Alr = 26.5km, Ma = 8, AoA = 3°. ROM
results are for LSPG with a p = 7 primitive variable basis. The initial guess (IG) is with RBF interpolation.
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guess. Note that this case has a larger speed-up than the two 2D cases, likely due to it having a larger computational
mesh.

3. Summary
Some conclusions drawn from the 3D HiFIRE-1 study are:
* Grid tailored ROMs are much more effective than non-tailored ROMs
* Primitive variables lead to more accurate initial guesses and ROMs
* RBF interpolation is more accurate, followed by closely by Kriging, then inverse distance interpolation

F. Discussion

In all three cases, grid tailored ROMs are superior to non-tailored ROMs. The non-tailored ROMs are ineffective in
all three cases, while grid-tailored ROMs improve Qol errors over the best initial guess surrogates. In two of the cases,
the grid-tailored ROMs show dramatic improvements to both axial force and integrated heat flux. In the 2D HIFiRE-1
case, only slight improvements are observed for the most accurate ROM setup. This case is particularly challenging
for the ROMs because the grid is very refined, so the shock occurs over a small distance. Even slight perturbations in
the tailored grid can change which cells contain the shock, in which case the shock is not at the same location in all
the training snapshots. This issue can be mitigated with improvements in the grid tailoring algorithm to ensure that
the number of cells between the bow shock and inflow boundary is constant. Improvements in grid tailoring will also
enable the application of ROMs to more complicated geometries such as vehicles with fins, which have secondary shock
structures that are not aligned with grid.

The improvements in accuracy and robustness from grid tailoring occurs because grid tailoring allows the basis
to approximate the shock accurately, lowering the residuals near the shock wave relatively to those in a non-tailored
ROM. The lower residuals near the shock allow the LSPG residual minimization to focus more on reducing residuals
in other regions of the flow, such as near the wall, increasing the accuracy of wall Qols. This shows the importance
of an accurate basis in the presence of convective features including shocks, and has ramifications for fluid dynamic
applications beyond hypersonic vehicle aerodynamics.

Another insight provided about the basis is that a local dictionary is as good or better than POD modes for
approximating the solution state with limited training data. This ensures that the basis is not polluted by non-local flow
features and eliminates the need to compute singular value decompositions offline. Additionally, the sparseness of the
training data considered in this study likely makes the local dictionary more robust than observed in Refs. [14}[15]].
Sampling at fewer points in parameter space makes it more likely that each solution snapshot is quite different than the
others, making it highly unlikely that the solutions are linearly dependent on one another.

These insights were made possible by considering multiple error metrics. All three cases show that £ state error
alone is not a good judge of overall ROM accuracy. It is observed that relatively low state errors do not necessarily
correspond to low Qol errors, as in Ref. [[17]. This shows the importance of comparing the different ROM setups by
inspecting multiple Qols in addition to state errors, as is done in this paper.

Our previous work that applied projection-ROMs to hypersonic aerodynamics showed that ROMs can improve Qol
predictions over the initial guess interpolation [[17]. However, in that work inverse distance interpolation is used for the
initial guess surrogates, and in all three cases here inverse distance interpolation was the worst interpolation method,
followed by kriging. Using inverse distance or kriging interpolation can give misleading results; if the interpolation
method has poor accuracy, the ROM has more potential to improve over the initial guess. The overall goal of using
ROMs is to provide a simulation method that is more accurate than a well-designed surrogate model, so ROMs should
use and be compared with accurate surrogate models. We suggest that future works use RBF interpolation as a baseline
interpolation method or examine multiple interpolation methods to compute the initial guess. In addition to providing a
good initial guess for the ROM, RBF interpolation might be of acceptable accuracy as a surrogate model itself. RBF
interpolation is more accurate than the ROM for non-tailored FOM data, and is competitive with the grid tailored ROM
for some Qols and certain areas of parameter space in the three cases considered.

Studying individual cases sometimes led to different conclusions. In the blunt wedge case, it was found that
conserved variables led to the most accurate axial force predictions while primitive variables led to the most accurate
integrated heat flux. In the other two cases, primitive variable ROMs were superior to conserved variable ROMs. It is
possible that there is no single optimal ROM setup that can be used for any hypersonic flow configuration and for any
Qol, but that the optimal ROM setup for a given configuration depends on the boundary conditions, grid, equations,
parameters, and Qols.
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Table 23  Average simulation times and ROM speedup

Configuration Simulation Number of cores Average time Speedup

FOM 1 101. )
Blunt Wedge 0 6 01.0s

ROM 16 375 275
JDHIFRE.1 oM 32 104.5's ]

ROM 32 325 33.0
3DHFRE1 oM 64 41.6 min ]

ROM 64 0.41 min 102

The case with the best ROM performance and accuracy was the 3D case, which considered variations over three
parameters. The other two cases only considered variations over two parameters. It is possible that ROMs have greater
benefits when the parameter space has higher dimension. Further studies are need to determine whether this is because
of the more complex flow fields in 3D, the additional parameter, or a combination of these factors.

The average simulation times and ROM speedup for all three cases are given in Table[23] The ROM speedup is
defined as the ratio of the FOM simulation time to the ROM simulation time. The ROMs in Table 23] have the setups
identified to produce the best results. Specifically, the blunt wedge ROM uses an 8 mode conserved variable basis,
LSPG, and RBF interpolation. The 2D HiFIRE-1 uses a 3 mode primitive variable basis, LSPG, and RBF interpolation.
The 3D HiFIRE-1 uses a 7 mode primitive variable basis, LSPG, and RBF interpolation.

All the ROMs in Table[23]show significant speedup over the FOMs even though none of the ROMs use hyperreduction,
with the blunt wedge having the minimum speedup of 27.5. The speedup is lowest for the 2D cases and increases with the
computational size of a configuration. The reasons a speed-up is obtained despite the lack of hyper-reduction is mostly
due to the use of a direct nonlinear solver in the ROM, which required far few iterations than the pseudo-time-stepping
approach like the one used for the FOM, as discussed in section One of the reasons for the ROM needing fewer
nonlinear iterations comes from the smaller state space of the ROM. For example, the 3D HIFiRE-1 has 1,572,864
cells and solves 6 equations, so it has a state space of dimension 9,437,184 in which to find a solution that minimizes
the residual. In contrast, the ROM has 7 modes, so it only needs to find a solution in a state space of dimension 7.
Optimizers are more efficient at finding solutions in lower dimensions, so the ROMs require far fewer evaluations
of the residual and corresponding Jacobian than FOMs, thereby resulting in considerable speedup despite not using
hyperreduction.

V. Conclusion

This paper presents ROM approaches for steady hypersonic aerodynamic simulations. Specifically, we investigate
LSPG ROMs, both with and without a conservation constraint. Building on earlier work on LSPG for steady hypersonics,
we explore several modifications including the use of local bases, grid tailoring, primitive variable bases, and more
advanced interpolation techniques for the initial guess.

Firstly, we find that grid tailoring and local bases are key components of accurate and robust ROMs. The local basis
ensures that solution snapshots with irrelevant flow features are not included in a given ROM basis. Using grid tailoring
provides a mechanism to accurately capture shock waves that move as input parameters are varied. Grid tailoring is
observed to increase ROM accuracy for all three test cases considered, especially the three dimensional, three parameter
case.

While some modifications almost always improve the accuracy of LSPG, the utility of other modifications are
problem dependent. Using Grid tailoring and RBF interpolation initial guesses consistently improves ROM accuracy,
while the best choice of basis variables seems to be problem dependent. Primitive variables are better overall for two out
of the three test cases. In the one outlier case, the blunt wedge, the primitive basis improves accuracy for integrated
heat flux, but degrades it for axial force. These results suggest that there may not be a single optimal ROM setup for
any hypersonic flow configuration and for any Qol. Rather, the optimal ROM setup for a given configuration may be
problem dependent or even vary over parameter space.

In evaluating these results, we find that £ state error alone is not a good judge of overall ROM accuracy; in all three
test cases low state error do not necessarily correspond to low Qol errors. This shows the importance of evaluating
ROM accuracy by inspecting multiple Qols in additional to state errors. This finding is consistent with previous findings
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on ROMs for steady hypersonic aerodynamics.

There are many directions to choose from to follow-on the work presented in this paper. One of the crucial directions
is to improve grid tailoring, as improved grid tailoring will improve the accuracy and robustness of the ROM as well as
the FOM itself. One key improvement of grid tailoring for the ROM would be to reduce the discrepancy between the
actual number of buffer cells and the targeted number; the ROM will be most accurate when the target is always hit.
This could be achieved by improving the shock detection and smoothing algorithms. Improvements to the smoothing
algorithms will also reduce the oscillations of the grid observed at the inflow boundary for some cases. Another key
improvement would be the generalization of grid tailoring to cases with secondary shock structures, such as those
observed on vehicles with fins. This would enable deployment of the ROM to more complicated flight vehicle geometries.
This work showed significant speedup without hyperreduction, but future works should implement hyperreduction for
grid tailored meshes. Additionally, more work is needed to examine which ROM setups are best across a wide suite of
hypersonic configurations. Future works could expand parameter ranges, examine other interpolation methods, and
introduce ROMs in higher dimension parameter spaces.
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