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Introduction and motivation

 The harmonic balance method (HBM) is very popular for analyzing dynamical systems
 Computes periodic solutions using a Galerkin/Fourier series approximation
 Useful for linear/nonlinear, SDOF/MDOF systems, faster than time integration,

computes unstable solution branches, etc.
 Growing interest in using HBM for engineering systems with contact and/or friction
 Contact is a non-smooth nonlinearity than can induce very complex dynamics
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Introduction and motivation

 Difficulties in pairing HBM with contact systems include:
 Significant nonlinear complexity compared to smooth systems
 Large numbers of harmonics required due to discontinuous derivatives

and Gibbs phenomenon effects
 Questions:

 What are the limits of applicability of HBM for a system subject to freeplay contact?
 How many harmonics would you need to get an accurate solution?

 Goal of this work:
 Determine the limits of applicability of HBM for a nonlinear system with freeplay
 Evaluate the accuracy of nonlinear periodic responses computed with HBM
 Perform a stability analysis of the system using HBM

4Weisstein, E, 1999 “Gibbs Phenomenon,” https://archive.lib.msu.edu/crcmath/math/math/g/g164.htm
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System modeling and numerical methods

 Forced Duffing oscillator with freeplay

5De Langre, E., Lebreton, G., 1996, “An Experimental and Numerical Analysis of Chaotic Motion in Vibration with Impact," ASME 8 th International Conference on Pressure Vessel Technology, Montreal, Quebec, Canada, July 21 - 26, 1996.
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ᵆ� (ᵆ� )  Parameter values taken from deLangre et al. (1996)
 Contact is modeled with piecewise-smooth penalty 

stiffness
 Contact damping is negligible
 Past work showed that harder contact stiffness or 

smaller gap sizes increase the amount of nonlinear 
behavior in the system



System modeling and numerical methods

 Result data is obtained using the harmonic balance method (HBM)
 The form of the solution is assumed to be a Fourier series:

 This is combined with pseudo-arclength continuation 
to trace out solution branches

 The freeplay force is approximated with a fully smooth (regularized) function:
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System modeling and numerical methods

 Reference data is obtained using Matlab® ode45 with Event Location
 Piecewise time integration, which prevents accumulating roundoff error
 A timestep is always forced at every instance of contact to ensure accuracy
 Past validation has shown good results

7Saunders, B.E., Vasconcellos, R., Kuether, R.J., and Abdelkefi, A., 2021, “Relationship between the contact force strength and numerical inaccuracies in piecewise-smooth systems," International Journal of Mechanical Sciences, 210, 106729. Doi: 
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System dynamics
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Takeaways:
 12 harmonics gives excellent 

quantitative agreement for 
weak and strong cubic 
nonlinearity, e.g. beyond the 
limits of perturbation theory

 It is also sufficient for very 
strong cubic nonlinearity, as 
numerous super- and sub-
harmonic resonance structures 
appear

 More harmonics are needed for 
the ultra-subharmonic 
resonances at low frequencies

Dots: time integration, various ICs
Dashed lines: HBM harmonics 0-12



System dynamics
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Takeaways:
 12 harmonics still gives 

excellent quantitative 
agreement for weak and strong 
forcing magnitude

 HBM is able to capture the 
numerous resonances that 
occur in the system

 HBM, as expected, fails to 
capture some chaotic regions at 
higher forcing



System dynamics
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Takeaways:
 12 harmonics gives excellent quantitative 

agreement for soft and medium contact 
stiffnesses

 For hard contact, 12 harmonics gives good 
agreement for much of the main response branch

 This breaks down below 10 Hz, as this region 
transitions to chaos

 On the order of 72 harmonics are now required 
to adequately capture superharmonic and ultra-
subharmonic resonance solutions



Convergence analysis

 Main resonance branch for three nonlinearity strengths is plotted with multiple harmonics
 Visually, the only real differences are at low frequency

 Stronger contact leads to many superharmonic resonances that require more harmonics to capture
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Convergence analysis
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Stability analysis

 Floquet stability is calculated using Hill’s method
 There are numerous turning points/saddle-node bifurcations on all solution branches
 Several branch points/pitchfork bifurcations occur at low frequency 
 Some occur on the isolated subharmonic resonances as well
 The response is shown to be unstable where chaotic responses occur
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Conclusions

 Harmonic balance method (HBM) was applied to an SDOF nonlinear oscillator system with freeplay
 The accuracy of nonlinear periodic responses computed with HBM was evaluated
 HBM is able to capture many types of nonlinear behavior with relatively few harmonics

 12 harmonics was sufficient to capture nearly all behavior except for cases with hard contact
 Superharmonic resonances and isolated subharmonic resonances
 Isolated ultra-subharmonic resonances tended to require more harmonics (~3 times as many)
 Chaotic responses cannot be captured, but this is expected
 Hard contact required ~6 times as many harmonics

 Stability analysis showed that numerous saddle-node and pitchfork bifurcations occur, particularly at low 
frequency
 Although HBM cannot resolve chaotic responses, it can detect unstable regions where it may occur
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