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Introduction and motivation

1 The harmonic balance method (HBM) is very popular for analyzing dynamical systems
» Computes periodic solutions using a Galerkin/Fourier series approximation

» Useful for linear/nonlinear, SDOF/MDOF systems, faster than time integration,
computes unstable solution branches, etc.

» Growing interest in using HBM for engineering systems with contact and/or friction

» Contact is a non-smooth nonlinearity than can induce very complex dynamics
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Introduction and motivation

U Difficulties in pairing HBM with contact systems include:
» Significant nonlinear complexity compared to smooth systems

» Large numbers of harmonics required due to discontinuous derivatives
and Gibbs phenomenon effects

1 Questions:
» What are the limits of applicability of HBM for a system subject to freeplay contact?
» How many harmonics would you need to get an accurate solution?
 Goal of this work:
» Determine the limits of applicability of HBM for a nonlinear system with freeplay
» Evaluate the accuracy of nonlinear periodic responses computed with HBM

» Perform a stability analysis of the system using HBM

Weisstein, E, 1999 “Gibbs Phenomenon,” https://archive.lib.msu.edu/crcmath/math/math/g/g164.htm
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System modeling and numerical methods

1 Forced Duffing oscillator with freeplay X+ 2w,0% + w2x + hd 3 + Fe(x)
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Parameter values taken from deLangre et al. (1996)
Contact 1s modeled with piecewise-smooth penalty
stiffness

Contact damping is negligible

Past work showed that harder contact stiffness or
smaller gap sizes increase the amount of nonlinear
behavior in the system
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System modeling and numerical methods

] Result data is obtained using the harmonic balance method (HBM)
» The form of the solution is assumed to be a Fourier series:

Mx + CX + KX + f,,;(%,X) = £, (£),

Nh
Cx
x(t) = % + lefg sin(kwt) + ¢ cos(kwt)|
V =

» This is combined with pseudo-arclength continuation
to trace out solution branches

» The freeplay force is approximated with a fully smooth (regularized) function:
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System modeling and numerical methods

O Reference data is obtained using Matlab® ode45 with Event Location
» Piecewise time integration, which prevents accumulating roundoff error

» A timestep is always forced at every instance of contact to ensure accuracy
» Past validation has shown good results
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System dynamics

 Initial verification with fully smooth system:
> K.=0,aa=0—7+10""N/m? (classical Duffing)
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Takeaways:
» 12 harmonics gives excellent

quantitative agreement for
weak and strong cubic
nonlinearity, e.g. beyond the
limits of perturbation theory
It is also sufficient for very
strong cubic nonlinearity, as
numerous super- and sub-
harmonic resonance structures
appear

More harmonics are needed for

the ultra-subharmonic
resonances at low frequencies



System dynamics

 Full Duffing-freeplay system, varying forcing magnitude:
> a=7%10° K, =14+ 10*" ji = j, = 04mm,p = 0.5 — 4N
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System dynamics

Full Duffing-freeplay system, varying contact stiffness:

> a=7x10%",p=4N,K,
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Convergence analysis

J Main resonance branch for three nonlinearity strengths is plotted with multiple harmonics

U Visually, the only real differences are at low frequency

» Stronger contact leads to many superharmonic resonances that require more harmonics to capture
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Convergence analysis

 L,-norm of the residual is plotted to show accuracy vs. # of harmonics
» Error is highest near the primary resonance peak, where amplitude is highest
» Error is also high near superharmonic resonances

» Using more harmonics produces an asymptotic error curve
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Stability analysis

1 Floquet stability is calculated using Hill’s method
» There are numerous turning points/saddle-node bifurcations on all solution branches
» Several branch points/pitchfork bifurcations occur at low frequency
» Some occur on the isolated subharmonic resonances as well

» The response is shown to be unstable where chaotic responses occur
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Conclusions

L Harmonic balance method (HBM) was applied to an SDOF nonlinear oscillator system with freeplay
L The accuracy of nonlinear periodic responses computed with HBM was evaluated
1 HBM is able to capture many types of nonlinear behavior with relatively few harmonics
» 12 harmonics was sufficient to capture nearly all behavior except for cases with hard contact
» Superharmonic resonances and isolated subharmonic resonances
» Isolated ultra-subharmonic resonances tended to require more harmonics (~3 times as many)
» Chaotic responses cannot be captured, but this is expected
» Hard contact required ~6 times as many harmonics
L Stability analysis showed that numerous saddle-node and pitchfork bifurcations occur, particularly at low

frequency
» Although HBM cannot resolve chaotic responses, it can detect unstable regions where it may occur
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