F*** workflows: when parts of FAIR are missing
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Abstract—The FAIR principles for scientific data (Findable,
Accessible, Interoperable, Reusable) are also relevant to other
digital objects such as research software and scientific workflows
that operate on scientific data. The FAIR principles can be
applied to the data being handled by a scientific workflow as
well as the processes, software, and other infrastructure which
are necessary to specify and execute a workflow. The FAIR
principles were designed as guidelines, rather than rules, that
would allow for differences in standards for different communi-
ties and for different degrees of compliance. There are many
practical considerations which impact the level of FAIR-ness
that can actually be achieved, including policies, traditions, and
technologies. Because of these considerations, obstacles are often
encountered during the workflow lifecycle that trace directly
to shortcomings in the implementation of the FAIR principles.
Here, we detail some cases, without naming names, in which
data and workflows were Findable but otherwise lacking in areas
commonly needed and expected by modern FAIR methods, tools,
and users. We describe how some of these problems, all of which
were overcome successfully, have motivated us to push on systems
and approaches for fully FAIR workflows.

Index Terms—data science, FAIR principles, high performance
computing, workflows

I. INTRODUCTION

The FAIR principles — Findable, Accessible, Interoperable,
and Reusable — represent a set of guidelines for management
and stewardship of scientific data [1]. They were designed
and endorsed by a diverse set of stakeholders because of
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the urgent need to improve the infrastructure supporting the
reuse of scholarly data. Additionally, the FAIR Principles put
specific emphasis on enhancing the ability of machines to
automatically find and use the data, in addition to supporting
its reuse by human scholars. This was not common among
other similar data initiatives.

The FAIR principles chiefly concern metadata, which means
that they can be applied to data as well as anything that can
be described by data. For example, FAIR can be applied to
the data being handled by a scientific workflow as well as
to software and other infrastructure necessary to specify and
execute that workflow. In fact, the application of the FAIR
principles beyond scientific data is an active research topic in
areas such as research software [2], computational workflows
[3], and even Jupyter notebooks [4]. There are needs to
continue to adapt research data management to make data
more machine-actionable. Methods for increasing automation,
such as model-driven approaches, promise better efficiency
while reducing sources of human-generated errors, helping to
promote reuse and reproducibility of science data [5]. Because
the FAIR principles were designed for broad applicability,
they are deliberately non-prescriptive, because the meaning of
“necessary and sufficient metadata” varies from one domain to
the next. As a result, they are more like guidelines than actual
rules, and different communities have different standards for
what it means to be FAIR-compliant.

Many scientists do agree, however, that “Science is better
when it adopts FAIR” [6], and as a result, FAIR has grown
from its initial publication into an international movement, but
it has not been without growing pains. FAIR is not prescriptive,
which means that there is no checklist to follow when working
toward compliance, and some of the principles are easier
to implement than others. Naturally, there are also practical



considerations like Return on Investment and cost optimization
that must be taken into account [7].

Here, we detail some cases, without naming names, in
which data and workflows were Findable but otherwise lacking
in the other areas commonly needed and expected by modern
FAIR methods, tools, and users. We describe how some
of these problems have motivated us to push on systems
and approaches for fully FAIR workflows. Fortunately, these
examples are compiled from projects that ultimately completed
successfully, but where FAIR-related problems led to delays,
confusion, or lost opportunities.

As a convention, we will simply use “data” in the text rather
than “(meta)data”, “meta/data”, or other shorthand notations
which might distract the reader from our purpose. We focus
here on both data consumed and produced by workflows as
well as a broad variety of differently structured metadata about
those workflows and their data. All of this metadata is also data
in its own right, of course, and for simplicity, we will simply
use “data” to refer to all of it.

We emphasize that our purpose here is to draw attention to
the practical realities involved in creating different types of
shared scientific data, software, and workflows. Such efforts
are difficult enough in a world of competing and sometimes
contradictory priorities and constraints. Identifying the people
and organizations that have shared their science with us does
not serve that purpose, and thus we have obscured those
names in the following sections. Our personal experiences are
properly used as a lens to see opportunities more clearly for
a better ecosystem.

II. MISSING LETTERS

The level of adherence to the FAIR principles varies across
implementations, and here we relate our experiences when
different letters of FAIR are “missing”. In other words, we
describe examples of obstacles we have encountered, grouped
in terms of the FAIR principle which was most lacking. All of
these examples satisfied expectations for what FAIR considers
Findable, but each shows weaknesses in satisfying criteria for
being Accessible, Interoperable, or Reusable.

A. Accessible

The first step in using data is, of course, to find them, and
having found them, the user needs to know how they can be
accessed, possibly including authentication and authorization.
To that end, there are two FAIR sub-principles regarding
Accessibility. The first is that the data are retrievable by
their identifier using a standardized communications protocol
which is open, free, universally implementable, and able to
support authentication and authorization procedures, where
necessary. The second is that metadata are Accessible even
when the data are no longer available. The example we
describe here exemplifies a situation in which, according to
the FAIR principles, the data are available and seem to fit the
definition for being Accessible, but they still are not machine-
actionable in the ways that the FAIR principles were intended
to enable.

While gathering data for this project, we encountered a
variety of Accessibility issues, many of which likely resulted
from good intentions that had unforeseen consequences. One
frequent hindrance involved cases where the data, though
available, was not readily processable because the authors
had favored making data human-readable at the expense of
making it machine-actionable. As a result, we encountered
tables on web pages that were not easily disentangled from
the markup used to structure and style the page. Another case
included data that could only be downloaded as a PDF, and
the data were presented there in tabular form. Both of these
cases are representative of the same difficult problem, namely
that there is no simple way to infer structure from these visual
presentation modes. Even if data elements can be extracted,
the tabular structure is lost, and so leveraging such a dataset
comes with the cost of manual extraction to a structured format
such as a spreadsheet or a CSV file.

One dataset, which we intentionally refrain from identifying
here, offered a sort of “perfect storm” of Accessibility chal-
lenges. First, as the data required a Data Usage Agreement to
be in place, access to the data was tightly restricted. We were
given a password to access an FTP server and instructed to
use a particular client (Filezilla). Indeed, we found that other
FTP clients were blocked, so access required the additional
step of downloading and installing Filezilla rather than simply
using an already-installed client.

Once we were able to connect to the FTP site, we found we
could see not only our data, but also datasets that had been
prepared for others. Keeping our eyes on our own work, we
downloaded our designated directory, which contained roughly
50 sub-directories, each with a separate encrypted, password-
protected file. The encryption mechanism turned out to be
specific to Microsoft Windows; we therefore had to move the
data to a separate Windows machine, decrypt each of the files
separately, and then move the entire file tree back to the Linux
machine where the data would be processed.

Processing the data continued to present challenges. First,
the naming scheme across the sub-directories’ files, which had
been collected over a number of years, was not consistent.
This made scripting more difficult, as we needed to provide
an explicit mapping from the underlying structure to the actual
filenames.

As a final challenge, the individual data files had been
encoded using a fixed-width format which required a custom
reader to be created just to load and understand the content of
the files. Fortunately, the required information to implement
the reader was provided, but it required reading through a
significant portion of the somewhat lengthy documentation.
This stood out in contrast to other datasets that were being
gathered for the project, which were mostly CSV, netCDF,
and Microsoft Excel files; none of the others provided such a
steep barrier to entry.

B. Interoperable

Data usually need to be integrated with other data. In addi-
tion, data need to interoperate with applications or workflows



for analysis, storage, and processing. For this reason, there
are three FAIR sub-principles that target Interoperability. First,
the data should use a formal, Accessible, shared, and broadly
applicable language for knowledge representation. Second, the
data should use vocabularies that also follow FAIR principles.
Third, the data should include qualified references to other
data.

One solution posed to enable Interoperability of data is to
remodel data according to a concept model or ontology, and
then either to map that data into an existing system or to
build a new system that can leverage this new model, e.g.,
[8]. However, there are some difficulties with this solution,
as it partially assumes that the data at hand easily map to
a data model, both conceptually and in terms of the labels
provided for the data. It also assumes that the original data
are labeled in such a way that a person or group of persons
can translate them into broadly applicable language that uses
FAIR vocabularies and includes qualified references.

In our experiences, invisible context abounds in data stored
in various institutional data silos, especially regarding pol-
icy changes which may have seemed “obvious” at the time
and therefore not worth recording. One concrete example is
the complete set of telemetry data from a decommissioned
computer system. During the system’s active lifetime, all
contextual information about what the telemetry messages
meant was contained in the system’s manual, or “man” pages.
Once the system disappeared, so did the man pages, along
with all of the relevant context about how the messages in
the various telemetry files connected with one another and,
crucially, if they would pose any security risks should they
be made available outside of the institution. Today, the data,
which are comprised of approximately 3 terabytes of mostly
unstructured text files, exist in a kind of limbo, where they
cannot be destroyed but also cannot be shared widely, since the
cyber security staff cannot say with certainty that the data are
safe to release to the wider public. Because crucial contextual
information about the requisite qualified metadata references
between the files has been lost with the decommissioning of
the system, there is no way to render this dataset Interoperable
with itself or other systems.

Another tricky facet of Interoperability is the means of
knowledge representation, which is asserted in the first In-
teroperability principle. Both “shared” and “broadly applica-
ble” seem like reasonable conditions for language at first.
Instead, it turns out that this is actually quite complicated
because domains often disagree within themselves about what
is “shared” and/or “broadly applicable.” Star and Griesemer
[9] describe the heterogeneity inherent in scientific work, even
within one domain, and develop the concept of the boundary
object, where a single object can be used for different purposes
by different people, even by people working toward a similar
research goal.

Crucially, the concept of a boundary object is predicated
on standardization, where something with a standardized or
predetermined structure, such as a map or a bird, can main-
tain a common identity, but may have different conceptual

meanings in different communities of practice. In a later paper
clarifying how the concept of a boundary object has evolved
in the research community, Star underscores that scientists are
able to cooperate even when consensus is rarely reached on
how to describe a boundary object [10].

For instance, one concrete example appears in medical
procedures within the domain of a hospital, where there may
be both local and shared meaning about these procedures.
Local meaning might be the work of nursing staff, where
perceived granularity in various procedures (captured in the
Nursing Interventions Classification, or NIC) differs with what
might be coded as a Current Procedural Terminology (CPT)
code. For instance, the NIC includes the category of “Spiritual
Support” (5420). This same concept does show up in CPT
codes, but is specific to the work of Chaplains (Q9001-Q9003).
If a hospital system opted for CPT codes as the “broadly
applicable” lingua franca for procedures, this granular concept
for the specific nature of nursing work is completely lost, as
there is only one CPT code for nursing care in a hospital
(99211). The boundary object, “nursing care”, is understood
both by nurses and the rest of the hospital staff, but it
is conceptually different, and therefore rendered differently,
depending on what classification system codes this object.
Using terms like “shared” and/or “broadly applicable” ignores
that subgroups within a domain may need to maintain a vague
identity for a common object, and for this reason obscures how
this principle can erase potentially essential granularity in how
concepts get represented. This, in turn, affects Interoperability
with systems that use classifications of varying granularity.

A recent study describes the roadblocks encountered when a
clinical research team attempted to retrieve 23,186 abdominal
CT exams from radiology systems [11]. One of the first
difficulties they encountered were the Accession Numbers
(ACCs) used across different hospitals, which were not only
inconsistent from one system to the next, but also linked
to resulting images differently “such that the images were
most often linked to the abdomen ACC, but they could also
be linked to the pelvis ACC, or even the chest ACC if
chest, abdomen, and pelvis CT exams were acquired together.
These linkages varied over time due to changing systems and
policies.”

It is that final sentence which reveals the tremendous
difficulty in applying the third Interoperability principle to
this example. It is unclear exactly how changing systems
and policies should be handled or described via qualified
references to other data. In fact, their discussion of these
roadblocks includes evolving policies as a major obstacle
to research, because the policies reflected in the data were
only understood when the team members were able to find
individuals whose memories spanned these policy changes.

C. Reusable

Ultimately, the goal of FAIR is to optimize the reuse of
data. To achieve this goal, metadata and data should be well-
described so that they can be replicated and/or combined in
different settings. As a result, FAIR also includes a Reusability



principle, which somewhat confusingly has one sub-principle
comprised of three sub-sub-principles. Broadly speaking, the
Reusability principle says that data should be richly described
with a plurality of accurate and relevant attributes. More
specifically, it says that data should be released with a clear
and Accessible data usage license, that data should be asso-
ciated with detailed provenance, and that data should meet
domain-relevant community standards.

There are a number of open problems in workflow science
that make it difficult to apply the Reusability principle to
scientific workflows themselves. One of these problems is that
the word “workflow” does not have a consensus community
definition [12]. Without community agreement on precisely
what constitutes a workflow, there can be no agreement on
precisely what metadata are necessary to describe a workflow
fully. Goble et al. [3] propose two areas in which the FAIR
principles apply to workflows: FAIR data both for and from
workflows, and criteria for FAIR digital objects. In the case of
FAIR data for and from workflows, workflows would include
descriptive metadata about the data produced as well as meta-
data that helps trace that data’s provenance. When considering
workflows as FAIR digital objects, as in the second case, a
workflow is seen as an “object” describing methodology that
may be subsequently distributed, used, cited, and modified.
Without a community agreement on what a workflow “is”,
however, these two areas for applying FAIR remain ill-defined.

For our purposes here, then, in applying the Reusability
principle to workflows, we will consider scientific workflows
to include all of the data, processes, and infrastructure nec-
essary to follow the steps of the Scientific Method for a
given experiment. Reusability obstacles then arise for scientific
workflows at several levels.

One source of Reusability applies to tracking the provenance
of the data being manipulated by workflows. “Provenance”
is both subjective and tricky, even within the context of a
domain (more on the complications of the word ‘“domain-
relevant” later). Provenance is often an afterthought or is han-
dled inconsistently — not a standard practice or priority. Fur-
thermore, standards for recording provenance are not widely
known (e.g., the W3C’s PROV-O ontology [13] or PROV-
JSON serialization [14]). For instance, some researchers lack
support for post-experiment metadata documentation, resulting
in ad-hoc result management like naming output files with
experiment parameter values; this is, in fact, a practice we
have encountered among colleagues and collaborators working
in certain domains at Oak Ridge National Laboratory (ORNL).
There is great need for institutional support for systems
that provide a convenient means to record domain-specific
experimental metadata like inputs, outputs, and context of
processes linked to a given workflow. Without such support,
the burden then falls on the researcher to invest time into
recording this information somewhere and either assuming
the technical debt of maintaining a system-of-record for this
provenance, or, more practically, using whatever is reasonably
available at the time, such as a file or directory name.

Provenance is further complicated when data are aggregated

from external sources, where information related to collection
methods, coding standards and vocabularies (whether local
or more widely-used), modification history, etc. is entirely
up to an external group or organization to document and
make available. Several sizeable datasets stewarded by ORNL
arrive from external organizations containing their own local
representations that, when aggregated, show inconsistencies
at the data level that cannot be clearly traced to a singular
process or set of documentation practices (e.g., variable coding
standards for medical laboratory tests).

As mentioned earlier, “domain-relevant” is also a com-
plicated assertion which is also related to the discussion
of boundary objects in the Interoperability section. What,
specifically, is a domain? What are the boundaries of a domain,
and how are they determined? Beyond finding a clear way
to define a domain, many concepts within domains are hotly
debated by researchers, so pointing to a standard is essentially
meaningless in some cases. Alternatively, they would at least
require the ability to record two simultaneous standards for
certain concepts depending on the scientific stance of the
researcher. An example here would be that they share the
same ontology, such as the ontic versus epistemic views of
quantum physics, or perhaps asking researchers in electron
microscopy to clarify the difference between ‘“high-tension”
and “acceleration voltage”, which may or may not be used
interchangeably, depending on whom you ask.

Another set of obstacles we have encountered while ap-
plying Reusability to workflows appears in the important
step of packaging the workflow for consumption by others,
such as for reproducing the experiment. Specifically, it is
difficult if not impossible to package a workflow for reuse
when it contains unwritten, human-centric operations. As a
concrete example, we have encountered a workflow in which
one particular step involves column-wise pasting of a large
number of individual tabular files into a single large file.
This is a simple concatenation that could be accomplished
with the UNIX “paste” command in theory, but the datasets
are generally too large for a single paste to suffice without
significant performance degradation. The solution requires a
series of smaller pastes to be performed over subsets of files
until a final paste can merge the pasted subsets. This requires
careful planning from a human in order to divide the pasting
into parallelizable sub-jobs that will each have a reasonably
short runtime and avoid filesystem bottlenecks from working
with too large a number of files simultaneously. The scientist
also must monitor the jobs after launching them to make sure
that they are completing successfully and to keep track of
remaining jobs. These tasks can be accomplished by modern
scripting languages, but scientists often forego automation for
various reasons. How, then, can this workflow be packaged, if
so much of it was unwritten and performed by a human?

III. DISCUSSION

These examples are compiled from issues and projects that
proceeded to success, but where the lack of, or idiosyncratic



interpretation of, the FAIR principles has led to delays, confu-
sion, or lost opportunities. These sorts of scenarios are almost
assuredly not a surprise to most practitioners in the sciences; in
fact, it is generally considered a solved problem. That solution,
unfortunately, is to throw people at it — to hire a graduate
student, a post-doc, or a technical data engineer, for example,
and just tell them to go away and work on it for six months.
Our purpose in revisiting and talking about these problems is
as a reminder that it doesn’t have to be this way.

Science is ultimately driven not just by the discovery of new
information, but also by the communication of that information
in a way that it can be reused and built upon and accumulated.
With some more attention to the systems and management, we
could be generating datasets, software, and workflows that are
more Reusable and Accessible in both the context of science
and in the context of modern data and cloud architectures.
We need to include the human costs and the fragility of the
current process in any Return on Investment calculation for
developing and adopting new approaches, and in that light,
we believe there is a clear case and need for such investment.

The hidden costs of human investment in reuse is known
as “technical debt” in the software engineering field. Some
of us have been working to make this connection between
a more generalized concept of technical debt for scientific
data and workflows and the need for better and more FAIR
infrastructures [15]. In the broader context, this problem is
hardly new or unexpected. It is particularly important now,
however, as we see the rise of data-intensive science appli-
cations that leverage the explosion in interest in Artificial
Intelligence (AI) and Machine Learning (ML) techniques.
Feeding such algorithms so that they can generate reasonable,
unbiased, scientifically valid results means that the Reusability,
Interoperability, Accessibility, and Findability of scientific
results and the provenance of the processes and workflows
used to generate them must all be readily available.

Awareness of the FAIR principles among scientists grows
every day, but for adherence and adoption to keep up, incentive
systems will need to improve. Research Funding Organizations
(RFOs) can be strong drivers, for example, by acting as
both the proverbial carrot and the corresponding stick. RFOs
can combine their funding requirements and funding policies
(“stick”) with guidance and financial support (“carrot”) for
researchers to incorporate tools and standards that make their
data FAIR while fitting their research objectives [16]. In this
way, RFOs also encourage research institutions to improve
support and facilities for their researchers to create FAIR data,
because they need to comply with the funder’s requirements.
As another example, publication of quality-assured datasets
with standardized metadata should be rewarded in the same
way that research papers in high-impact journals are [17]. The
hope in this approach is two-fold: that researchers would be
as eager to share their data as they are to publish their results,
and that they would prioritize the quality of the published data.
This same idea also extends to the publication of software and
workflow tools, which are often available only upon request.

Finally, we should emphasize that the research efforts we

have discussed have all led to quality scientific contributions,
in spite of the issues and problems we have identified. We are
excited by the possibilities of a research enterprise in which
not only these kinds of efforts are made easier, but also the
process of extending them is made more straightforward.

IV. CONCLUSION

At the same time that the FAIR principles “hit a chord”
[18], workflows have quickly grown and become the default
abstraction in large-scale computational science. As a result,
the FAIR principles are also becoming more popular as a com-
mon vocabulary for discussing and comparing workflows. We
observe that the community’s understanding of the interplay
between FAIR’s components — and how that interplay is best
realized in operating system, runtime, and application software
— has lagged FAIR’s increased usage as a lingua franca. Until
that understanding is better developed, situations such as the
ones we have described here are likely to continue to arise. In
the near term, we hope that discussions like this help scientists
avoid similar time-consuming roadblocks in the pursuit of their
scientific objectives. We hope that these personal examples of
datasets and opportunities where open science could have used
a little more FAIR-ness are not read as a condemnation of
any one collaborator, provider, or discipline. Instead, for the
longer term, we see this as a call to arms for all of us across
the community to remember that these sunk costs exist. There
is no reason for them to remain an assumed part of business
as usual.
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