

1 **Effects of C:Mn ratios on sorption and oxidative degradation of small**
2 **organic molecules on Mn-oxides**

3
4
5
6 by
7

8 Hui Li^{1,2*}, Benjamin Reinhart³, Spencer Moller⁴, Elizabeth Herndon^{2*}
9
10

11 ¹ *Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695*

12 ² *Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831*

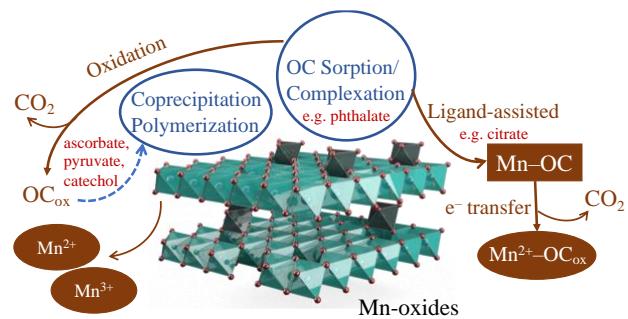
13 ³ *X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439*

14 ⁴ *Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716*

15
16 * Corresponding author:

17 Hui Li; Email: hli73@ncsu.edu

18 Elizabeth Herndon; Email: herndonem@ornl.gov


19
20 Submitted to

21 Environmental Science & Technology

22
23 2022

24

25 TOC Art

26

27 **ABSTRACT:**

28 Manganese (Mn) oxides have high surface area and redox potential that facilitate sorption
29 and/or oxidation of organic carbon (OC), but their role in regulating soil C storage is relatively
30 unexplored. Small OC compounds with distinct structures were reacted with Mn(III/IV)-oxides
31 to investigate effects of OC:Mn molar ratios on Mn–OC interaction mechanisms. Dissolved and
32 solid-phase OC and Mn were measured to quantify OC sorption to and/or redox reaction with
33 Mn-oxides. Mineral transformation was evaluated using x-ray diffraction and x-ray absorption
34 spectroscopy. Higher OC:Mn ratios resulted in higher sorption and/or redox transformation;
35 however, interaction mechanisms differed at low or high OC:Mn ratios for some OC. Citrate,
36 pyruvate, ascorbate, and catechol induced Mn-oxide dissolution. The average oxidation state of
37 Mn in the solid phase did not change during reaction with citrate, suggesting ligand-promoted
38 mineral dissolution, but decreased significantly during reactions with the other compounds,
39 suggesting reductive dissolution mechanisms. Phthalate primarily sorbed on Mn-oxides with no
40 detectable formation of redox products. Mn–OC interactions led to primarily C loss through OC
41 oxidation into inorganic C, except phthalate, which was predominantly immobilized in the solid
42 phase. Together, these results provided detailed fundamental insights into reactions happening at
43 organo-mineral interfaces in soils.

44 KEYWORDS: Mn–OC interaction mechanisms, OC immobilization, OC oxidation, phase
45 transformation, OC:Mn molar ratio

46 **SYNOPSIS:**

47 Research findings of this study provide evidence of multiple roles of Mn-oxide minerals in
48 stabilizing and/or destabilizing carbon in soils and sediments.

49

50 **INTRODUCTION**

51 Soil is the largest terrestrial organic carbon (OC) reservoir.¹ Much of this OC is intimately
52 associated with soil minerals.² Therefore, a fundamental understanding of soil OC reactivity at
53 mineral-water interfaces is essential to anticipating soil C storage and fluxes and their
54 contributions to global climate change. Most past studies have largely focused on C stabilization
55 by common Fe- and Al-(hydr)oxides (oxides hereafter),²⁻⁴ whereas, the importance of Mn-
56 oxides, which have much lower natural abundance than Fe- and Al-oxides, in controlling fate
57 and transport of soil OC has been scarcely documented. Mn-oxides have high adsorption
58 capacities and oxidizing capabilities for inorganic^{5, 6} and organic compounds⁷⁻⁹, and may play a
59 significant role in regulating C presence and cycling in soils via chemical binding, physical
60 entrapping and/or oxidizing OC.^{10, 11} A study that mapped the distribution of Mn, Fe and C in
61 soil ferromanganese nodules revealed a great OC association in the transition zones between Fe
62 and Mn minerals but not with pure Fe minerals.¹² In another study, C was physically entrapped
63 in nanocrystalline Mn-oxides during vermiculite weathering in an acidic forest soil.¹¹ In addition,
64 though Mn participates widely in reactions with C, the mechanisms by which Mn promotes or
65 inhibits soil C storage remains unclear. Improved understanding of Mn-OC interaction
66 mechanisms is important for investigations into the influence of Mn on C cycling in terrestrial
67 environments as well as for understanding contaminant removal and nutrient cycling in soils,
68 sediments, and wastewater treatment systems.

69 Organic matter interacts with common soil mineral surfaces through various types of
70 mechanisms, including electrostatic interaction, ligand exchange, surface complexation, cation
71 bridging, Van der Waals forces, hydrogen bonding, and hydrophobic interactions.^{10, 13}
72 Adsorption and surface complexation are the prerequisite steps for reactions at mineral
73 surfaces.¹⁴ Surface properties affect the complexation mechanisms of OC compounds. For
74 instance, catechol binds to Fe₂O₃, TiO₂, and Cr₂O₃ as inner-sphere complex but predominately as
75 an outer-sphere complex to MnO₂ within the pH range between 3 and 10.¹⁵ In addition, due to
76 distinct characteristics of different moieties, various organic compounds may possess diverse
77 adsorption capacities onto minerals.^{10, 16} Thus, the rate and mechanisms of interactions between
78 OC compounds and Mn-oxide minerals are highly dependent on adsorptive and complexing
79 properties of OC and minerals.

80 Once surface complexes are formed, some OC compounds are capable of transferring
81 electrons to Mn, initiating ligand-assisted and/or reductive mineral dissolution coupled to
82 oxidative decomposition of these organic compounds.^{14, 16-18} For instance, oxalic acid,
83 phosphonoformic acid and citric acid, acting as both reducing agents and chelating agents,
84 strongly adsorb on Mn-oxides and drive mineral reduction and dissolution.^{14, 17} Although the
85 potential for Mn-oxides to sorb and/or oxidize organic matter has been established,¹⁰ their

86 specific interaction mechanisms and the extent to which these interaction reactions occur with
87 diverse organic compounds that comprise various structures remain poorly constrained.

88 Soil organic matter is a complex mixture of a wide variety of organic compounds, differing in
89 molecular size, polarity, composition and position of various functional groups that greatly
90 influence the affinity and reactivity of OC to Mn-oxides.^{10, 19} Interaction mechanisms between
91 individual OC compounds and Mn-oxides may be different and depend on environmental
92 conditions or relative abundances.^{16, 20} For example, citrate formed more inner-sphere complexes
93 with hematite at lower C:Fe ratios.²¹ Higher initial OC:metal molar ratios resulted in a higher
94 adsorption rate of dissolved organic matter on hydrous manganese oxide and goethite.^{8, 20} Citrate
95 had stronger reducing capability on Mn-oxides than oxalate due to their differences in
96 characteristics and binding sites on minerals.¹⁶ Fulvic acid induced different transformation
97 products of Mn-oxide at different OC:Mn ratios.²⁰ Furthermore, few studies adequately evaluate
98 both sorption and degradation processes that occur during reactions between organic compounds
99 and Mn oxides. Experiments that measure either loss of C from solution or C accumulation in the
100 solid-phase fail to account for loss of inorganic C produced during reactions. Studies that
101 quantify dissolved Mn as a metric for determining reaction rates may overlook reduced Mn in
102 the solid-phase or Mn that has re-oxidized on the mineral surface.

103 In this study, we investigated the ability of Mn-oxides to either immobilize or oxidize various
104 forms of soil OC compounds in order to evaluate the impact of Mn-oxides on carbon storage in
105 soils. Accordingly, the primary aim of the present study was to investigate the interaction
106 mechanisms of representative OC compounds with Mn-oxides. In a controlled system,
107 adsorption reactions of five OC compounds (phthalate, catechol, ascorbate, pyruvate, and citrate)
108 on Mn-oxide minerals at a broad range of OC:Mn molar ratios were studied. These low
109 molecular weight organic compounds of known structures share common functional groups (e.g.,
110 hydroxyl, carboxyl, and benzene ring) with heterogeneous natural organic matter whose
111 fundamental interaction mechanisms with soil minerals are challenging to identify. Studies in
112 this simplified system containing single phase organic compounds, instead of a mixture of a wide
113 variety of extracted natural OM, and pure mineral assemblages are useful from a methodological
114 point of view to obtain fundamental information about solute-surface interaction mechanisms
115 and without biotic interferences. In addition, we quantified the relative proportions of OC
116 removed from solution due to either association with minerals or production of inorganic C in
117 order to compare contributions of Mn-oxides in C stabilization versus C loss.

118

MATERIALS AND METHODS

119 **Sorption Reactions**

120 Five common and naturally existing aromatic or nonaromatic OC compounds (characteristics
121 listed in Table S1)—phthalate, catechol, ascorbate, pyruvate, and citrate—were studied for their
122 distinct sorption mechanisms on Mn-oxide minerals. These experiments were conducted with
123 three synthetic Mn-oxides: birnessite, hydrous Mn oxide, and cryptomelane (methods in SI).
124 Given that the differences between different minerals (Table S2 and Figure S1) were much
125 smaller than that among OC compounds, we averaged the results of phase transformation of OC
126 and Mn induced by each OC compound over all three Mn-oxides to focus the comparison among
127 OC compounds.

128 Batch adsorption reactions of each OC compound with Mn-oxides were conducted in 50 mL
129 falcon tubes for 24 h at room temperature (22 ± 1 °C). All glass vials and milli-Q water used in
130 the experiments were autoclaved. A fixed amount of Mn-oxide suspension (8 mmol L⁻¹) was pre-
131 equilibrated in 0.01 mol L⁻¹ of NaH₂PO₄/Na₂HPO₄ buffer at pH 7.0 ± 0.1 . Concentration level of
132 phosphate buffer is higher than in some natural soils,²² however, is necessary to achieve high pH
133 buffering capacity. Stock solutions of 2.5 mol C L⁻¹ of individual OC were maintained at pH 7.0
134 ± 0.1 by adding 1 mol L⁻¹ HCl or NaOH. The adsorption reaction was initiated by adding
135 different volumes of OC stock solutions to mineral suspensions to reach a total volume of 30 mL
136 and to obtain different OC:Mn molar ratios, ranging from 0 to 41:1. All reactors were shaken at
137 190 rpm continuously for 24 h. Suspensions were then centrifuged and filtered through 0.1 µm
138 polyethersulfone membranes (Millipore Sigma), and supernatant and solid phases were kept
139 separately for further analysis. A control set without OC addition was included to test the
140 dissolution rate of synthetic Mn-oxides in the buffer solution. Another control set without Mn-
141 oxides was also conducted in parallel to determine the stability of these OCs under experimental
142 conditions. No additional electrolyte solutions were introduced in this study since the
143 concentration of pH buffers were high enough to maintain constant ionic strength.

144 **Quantification of Dissolved Organic Carbon and Dissolved Manganese Contents**

145 Concentration of dissolved organic carbon (DOC) in supernatant was quantified on a total
146 organic carbon analyzer (TOC-L, Shimadzu corporation, Kyoto, Japan) using the 680 °C
147 combustion catalytic oxidation method, with a detection limit of 4 µg C L⁻¹. Samples were
148 diluted with 0.1% concentrated HCl solution prior to analysis to remove inorganic carbon.
149 Decreases in DOC in solution over time were attributed to sorption to the solid phase and/or
150 reactions that produced inorganic C. Concentration of dissolved Mn in supernatant was
151 determined on an inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo
152 Scientific iCAP 7000 Series). Subsamples for this analysis were diluted with 1% concentrated

153 HNO₃ solution right after sample collection from the sorption experiments. Transformation of
154 organic compounds after interacting with Mn-oxides was determined using solution ¹H nuclear
155 magnetic resonance (NMR) spectroscopy (details in SI), where appearance of new peaks at
156 chemical shifts different from original OC compounds indicated the formation of oxidation
157 products.

158 **Solid Phase Characterization**

159 The weight percentage of total C in solid phases was quantified on an Elementar Unicube®
160 trace organic elemental analyzer. A soil containing 2.69 wt.% of C was used as a reference to
161 calibrate the internal standard curve. Carbon contents in solid samples were determined by high
162 temperature combustion according to the Dumas method via a thermal conductivity detector,
163 with a low detection limit of 10 µg/g.

164 Phase identification of Mn-oxides before and after OC interactions under specific OC:Mn
165 molar ratios was characterized by X-ray diffraction (XRD) using a Panalytical Empyrean
166 diffractometer with CuK_α radiation at 45 kV and 40 mA over a 2θ range from 5° to 90° with a
167 step size of 0.033° and a Bruker D8 x-ray diffractometer with CuK_α radiation at 45 kV and 40
168 mA over a 2θ range from 5° to 90° with a step size of 0.05°.

169 **X-ray Absorption Spectroscopy**

170 X-ray absorption spectroscopy (XAS) was conducted at beamline 12-BM at the Advanced
171 Photon Source (APS) in April 2021. Freeze dried solid samples were mixed well, packed into
172 Teflon sample holders, and sealed with Kapton tape. XAS spectra were collected from -200 eV
173 to +642 eV around the Mn K-edge (6539 eV) in transmission mode with a 500 µm wide beam at
174 1×10^{11} @ 12 keV photons per second. Data processing, including energy calibration, merging of
175 duplicate scans and linear combination fits, was performed in Athena (version 0.9.26).²³ All
176 spectra were referenced to a Mn foil with an E⁰ = 6539 eV.

177 Linear combination fits to determine the average oxidation state (AOS) of Mn were
178 performed in the X-ray absorption near edge structure (XANES) region from -20 to +30 eV
179 using reference spectra for single valence compounds (Mn(II)-oxalate, Mn(II)-oxide,
180 rhodochrosite, Mn₂O₃, Mn(III)-oxyhydroxide, ramsdellite, Li₂MnO₃ and pyrolusite) following
181 the Combo method^{23, 24}. Best fits were selected as those reporting minimal reduced chi-square
182 values. Relative fractions of Mn(II), Mn(III) and Mn(IV) were calculated from the best fits to
183 determine the average oxidation states of bulk Mn (Table S3). Furthermore, to compare the
184 structural changes of Mn-oxides, Mn K-edge extended X-ray absorption fine structure (EXAFS)
185 spectra were converted to the k³-weighted function and Fourier transforms were calculated over
186 an R range of 1–6 Å.

187 **Statistical Analysis**

188 Significant differences in the changes of Mn AOS after interacting with organic compounds
189 were assessed with one-way ANOVA, Tukey's honestly significant difference (HSD) test
190 approach at 95% confidence level, using the agricolae package in R (version 2021.09.1).

191 **RESULTS AND DISCUSSION**

192 **Immobilization and oxidative decomposition of organic compounds by Mn-oxides**

193 Decreases in DOC in solution are attributed to sorption and precipitation that immobilize C in
194 the solid phase and/or redox reactions that produce inorganic C, presumably through oxidation to
195 CO₂ (Figure S2a). The amount of generated inorganic C is calculated from the difference
196 between the total organic C loss from aqueous solutions and the amount of immobilized C in
197 solids. For all OC compounds, higher initial OC:Mn molar ratios result in linear increases in C
198 accumulation in solids (Figure 1a). Carbon immobilization may result from processes such as
199 adsorption, surface precipitation, co-precipitation with reduced Mn, and polymerization of
200 decomposed OC fractions.¹⁰ Ascorbate and its decomposition products have higher accumulation
201 in the solid-phase than the other OC compounds. For most of the studied organic compounds,
202 OC contributed approximately 10% of the total weight of the solid phases at OC:Mn>5,
203 indicating strong C stabilizing capability of Mn-oxides and their transformation products (Figure
204 S2c). However, citrate-C does not accumulate in the solid-phase at OC:Mn > 20 due to a
205 complete dissolution of Mn-oxides and absence of solid-phase transformation products.

206 Higher OC:Mn ratios also result in more C being oxidatively decomposed (Figure 1b). Citrate
207 has the highest tendency to be oxidized by Mn-oxides to produce inorganic C, followed by
208 ascorbate, pyruvate, and catechol, which generally follows the increasing trend of pKa values of
209 their conjugate acids (Table S1). Production of inorganic C stabilizes or decreases at high
210 OC:Mn, which may indicate depletion of necessary reactants to drive oxidation, e.g., complete
211 Mn-oxide dissolution or decrease in oxidizing capacity of Mn minerals.

212 As the initial concentrations of OC compounds increase, a lower percentage of initial C is
213 removed from solution due to accumulation in the solid-phase and/or loss as inorganic C (Figure
214 S2b). For example, $\geq 10\%$ of citrate-C is reacted at OC:Mn < 5 while $\sim 5\text{--}10\%$ is reacted at
215 OC:Mn>5. The percentage of reacted citrate-C is similar to pyruvate and higher than ascorbate,
216 catechol and phthalate. However, low percentage of C loss from solution is not necessarily equal
217 to low interaction extent. Some organic compounds may react with Mn-oxides, and then either
218 the original OC compounds or their decomposition products will be released back to the solution.
219 Given the high concentration of original OC ranging from 5 to 333 mmol L⁻¹ and low percentage
220 of reacted C, which means abundant unreacted OC, in most reaction systems, competition of
221 phosphate and dissolved organic/inorganic C for adsorption on Mn-oxide surface sites will be
222 minimal. However, at low OC:Mn ratios, which means similar concentration levels of initial OC
223 and phosphate buffer, phosphate competition with OC for mineral surface sites may have slightly
224 reduced OC and mineral interaction extent.

225 The relative contributions of C immobilization in solids and oxidative generation of inorganic
226 C to the total C loss differ amongst OC compounds (Figure 1c and 1d). Citrate-C removed from
227 solution is almost completely oxidized to inorganic C. Carbon losses for pyruvate, catechol and
228 ascorbate are also dominated by oxidative decomposition to inorganic C, while phthalate-C is
229 fixed in solids. For ascorbate, pyruvate, and catechol, the relative proportion of C immobilized in
230 the solid-phase decreases up to OC:Mn ~5 and then increases at OC:Mn >5, contributing more
231 than 60% of the total C loss for ascorbate at OC:Mn>30. These patterns suggest that C
232 immobilization reactions differ at low and high OC:Mn ratios. Sorption reactions alone are
233 certainly not sufficient to describe the complete interaction phenomenon. Thus, other analyses
234 are used in order to provide more detailed descriptions to the molecular mechanisms.

235 **Dissolution and reduction of Mn-oxides**

236 The higher OC:Mn molar ratios also result in a greater Mn-oxide dissolution by several OC
237 compounds (Figure 2 and S3). Citrate, pyruvate, ascorbate, and catechol dissolve appreciable
238 amounts of Mn-oxides and/or lead to a mineral phase transformation. Citrate induces more than
239 three-times more Mn dissolution than other organic compounds (open circle in Figure 2),
240 reaching approximately 100% of initial Mn in Mn-oxides, followed by pyruvate, ascorbate and
241 catechol. However, there is no detectable amount of dissolved Mn in the solution of phthalate,
242 due to either no mineral reduction and dissolution or rapid re-adsorption of reduced Mn by Mn-
243 oxides.

244 Calculated from the fitting results of XANES spectra (Table S3 and Figure S4), Mn AOS in
245 solid phase significantly decreases from ~4 to ~2 or remains unchanged following reactions with
246 different OC compounds at various OC:Mn ratios (Figure S5). The amount of total reduced Mn
247 in Figure 2 (open square) is the sum of dissolved Mn in aqueous phase and reduced Mn in solid
248 phase (Table S3). The amount of Mn reduction induced by citrate remains very close to that of
249 Mn dissolution, indicating that all reduced Mn is released into solution. Reactions between Mn-
250 oxides and pyruvate, ascorbate, and catechol release relatively little dissolved Mn but result in
251 nearly 100% reduced Mn(II) in the solid-phase, even at lower OC:Mn molar ratios than citrate.
252 Thus, initial Mn-oxides were reduced, but Mn(II) was immobilized in the solid phase rather than
253 released into solution. The phosphate buffer used in this study may inhibit mineral dissolution, to
254 some extent, due to coprecipitation with Mn(II) and/or ligand competition²⁵. Our analysis below
255 also suggests that low Mn dissolution in catechol, ascorbate and pyruvate involved reactions may
256 be ascribed to the coprecipitation of phosphate with reduced Mn to form Mn(II)-phosphate.


257 **Change of equilibrium pH due to Mn-OC interactions**

258 Although a pH buffer is introduced to maintain the pH around 7, the equilibrium pH values in
259 solution still change following OC and Mn-oxides interactions (Figure 3). No pH change was
260 observed in controls containing no OC and/or no mineral. In general, the studied OC compounds

261 induce three different trends of pH changes—increase, no change and decrease. These findings
262 suggest that at least three interaction mechanisms are taking place between different OC
263 compounds and Mn-oxides.

264 At OC:Mn<10, the equilibrium pH after interacting with citrate increases up to about 1.5
265 units; but at higher OC:Mn ratios, this pH increase is much subtler. Similarly, at OC:Mn<1, the
266 addition of catechol also prompts salient pH increase, with the peak pH increase up to 1.5 units
267 at OC:Mn~0.5. However, higher C loading results in much smaller pH increase. These findings
268 suggest that two distinct interaction mechanisms may be at play at low and high OC:Mn ratios.
269 The addition of phthalate does not incur significant pH changes. On the contrary, interactions
270 with pyruvate and ascorbate induce a slight pH decrease of mineral suspensions at a broad range
271 of OC:Mn ratios.

272 Given the low point of zero charge values of these Mn-oxides, they are net negatively charged
273 at the experimental neutral pH conditions, containing $-\text{MnOH}$ and $-\text{MnO}^-$ as dominant surface
274 sites. Thus, when complexing with organic compounds, the following model reactions may take
275 place ²⁶:

278 where RCOO^- represents a dissociated carboxylate group. These reactions result in the release of
279 hydroxyl groups via ligand exchange. In addition, this pH increase may also result from the
280 oxidation of organic compounds (e.g. catechol) that release hydroxyl groups.^{17, 25} Moreover, the
281 dissolution process of MnO_2 consumes 4 times equimolar of H^+ of Mn ²⁷ that can dramatically
282 derive the pH increase, e.g. for citrate. On the contrary, pH decrease may be ascribed to the
283 generation of CO_2 as a product of oxidative degradation of OC compounds that dissolves in the
284 suspension.^{17, 28} Furthermore, the adsorption of reduced Mn^{2+} back onto the mineral surface may
285 result in a release of approximately 2 moles of H^+ per mole of sorbed Mn .²⁹ An unchanged pH of
286 Mn-oxide suspensions after interacting with phthalate may suggest a physical sorption process,
287 without net exchange of H^+ or OH^- groups.

288 Therefore, when interacting with citrate and catechol, the relative dominancy of $-\text{OH}$ release
289 during ligand exchange and mineral dissolution and the oxidative generation of CO_2 and re-
290 adsorption of dissolved Mn^{2+} are regulating the extent of pH change of mineral suspensions at
291 different OC:Mn ratios. At lower OC:Mn ratios, reactions that release $-\text{OH}$ dominate and lead to
292 a dramatic pH increase; however, at higher ratios, the contribution of the CO_2 generation
293 becomes more prevailing that offsets a fraction of the released $-\text{OH}$. A slight pH drop in
294 ascorbate and pyruvate systems may ascribe to relative abundant formation of inorganic C and

295 adsorption/precipitation of dissolved Mn²⁺, which, however does not occur in citrate system. No
296 pH change in phthalate system suggests other sorption mechanisms rather than ligand exchange.

297 **Mn K-edge extended X-ray absorption fine structure spectroscopy**

298 The Fourier transformed EXAFS spectrum of birnessite in R space shows two peaks at ~1.5
299 and ~2.5 Å (R+ΔR) that correspond to the Mn–O in MnO₆ octahedra and the edge-sharing Mn–
300 Mn, respectively, and a weak peak at ~3 Å (R+ΔR) corresponds to scatterings of adsorbed
301 Mn(II) and/or Mn(III) at MnO₆ octahedra layer vacancies (Figure 4), which is in agreement with
302 other synthetic birnessite minerals.^{30, 31} After the interaction with phthalate, these peaks remain
303 mostly unchanged at a wide range of OC:Mn molar ratios from 0.2 to 15 (Figure S6). Interaction
304 with citrate induces a slight decrease in intensities of these peaks, which may be due to a
305 decrease in particle size³⁰ and mineral dissolution. Interaction with catechol, pyruvate and
306 ascorbate leads to apparent shifts of these peaks. However, catechol induces dramatic shifts of
307 these peaks at both low and high OC:Mn molar ratios, which indicate either an increase in Mn–O
308 and Mn–Mn shell distances or a complete phase transformation of birnessite (Figure S6).
309 Changes in peak positions are consistent with dramatic and almost complete Mn reduction
310 induced by catechol at OC:Mn>0.5. However, the interaction with ascorbate at OC:Mn=0.2 and
311 with pyruvate at <4 induces only a slight decrease in intensities of these peaks, but dramatic
312 shifts at higher OC loading ratios, suggesting complete mineral phase transformation only at high
313 OC:Mn molar ratios (Figure S6).

314 **Mn phase transformation identified by XRD**

315 XRD is applied to further evaluate the solid phases that change in their appearance (Figure
316 S7) and in EXAFS spectra following reactions with several organic compounds (e.g. ascorbate,
317 catechol and pyruvate) at high OC:Mn molar ratios. Compared with original Mn-oxide, the
318 association of phthalate and citrate results in an addition of characteristic peaks of these organic
319 compounds in the XRD patterns (Figure 5 and S8), suggesting that these OC compounds form
320 complexes with Mn-oxide but no Mn phase changes occur. Following reaction with ascorbate
321 and catechol, peaks of the initial Mn-oxide disappear and new peaks consistent with Mn(II)-
322 phosphate [Mn₃(PO₄)₂] appear. The solid-phase that remains following reaction with pyruvate
323 has low crystallinity but shows slight peaks at 27°, 30°, and 35°, which are major characteristic
324 peaks of Mn(II)-phosphate.

325 **Influences of phosphate buffer on the fate of reduced Mn**

326 The phosphate that is used in the pH buffer coprecipitates with dissolved Mn following
327 reduction of Mn-oxides by certain organic compounds. As a strong inorganic ligand, phosphate
328 has a higher Mn(II)-complex constant than all the studied organic compounds, except citrate
329 (Table S1), suggesting strong complexing capability of phosphate with reduced Mn. These

330 results are in accordance with the visible change of the mineral phases from brown to white for
331 pyruvate and ascorbate (Figure S7). Persistence of brown color in the catechol precipitates may
332 indicate formation of polymerized organic compounds, as has been observed for hydroquinone³²,
333 in addition to Mn(II)-phosphate. Given the fact that Mn(II)-phosphate forms after Mn-oxides
334 react with ascorbate, catechol and pyruvate, the high ratio of C immobilization in the solid
335 phases may be ascribed to co-precipitation and/or polymerization rather than sorption to the Mn-
336 oxide surface.

337 In natural soil environments, dissolved Mn²⁺ that is released into solution through mineral
338 dissolution may be leached out of the system, taken up by plants or microorganisms, or
339 complexed by strong ligands, such as citrate and phosphate (Table S1). Specifically in this study,
340 Mn²⁺ cations precipitate with phosphate to form Mn(II)-phosphate that limits the apparent
341 dissolution of Mn oxides (Figure 2) and keeps dissolved Mn²⁺ from building up in the system. In
342 the present study, precipitation of Mn²⁺ with HPO₄²⁻ or H₂PO₄⁻ releases H⁺ that leads to a slight
343 pH decrease of some reaction systems, for example pyruvate and catechol (Figure 3).

344 Primary Mn-OC interaction mechanisms

345 All organic compounds that generate reduced Mn in the solid-phase also have strong mineral
346 dissolution capability; whereas the ones that do not affect the Mn AOS in the solid phases
347 include citrate, which dissolves appreciable amounts of Mn-oxides, and phthalate which induces
348 no Mn dissolution. Thus, combining all the above analysis, we propose the occurrence of three
349 fundamental types of interacting mechanisms between studied organic compounds and Mn-
350 oxides. For all these reactions, complex formation between organic compounds and Mn-oxide
351 surface sites is pre-requisite.

352 i) Sorption: phthalate

353 There is an appreciable amount of immobilized phthalate-C in solid minerals and no
354 observable OC oxidation into inorganic forms due to phthalate addition. The chemical shifts of
355 ¹H NMR peaks of phthalate remain without appearance of new peaks for other products (Figure
356 S9). Besides, there is no detectable Mn dissolution and the AOS of Mn in solids remains
357 statistically unchanged from the original synthetic minerals (Figure 2 and S5), suggesting
358 negligible Mn reduction. Thus, phthalate may interact with Mn-oxides solely through sorption,
359 including adsorption and/or surface precipitation as the C loading increases, rather than redox
360 reactions. No redox reaction was observed between phthalate and Mn-oxides at pH 7.2.³³
361 Adsorption of phthalate was also observed in other studies on adsorption of di-n-butyl phthalate,
362 which is a derivative of phthalate, by Mn-oxide and biochar majorly via H-bonding³⁴ and on
363 adsorption of phthalic acid and diethyl phthalate by zeolitic imidazolate framework via
364 electrostatic interaction.³⁵ Studied organic compounds comprised of carboxyl and hydroxyl
365 groups have high reactivity with Mn-oxides, except phthalate, which may ascribe to its strong

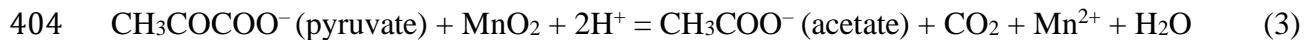
366 structural stability that inhibits electron transfer from C and a pKa close to experimental pH
367 condition, and its relatively lower water solubility than the other organic compounds (Table S1).

368 ii) Ligand promoted mineral dissolution followed by intramolecular electron transfer and
369 strong ligand complexation with dissolved Mn²⁺: Citrate

370 Citrate is a strong ligand that induces Mn-oxide dissolution to release dissolved Mn
371 (presumed to be Mn²⁺). The Mn AOS in synthetic Mn-oxides does not significantly decrease
372 during dissolution, suggesting that the reaction is initiated by citrate ligand complexation and
373 then followed by Mn reduction in solution. EXAFS and XRD results also show no dramatic
374 structural transformation of Mn-oxides during the reaction. Similarly, when reacting with
375 feitknechtite (β -MnOOH), citrate initiates the mineral dissolution through ligand-promoted
376 dissolution by forming Mn(III)-citrate complexes, which are then reduced to dissolved Mn²⁺.³⁶
377 Citrate is a strong ligand that complexes with dissolved Mn²⁺ in aqueous solutions. At similar
378 neutral pH and ionic strength conditions as present in this study, up to 85% of 10 μ M Mn²⁺ is
379 complexed by citrate.¹⁷ According to the stability constants of Mn(II)-complexes, citrate has a
380 much larger constant than phosphate, phthalate, pyruvate, ascorbate or catechol (Table S1),
381 enabling much stronger complexing capability of citrate than the other organic and inorganic
382 ligands. Therefore, we expect that reduced Mn²⁺ cations remain in solution via complexation
383 with citrate, leaving negligible reduced Mn in the solid phase.

384 The adsorption of citrate via ligand exchange and the rapid dissolution of Mn-oxides both
385 release hydroxyl groups that may explain the dramatic pH increase at OC:Mn<10. In addition, a
386 fraction of the phosphate buffer may adsorb on Mn-oxides,³⁷ which not only releases hydroxyl
387 groups during ligand exchange but also destabilizes the pH buffer. As Mn-oxides dissolve, more
388 phosphate is released to enhance buffering capacity, especially after complete dissolution of Mn
389 at OC:Mn>20.

390 Oxidative decarboxylation of citrate yields 3-ketoglutarate, as follows, that can be further
391 transform to acetoacetate through non-redox or metal catalyzed decarboxylation, and each of
392 these steps generates one mole of CO₂ per mole of reactant.¹⁷ Peaks at chemical shifts in
393 accordance to acetoacetate are present in the ¹H NMR spectra of liquid samples at citrate-
394 C:Mn=0.2 (Figure S9). Thus, though more Mn-oxides dissolve at higher OC:Mn ratios,
395 increasing amount of generated CO₂ can offset partially, the extent of pH increase.



397 iii) Reductive mineral dissolution: pyruvate, ascorbate, and catechol

398 Like citrate, pyruvate, ascorbate, and catechol induce Mn-oxide dissolution. However,
399 different from citrate, AOS of Mn decreases to ~3 following reactions at low OC:Mn ratios and
400 to ~2 at higher OC:Mn ratios (Table S3). These results suggest the reductive dissolution of Mn-

401 oxides. In the absence of a strong ligand such as citrate (Table S1), the reduced Mn²⁺ is not
402 complexed by these organic compounds.

403 Oxidative decarboxylation of pyruvate by Mn-oxides produces acetate,¹⁴ as follows:

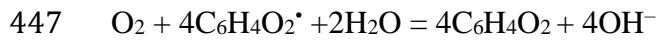
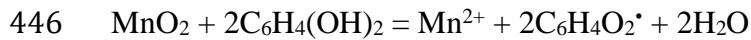
405 from which, the generated acetate can further be oxidized by MnO₂ to two molecules of CO₂.³⁸

406 The amount of sorbed/reacted pyruvate-C is lower than that of ascorbate-C (Figure S2a).

407 However, given their differences in number of C in molecular formula, more moles of pyruvate
408 are reacted than ascorbate (Figure S2b).

409 Oxidation of ascorbate generates dehydroascorbate, as follows, which can further be
410 hydrolyzed to form 2,3-diketogulonic acid.³⁹ Oxalate may also form, for example during
411 oxidative decomposition of Cu(I)-complexed ascorbate or dehydroascorbate by O₂.⁴⁰ Each
412 oxalate can be oxidized to two CO₂.¹⁴

414 Once ascorbate forms complexes with Mn-oxide, a one-electron exchange step take place
415 between the binding site C and Mn, which is reduced to Mn(III) as an intermediate product that
416 is further reduced to Mn²⁺.⁴¹ In addition, ascorbate can be auto-oxidized by oxygen, catalyzed by
417 transition metal ions (e.g. Fe³⁺ and Cu²⁺). In this process, metal, ascorbate and oxygen form a
418 complex, where the metal ion serves as a bridge for electron transfer from ascorbate to oxygen.³⁹
419 Similarly, dissolved Mn²⁺ may also facilitate this oxidation process of ascorbate. Production of
420 inorganic C decreases at OC:Mn>15 (Figure 1), indicating that less ascorbate can be completely
421 oxidized to generate CO₂ due to depletion of available oxidants (i.e., Mn-oxide). Much ascorbate
422 derived C remains in the solid phase (Figure 1), indicate that some of its decomposition products
423 sorb without further reacting and/or that the C is co-precipitated with the Mn(II)-phosphate.



424 Catechol oxidation by synthetic Mn-oxides at pH~7 or Mn-oxides in soils at pH~8 forms
425 semiquinone radicals which then transform to quinone or polymerize to insoluble polymers.^{42, 43}
426 Reduced Mn produced through Mn-oxide dissolution can also form complexes with catechol,
427 which can be further oxidized in air.⁴³ At pH 4, 5-16% of catechol-C is oxidized into CO₂ via
428 abiotic ring cleavage and oxidation by Mn-oxide (birnessite), with 55-83% of C polymerized into
429 the solid phase.²⁸ The first step in oxidation of catechol, as follows, consumes two moles of
430 protons per mole of reduced Mn but does not produce CO₂. This dominance of this reaction at
431 low OC:Mn ratios is consistent with the abrupt pH increase (Figure 3), in agreement with another
432 similar study which also prevents Mn²⁺ release⁴².

434 Similar to pyruvate and ascorbate systems, the H⁺ released through Mn(II)-phosphate
435 precipitation may counteract the H⁺ consumed in the first step of catechol oxidation and
436 contribute to smaller pH increases at OC:Mn>1. However, the different color of the solid phase

437 in catechol system from pyruvate and ascorbate possibly suggest the formation of insoluble
438 polymerized C that causes darkening of the color of phenol compounds (the “browning
439 phenomenon”).⁴⁴

440 Competing with Mn-oxides, dissolved O₂ also acts as an electron acceptor that oxidizes these
441 catechol derived semiquinone radicals to quinones. Another reaction mechanism has also been
442 proposed for interactions at high OC:Mn ratios, as follows,⁴² which might cause the much
443 smaller pH increase in Figure 3 at OC:Mn>1. The competition between Mn and O₂ is dependent
444 on the ratio of C to Mn-oxides, where high OC:Mn molar ratios induce more O₂ consumption
445 and vice versa.⁴²

448 **Other interaction mechanisms**

449 Assuming all generated inorganic C was oxidized from average valence state of C in each
450 organic compound, then the maximum oxidizing capacity of Mn-oxides, if all reduced, in the
451 experiments was 0.16 mmol organic-C (Table S1, calculation equation in the note), which was a
452 small fraction of generated inorganic C. However, given the fact that C in different functional
453 groups contain different valences (e.g., +3 in -COOH), more C (~0.48 mmol) could be directly
454 oxidized by Mn-oxides. The excess inorganic C might be derived from photochemical oxidation,
455 with O₂ as the main oxidant. No significant C loss/transformation is detected in the mineral-free
456 controls within the experimental period, indicating the stability of OC compounds under light
457 without Mn-oxides. Therefore, in addition to the reductive-oxidation reactions, Mn catalyzed
458 photochemical formation of reactive species, such as hydroxyl radicals, may also contribute to
459 the total decomposition of organic compounds,⁴⁵ which also relies on the photochemical
460 reactivity of organic compounds.^{46, 47}

461 Furthermore, in addition to oxidizing OC compounds, dissolved O₂ is also capable of
462 oxidizing reduced Mn²⁺ to generate new Mn-minerals that are electron acceptors and oxidants.⁴⁸
463 Regeneration of Mn-oxides would increase the oxidizing capacity of the system above that of the
464 original Mn-oxides. Future kinetic studies are needed to differentiate these mechanisms.

465 According to the above XAS and XRD, there are no original Mn-oxides left following
466 reaction with ascorbate, pyruvate, and catechol at high OC:Mn molar ratios. Thus, the C
467 immobilization in the solid-phase is not via C adsorption or surface complexation onto Mn-
468 oxides, but may possibly be due to coprecipitation together with reduced Mn and/or
469 polymerization. For example, the oxidation of catechol by birnessite can produce insoluble and
470 refractory organic precipitates via polymerization of oxidizing products that enhance more C be
471 stabilized into the solid phase.²⁸

472 The total number of surface sites calculated for birnessite in our study (0.0261 g), assuming a
473 similar specific surface area (40 m²/g) and surface site density (18.3 sites/nm²) as birnessite
474 synthesized using the same method, is around 19.1×10^{18} .⁴⁹ This means birnessite can
475 accommodate at most $(19.1 \times 10^{18}) / (6.02 \times 10^{20} \text{ molecule}/\text{mmol}) = 0.032 \text{ mmol OC molecules}$,
476 given the assumption of monodentate complexation and coordination of molecules position. This
477 value corresponds to 0.26 mmol C for phthalate, 0.19 mmol C for ascorbate, catechol and citrate,
478 and 0.10 mmol C for pyruvate, if these OC compounds only adsorb on Mn-oxides. In another
479 similar study, low fraction of mineral surface sites was occupied by phenol type of organic
480 compounds.⁵⁰ The much higher C immobilized in solids, particularly at high OC:Mn ratios
481 (Figure 1a), may result from other interaction mechanisms, such as surface precipitation,
482 polymerization and co-precipitation. Though Mn(III) occurs in transformed Mn minerals at
483 certain OC:Mn ratios according to the fitting results of XANES spectra (Table S3), more studies
484 are needed to determine whether the Mn(III) in solid phase is formed by comproportionation of
485 sorbed Mn(II) and structural Mn(IV)⁵¹ or direct one-electron-transfer reduction of structural
486 Mn(IV) to Mn(III).

487 **Implications on Mn–OC interactions in soils**

488 The abundance of both organic compounds and Mn minerals vary widely in natural
489 environments.⁵² Soil organic matter content in mineral topsoil generally constitutes more than
490 1% of soil mass and can be much higher in organic soils, and decreases in deeper soils. Even
491 within a specific rhizosphere, the concentrations of organic compounds vary dramatically in
492 space and time, due largely to plant root exudations and microbial activities.⁵³ The natural
493 abundance of manganese in soil is low and generally varies around 0.1%.⁵⁴ However, Mn
494 concentrations are often higher in organic-rich topsoils (e.g., ~1 wt.%)⁵⁵ and can contribute
495 substantially to organic matter oxidation.⁵⁶ There are some unique soils that contain extremely
496 high quantities of Mn, up to 141 g kg⁻¹.⁵⁷ Therefore, the relative molar ratios of OC:Mn may vary
497 dramatically in the natural soil environments. Moreover, Mn-oxides can generate chemical
498 impacts that are far out of proportion to their generally low natural abundance.^{10, 12}

499 The relative roles that Mn plays in promoting or inhibiting OC storage in soils are quantified,
500 showing a primary role of oxidation rather than immobilization for most C compounds. In
501 addition to phthalate, many saturated alcohols, aldehydes, ketones, and carboxylic acids showed
502 undetectable redox reactivity with Mn-oxides at pH 7.2.³³ Citrate, pyruvate and catechol, which
503 are also common structures of humic substances, show high reducing capability towards Mn-
504 oxides in this study; thus, humic substances may also have great reducing potential to Mn-oxides
505 in soils. However, all these processes also result in C stabilization through an accumulation of
506 either the original OC or its oxidation products in the solid mineral phases through complexation,
507 coprecipitation, and/or polymerization reactions. Insights from our study can provide

508 fundamental information on possible interaction mechanisms that could happen in soils.
509 Improved understanding of Mn–C interaction mechanisms is important for investigating
510 contaminant removal and nutrient cycling in soils, sediments, and waste-water treatment
511 systems. Future research will have to address the direction and the extent to which the proposed
512 mechanisms are able to alter the stability of natural soil organic matter, which contain more
513 complicated structures and properties, under certain environmental conditions.

514

ACKNOWLEDGMENTS

515 This work was sponsored by the Laboratory Directed Research and Development Program of
516 Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LCC for the US Department
517 of Energy (DOE) under contract DE-AC05-00OR22725, by the ORNL Critical Interfaces
518 Science Focus Area sponsored by the DOE Office of Science Biological and Environmental
519 Research Program, and by US Department of Agriculture–National Institute of Food and
520 Agriculture (USDA-NIFA), Hatch project NC02898. The authors would like to acknowledge
521 Xiangping Yin, Jana Phillips, and Geoff Schwaner (ORNL) for assistance with dissolved OC and
522 total solid C content analysis and Xiaoyan Sun (NC State University) for assistance with NMR
523 analysis. This research used resources at Beamline 12-BM of the Advanced Photon Source, a
524 user facility operated for the US DOE Office of Science by Argonne National Laboratory under
525 contract DE-AC02-06CH11357. This work was performed in part by the Molecular Education,
526 Technology and Research Innovation Center (METRIC) at NC State University, which is
527 supported by the State of North Carolina.

528

529 ASSOCIATED CONTENT

530 Supporting Information

531 The Supporting Information is available free of charge at

532 Mn-oxides synthesis methods; parameters for ^1H NMR analysis; characteristics of organic
533 compounds (Table S1) and Mn-oxides (Table S2), fitting results from XANES spectra (Table
534 S3), XANES whole spectra of Mn-oxide minerals (Table S4), XAS spectra of unreacted Mn-
535 oxides (Figure S1), OC distribution (Figure S2), Mn dissolution (Figure S3), XANES spectra of
536 solid phases (Figure S4), Mn AOS (Figure S5), EXAFS spectra of the Mn-oxides (Figure S6),
537 images of Mn-oxides after reactions (Figure S7), XRD pattern of solid phases after reaction
538 (Figure S8) and ^1H NMR spectra of solution (Figure S9).

539

540 **REFERENCES**

541 1. Lehmann, J.; Kleber, M., The contentious nature of soil organic matter. *Nature* **2015**, *528*, 60-68.

542 2. Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P. S., Mineral-organic

543 associations: Formation, properties, and relevance in soil environments. *Adv. Agron.* **2015**, *130*, 1-140.

544 3. Keiluweit, M.; Bougoure, J. J.; Nico, P. S.; Pett-Ridge, J.; Weber, P. K.; Kleber, M., Mineral

545 protection of soil carbon counteracted by root exudates. *Nat. Clim. Chang.* **2015**, *5*, 588-595.

546 4. Li, H.; Bölscher, T.; Winnick, M.; Tfaily, M. M.; Cardon, Z. G.; Keiluweit, M., Simple plant and

547 microbial exudates destabilize mineral-associated organic matter via multiple pathways. *Environ. Sci.*

548 *Technol.* **2021**, *55*, 3389-3398.

549 5. Feng, X. H.; Zhai, L. M.; Tan, W. F.; Liu, F.; He, J. Z., Adsorption and redox reactions of heavy

550 metals on synthesized Mn oxide minerals. *Environ. Pollut.* **2007**, *147*, 366-373.

551 6. Li, H.; Liu, F.; Zhu, M.; Feng, X.; Zhang, J.; Yin, H., Structure and properties of Co-doped

552 cryptomelane and its enhanced removal of Pb^{2+} and Cr^{3+} from wastewater. *J. Environ. Sci.* **2015**, *34*, 77-85.

553 7. Estes, E. R.; Andeer, P. F.; Nordlund, D.; Wankel, S. D.; Hansel, C. M., Biogenic manganese oxides

554 as reservoirs of organic carbon and proteins in terrestrial and marine environments. *Geobiology* **2017**, *15*,

555 158-172.

556 8. Stuckey, J. W.; Goodwin, C.; Wang, J.; Kaplan, L. A.; Vidal-Esquivel, P.; Beebe Jr., T. P.; Sparks,

557 D. L., Impacts of hydrous manganese oxide on the retention and lability of dissolved organic matter.

558 *Geochem. Trans.* **2018**, *19*, 6.

559 9. Xia, X.; Stone, A. T., Mandelic acid and phenyllactic acid “Reaction Sets” for exploring the kinetics

560 and mechanism of oxidations by hydrous manganese oxide (HMO). *Environ. Sci. Process. Impacts* **2019**,

561 *21*, 1038-1051.

562 10. Li, H.; Santos, F.; Butler, K.; Herndon, E., A critical review on the multiple roles of manganese in

563 stabilizing and destabilizing soil organic matter. *Environ. Sci. Technol.* **2021**, *55*, 12136-12152.

564 11. Van Der Kellen, I.; Derrien, D.; Ghanbaja, J.; Turpault, M.-P., Recent weathering promotes C

565 storage inside large phyllosilicate particles in forest soil. *Geochim. Cosmochim. Acta* **2022**, *318*, 328-351.

566 12. Rennert, T.; Handel, M.; Hoschen, C.; Lugmeier, J.; Steffens, M.; Totsche, K. U., A NanoSIMS

567 study on the distribution of soil organic matter, iron and manganese in a nodule from a Stagnosol *Eur. J.*

568 *Soil Sci.* **2014**, *65*, 684-692.

569 13. Lützow, M. V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.;

570 Flessa, H., Stabilization of organic matter in temperate soils: Mechanisms and their relevance under

571 different soil conditions—a review. *Eur. J. Soil Sci.* **2006**, *57*, 426-445.

572 14. Wang, Y.; Stone, A. T., Reaction of $Mn^{III,IV}$ (hydr)oxides with oxalic acid, glyoxylic acid,

573 phosphonoformic acid, and structurally-related organic compounds. *Geochim. Cosmochim. Acta* **2006**, *70*,

574 4477-4490.

575 15. Gulley-Stahl, H.; Hogan II, P. A.; Schmidt, W. L.; Wall, S. J.; Buhrlage, A.; Bullen, H. A., Surface

576 complexation of catechol to metal oxides: An ATR-FTIR, adsorption, and dissolution study. *Environ. Sci.*

577 *Technol.* **2010**, *44*, 4116-4121.

578 16. Flynn, E. D.; Catalano, J. G., Reductive transformations of layered manganese oxides by small

579 organic acids and the fate of trace metals. *Geochimica et Cosmochimica Acta* **2019**, *250*, 149-172.

580 17. Wang, Y.; Stone, A. T., The citric acid- $Mn^{III,IV}O_2$ (birnessite) reaction. Electron transfer, complex

581 formation, and autocatalytic feedback. *Geochim. Cosmochim. Acta* **2006**, *70*, 4463-4476.

582 18. Luther III, G. W.; de Chanvalon, A. T.; Oldham, V. E.; Estes, E. R.; Tebo, B. M.; Madison, A. S.,

583 Reduction of manganese oxides: Thermodynamic, kinetic and mechanistic considerations for one- versus

584 two-electron transfer steps. *Aqua. Geochem.* **2018**, *24*, 257-277.

585 19. Trainer, E. L.; Ginder-Vogel, M.; Remucal, C. K., Selective reactivity and oxidation of dissolved

586 organic matter by manganese oxides. *Environ. Sci. Technol.* **2021**, *55*, 12084-12094.

587 20. Wang, Q.; Yang, P.; Zhu, M., Structural transformation of birnessite by fulvic acid under anoxic

588 conditions. *Environ. Sci. Technol.* **2018**, *52*, 1844-1853.

589 21. Noerpel, M. R.; Lenhart, J. J., The impact of particle size on the adsorption of citrate to hematite.
590 *J. Colloid Interface Sci.* **2015**, *460*, 36-46.

591 22. Campbell, E. R.; Warsko, K.; Davidson, A. M.; Bill Campbell, W. H., Determination of phosphate
592 in soil extracts in the field: A green chemistry enzymatic method. *MethodsX* **2015**, *2*, 211-8.

593 23. Ravel, B.; Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray
594 absorption spectroscopy using IFEFFIT. *J Synchrotron Radiat* **2005**, *12*, (Pt 4), 537-41.

595 24. Manceau, A.; Marcus, M.; Grangeon, S., Determination of Mn valence states in mixed-valent
596 manganates by XANES spectroscopy. *Am. Mineral.* **2012**, *97*, 816-827.

597 25. McBride, M. B., Oxidation of 1,2- and 1,4-dihydroxybenzene by birnessite in acidic aqueous
598 suspension. *Clays Clay Mineral.* **1989**, *37*, 479-486.

599 26. Chorover, J.; Amistadi, M. K., Reaction of forest floor organic matter at goethite, birnessite and
600 smectite surfaces. *Geochim. Cosmochim. Acta* **2001**, *65*, 95-109.

601 27. Stone, A. T.; Morgan, J. J., Reduction and dissolution of manganese (III) and manganese (IV)
602 oxides by organics. 1. Reaction with hydroquinone. *Environ. Sci. Technol.* **1984**, *18*, 450-456.

603 28. Majcher, E. H.; Chorover, J.; Bollag, J.; Huang, P. M., Evolution of CO₂ during birnessite-induced
604 oxidation of ¹⁴C-labeled catechol. *Soil Sci. Soc. Am. J.* **2000**, *64*, 157-163.

605 29. Loganathan, P. B., R. G., Sorption of heavy metal ions by a hydrous manganese oxide. *Geochim.*
606 *Cosmochim. Acta* **1973**, *37*, 1277-1293.

607 30. Wang, Q.; Liao, X.; Xu, W.; Ren, Y.; Livi, K. J.; Zhu, M., Synthesis of Birnessite in the Presence
608 of Phosphate, Silicate, or Sulfate. *Inorg. Chem.* **2016**, *55*, (20), 10248-10258.

609 31. Yin, H.; Li, H.; Wang, Y.; Ginder-Vogel, M.; Qiu, G.; Feng, X.; Zheng, L.; Liu, F., Effects of Co
610 and Ni co-doping on the structure and reactivity of hexagonal birnessite. *Chem. Geol.* **2014**, *381*, 10-20.

611 32. Liu, M. M.; Cao, X. H.; Tan, W. F.; Feng, X. H.; Qiu, G. H.; Chen, X. H.; Liu, F., Structural
612 controls on the catalytic polymerization of hydroquinone by birnessite. *Clays Clay Mineral.* **2012**, *59*, 525-
613 537.

614 33. Stone, A. T.; Morgan, J. J., Reduction and dissolution of manganese (III) and manganese (IV)
615 oxides by organics: 2. Survey of reactivity of organics. *Environ. Sci. Technol.* **1984**, *18*, 617-624.

616 34. Gao, M.; Zhang, Y.; Gong, X.; Song, Z.; Guo, Z., Removal mechanism of di-n-butyl phthalate and
617 oxytetracycline from aqueous solutions by nano-manganese dioxide modified biochar. *Environ Sci Pollut
618 Res Int* **2018**, *25*, (8), 7796-7807.

619 35. Khan, N. A.; Jung, B. K.; Hasan, Z.; Jhung, S. H., Adsorption and removal of phthalic acid and
620 diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks. *J Hazard Mater* **2015**,
621 282, 194-200.

622 36. Klewicki, J. K.; Morgan, J. J., Dissolution of β -MnOOH particles by ligands: Pyrophosphate,
623 ethylenediaminetetraacetate, and citrate. *Geochim. Cosmochim. Acta* **1999**, *63*, 3017-3024.

624 37. Li, H.; Jaisi, D. P., An isotope labeling technique to investigate atom exchange during phosphate
625 sorption and desorption. *Soil Sci. Soc. Am. J.* **2015**, *79*, 1340-1351.

626 38. Yu, J. S., P. E., Kinetics of MnO₂-catalyzed acetic acid oxidation in supercritical water. *Ind. Eng.*
627 *Chem. Res.* **2000**, *39*, 4014-4019.

628 39. Shen, J.; Griffiths, P. T.; Campbell, S. J.; Uttinger, B.; Kalberer, M.; Paulson, S. E., Ascorbate
629 oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key
630 rate constants. *Sci Rep* **2021**, *11*, (1), 7417.

631 40. Khamespanah, F.; Marx, M.; Crochet, D. B.; Pokharel, U. R.; Fronczek, F. R.; Maverick, A. W.;
632 Beller, M., Oxalate production via oxidation of ascorbate rather than reduction of carbon dioxide. *Nat
633 Commun* **2021**, *12*, (1), 1997.

634 41. Khan, Z.; Kumar, P.; Kabir ud, D., Kinetics of the reduction of water-soluble colloidal MnO₂ by
635 ascorbic acid. *Journal of Colloid and Interface Science* **2005**, *290*, (1), 184-189.

636 42. McBride, M. B., Oxidation of dihydroxybenzenes in aerated aqueous suspensions of birnessite.
637 *Clays Clay Mineral.* **1989**, *37*, 341-347.

638 43. Colarieti, M. L.; Toscano, G.; Ardi, M. R.; Greco, G., Jr., Abiotic oxidation of catechol by soil
639 metal oxides. *J Hazard Mater* **2006**, *134*, (1-3), 161-8.

640 44. Shindo, H.; Huang, P. M., Role of Mn(IV) oxide in abiotic formation of humic substances in the
641 environment. *Nature* **1982**, 298, 363-365.

642 45. McAlpine, R. D.; Cocivera, M.; Chen, H., Photooxidation and reduction of ascorbic acid studied
643 by E.S.R. *Can. J. Chem.* **1973**, 51, 1682-1686.

644 46. Maizel, A. C.; Remucal, C. K., Molecular Composition and Photochemical Reactivity of Size-
645 Fractionated Dissolved Organic Matter. *Environ Sci Technol* **2017**, 51, (4), 2113-2123.

646 47. Berg, S. M.; Whiting, Q. T.; Herrli, J. A.; Winkels, R.; Wammer, K. H.; Remucal, C. K., The Role
647 of Dissolved Organic Matter Composition in Determining Photochemical Reactivity at the Molecular Level.
648 *Environ Sci Technol* **2019**, 53, (20), 11725-11734.

649 48. Feng, X. H.; Liu, F.; Tan, W. F.; Liu, X. W., Synthesis of birnessite from the oxidation of Mn²⁺ by
650 O₂ in alkali medium: Effects of synthesis conditions. *Clays and Clay Minerals* **2004**, 52, (2), 240-250.

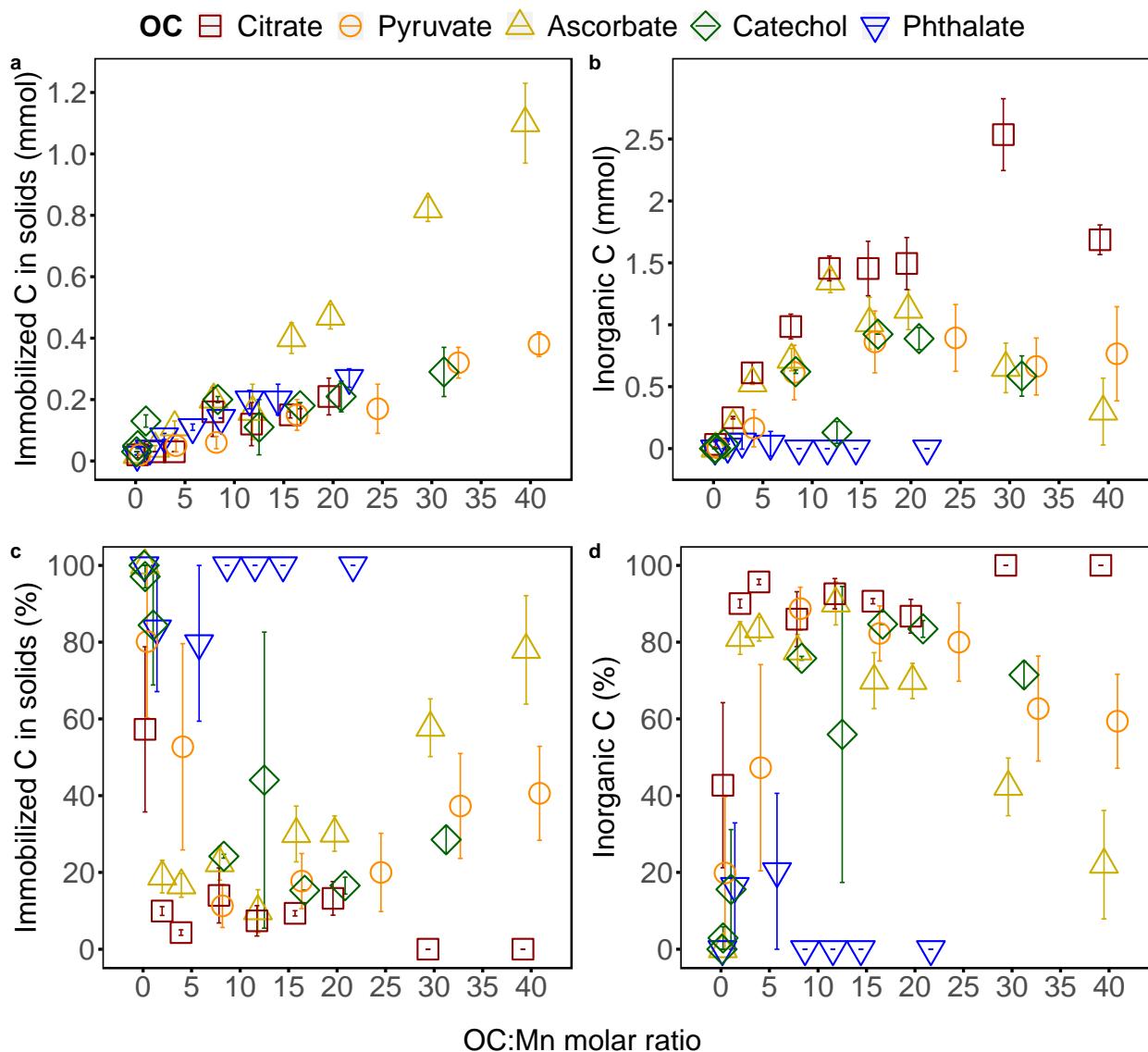
651 49. Li, H.; Joshi, S. R.; Jaisi, D. P., Degradation and Isotope Source Tracking of Glyphosate and
652 Aminomethylphosphonic Acid. *J Agric Food Chem* **2016**, 64, (3), 529-38.

653 50. Stone, A. T., Reductive dissolution of manganese(III/IV) oxides by substituted phenols. *Environ.
654 Sci. Technol.* **1987**, 21, 979-988.

655 51. Lafferty, B. J.; Ginder-Vogel, M.; Zhu, M.; Livi, K. J. T.; Sparks, D. L., Arsenite oxidation by a
656 poorly crystalline manganese-oxide. 2. Results from x-ray absorption spectroscopy and x-ray diffraction.
657 *Environ. Sci. Technol.* **2010**, 44, 8467-8472.

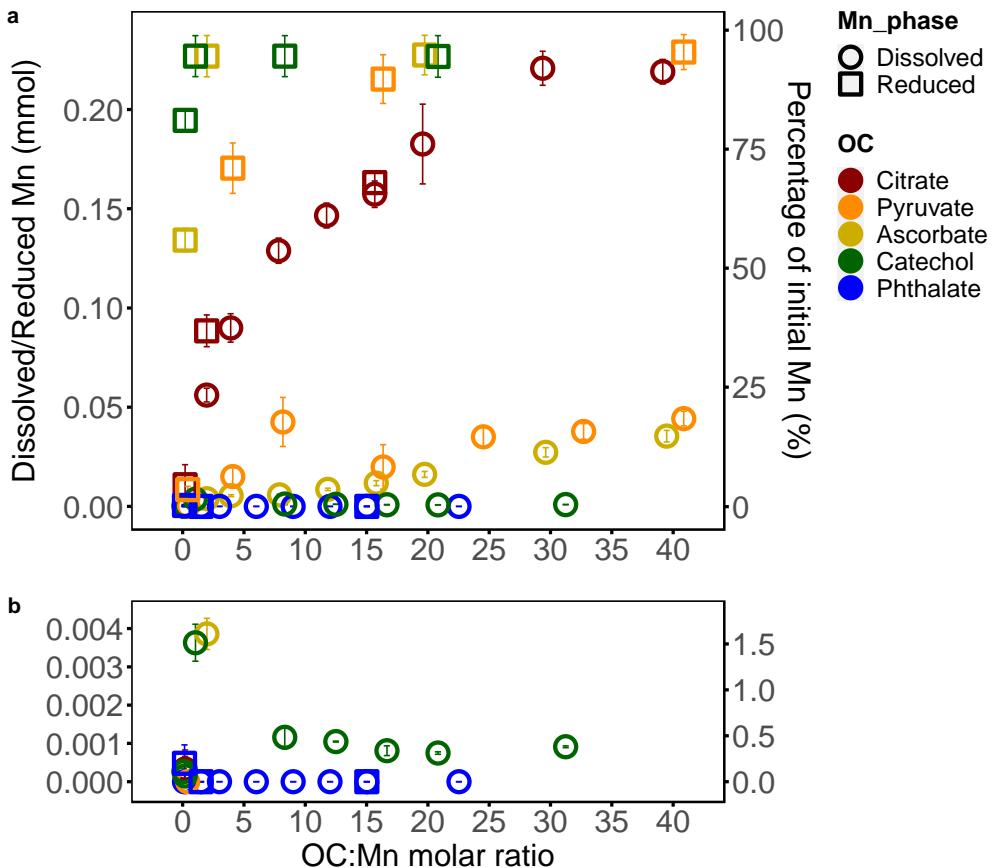
658 52. Zeng, C.; Yang, L.; Zhu, A. X.; Rossiter, D. G.; Liu, J.; Liu, J.; Qin, C.; Wang, D., Mapping soil
659 organic matter concentration at different scales using a mixed geographically weighted regression method.
660 *Geoderma* **2016**, 281, 69-82.

661 53. Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W., Root Exudation of Primary
662 Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. *Front Plant Sci*
663 **2019**, 10, 157.

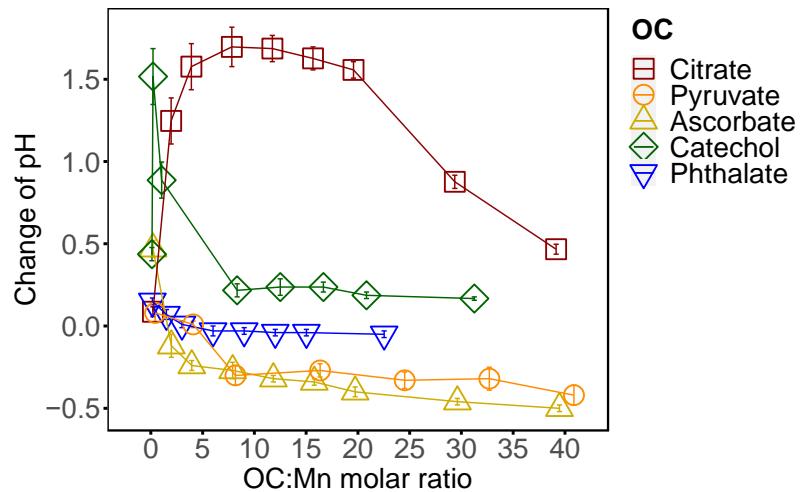

664 54. Reisenauer, H. M., Determination of plant-available soil manganese. In *Manganese in soils and
665 plants: Graham, R. D.; Hannam, R. J.; Uren, N. C. Eds.; Kluwer Academic Publishers, 1988; Chapter 6.*
666 **1988**, 87-98.

667 55. Herndon, E. M.; Jin, L.; Andrews, D. M.; Eissenstat, D. M.; Brantley, S. L., Importance of
668 vegetation for manganese cycling in temperate forested watersheds. *Global Biogeochemical Cycles* **2015**,
669 29, (2), 160-174.

670 56. Jones, M. E.; LaCroix, R. E.; Zeigler, J.; Ying, S. C.; Nico, P. S.; Keiluweit, M., Enzymes,
671 Manganese, or Iron? Drivers of Oxidative Organic Matter Decomposition in Soils. *Environ Sci Technol*
672 **2020**, 54, (21), 14114-14123.

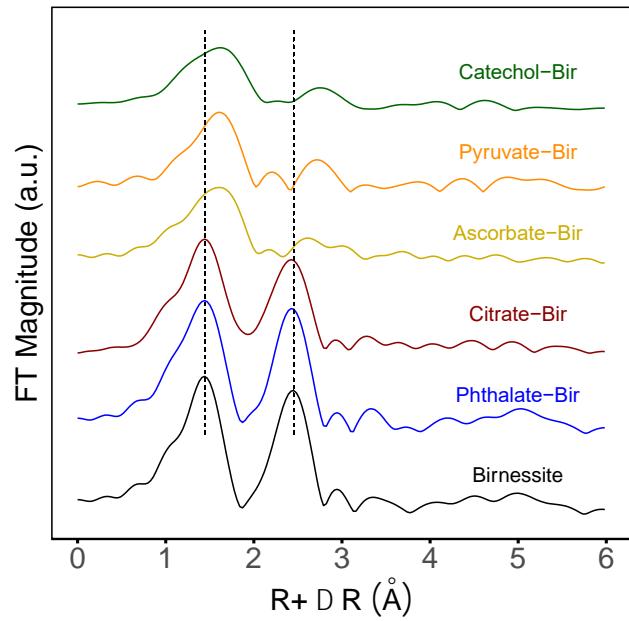

673 57. Bourgault, R. R.; Rabenhorst, M. C., Manganiferous Soils in Maryland: Regional Extent and Field-
674 Scale Electromagnetic Induction Survey. *Soil Science Society of America Journal* **2012**, 76, (6), 2128-2135.

675

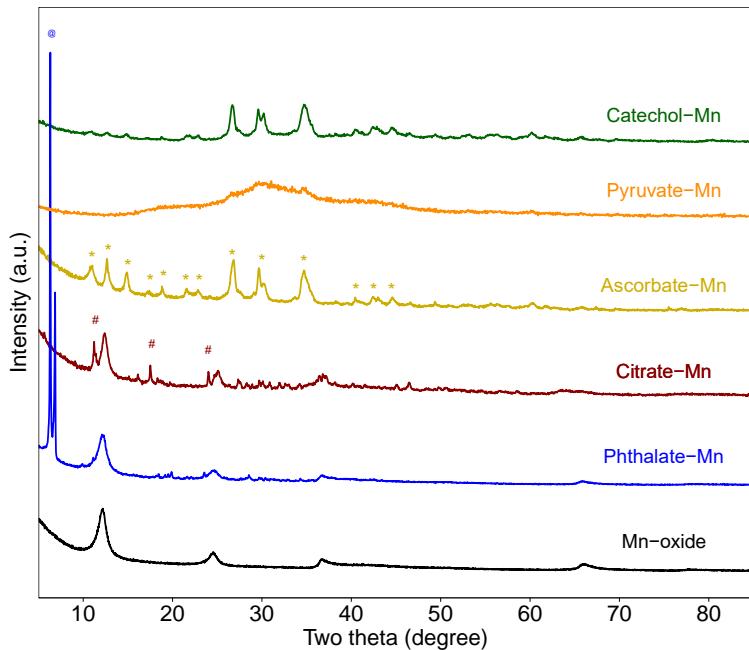


676
677
678
679
680

Figure 1. Amount of (a) immobilized C in solid phases and (b) inorganic C in solution and gaseous phases and the relative percentage of (c) immobilized C and (d) inorganic C to the total C loss as a function of initial OC to Mn molar ratios in the batch system. Error bars indicate standard errors among three Mn-oxides as triplicates.



681
682 Figure 2. (a) The amount of dissolved (open circles) and total reduced Mn (open squares) and
683 their corresponding percentage relative to the initial Mn in Mn-oxides, as a function of initial
684 OC:Mn molar ratios in the batch system. The amount of total reduced Mn is the sum of dissolved
685 Mn in aqueous phase and reduced Mn in solid phase as measured by XAS. Error bars indicate
686 standard errors among three Mn-oxides as triplicates. (b) The zoomed-in view of the lower Mn
687 amount region.


688

689 Figure 3. Change of equilibrium pH relative to control sets as a function of initial OC:Mn molar
 690 ratios in the batch system.

691

692 Figure 4. Magnitude of Fourier-transformed Mn K-edge EXAFS spectra of the Mn-oxides before
 693 and after interactions with catechol, pyruvate, ascorbate, citrate, and phthalate at OC:Mn=21, 41,
 694 20, 16, and 15, respectively.

695

696 Figure 5. XRD patterns of the original Mn-oxide (birnessite in black),
 697 catechol-, pyruvate-,
 698 ascorbate-, citrate-, and phthalate-associated minerals, at OC:Mn=21, 41, 20, 16, and 15,
 699 respectively. Yellow * indicates the characteristic peaks of manganese phosphate ($Mn_3(PO_4)_2$).
 700 Red # and blue @ represent for characteristic peaks of citrate and phthalate, respectively.

701 **CONTACT INFORMATION**

702

703

704 **Hui Li**

705 *Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695,
706 United States*

707 *Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
708 United States*

709

710 **Benjamin Reinhart**

711 *X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, United States*

712

713 **Spencer Moller**

714 *Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United
715 States*

716

717 **Elizabeth Herndon**

718 *Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
719 United States*