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Motivation for Current Work

= Continued utilization of coal power in a carbon constrained environment
will require Carbon Capture Utilization and Sequestration (CCUS)

= Utilization of conventional coal conversion technologies in combination
with existing CCUS technologies is currently far from economically feasible

= Advanced coal conversion systems involving high temperatures and
pressures can be effectively integrated with state-of-the-art CCUS and
offer a more promising approach
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Ash Aerosol Research Objectives

" |Investigate sub-micron ash aerosol formation under high-temperature and high-
pressure combustion conditions

= Develop ash aerosol sampling techniques for high temperature oxy-coal
combustion at atmospheric pressure and pressurized oxy-coal combustion

= Determine the effect of temperature and pressure on ash aerosol elemental
partitioning

= Describe the impacts of temperature and pressure on ash particle size
distributions for particles smaller than 1 micron

= Develop numerical approaches suitable for inclusion in CFD-based analyses for
predicting ash aerosol behavior in 2" generation oxy-coal combustion systems



Oxy-Fuel Combustor (OFC)

Specifications

= 100 kW (0.25 MMBtu/hr) Firing Rate
= Main Burner Zone 0.5m (20 in) x 1.2m (48 in)
= Quartz Windows for Optical Access of Flame
= Vertical Height 3.8 m (12.5 ft)

= Horizontal Convective Section 3.7 m (12 ft)
Research

= Ash Formation
* Aerosols
* Deposition
* Trace Elements

= Sorbent Development

= Optical Diagnostics
* Flame, Radiation & Flow Field ri
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300 kW Entrained Flow Pressurized Reactor (EFPR)
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4.11m

= Converted from an entrained
flow gasifier

= 300 kW (rated) pilot scale

= Coal-water slurry feeding with
pure O,

= Down-fired, self-sustained and
no external heating

= Operation pressure up to 30 bar
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Combustion Conditions

Combustion conditions

(standard m?/hr)

Combustor EFPR (pressurized) OFC (atmospheric pressure)
Coal Sufco Sufco
Feeding slurry slurry dry powder
Coal feeding rate (kg/hr) 13.22 38.60 6.80
Firing rate (kW) 100 293 52
Oxidation condition oxy-combustion oxy-combustion oxy-(g:-;ﬁl?l;s{,}t)j o ah-c?ﬁlg)tion
Pressure (bar) 8 15 1 1

Peak temperature (K) 1698 1910 1866 1489
Flue gas at standard state 78 82 209,88 18.09 5582




Comparison of OFC and EFPR

Gas Temperature Profiles

OFC EFPR
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Aerosol Sampling Requirements

= Safely sample at high pressure conditions

" Preserve the integrity of the EFPR combustor

" Protect the working environment of the probe (slagging)
" Gather representative sample streams with low loss rate

" Maintain a proper temperature distribution in sampling line
 Water condensation
* Material working temperature
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High Pressure Aerosol Sampling System

Thermoéouple
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Size-Segregated Compositions
Impact of Temperature

Alkali at 1 bar
Oxy-coal Combustion vs. Air
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Size-Segregated Compositions

Impact of Temperature

Alkali at 1 bar

Oxy-coal Combustion vs. Air
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Size-Segregated Compositions
Impact of Pressure
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Impact of Pressure
Equilibrium Calculations

Equilibrium amount (kmole)
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Size-Segregated Compositions
Impact of Pressure (Continued)

Alkali at 1 bar, 8 bar, and 15 bar
Oxy-coal Combustion Atmospheric vs. Pressurized
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Size-Segregated Compositions
Impact of Pressure
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Sub-micron Aerosol Particle Size Distributions

total ash mass basis

1E+05

1 bar SMPS 1 bar BLPI
+-8 bar SMPS --8 bar BLPI

1E+00 «]15bar SMPS 415 bar BLPI

dM/dlogDp (ng/g ash)
e E —
+
o

T T T T T T T T ]

0.01 0.1 1
Aerodynamic diameter (pm)

» Concentration of sub-micron particles decreases as pressure
Increases

" Mode at 15 bar is located at larger diameter than 1 bar
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Conclusions

. (b)xy-coal combustion experiments have been carried out at 1 bar, 8 bar and 15
ar

= An ash aerosol sampling system has been devised that meets safety .
requirements, preserves the integrity of the reactor, and provides representative
sample streams with low loss rates

= Scavenging of alkali metals by supermicron aluminasilicates leads to lower
concentrations of Na and K on sub-micron particles at atmospheric pressure

* Comparisons between equilibrium calculations and measurements for alkali
speaeTIlndlcate vaporization and condensation mechanisms are kinetically
controlled

= Sub-micron ash aerosols formed at high pressure contain larger amounts of alkali
metals likely in the form of sulfates

= Lower concentrations of sub-micron particles observed as pressure increases
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