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Goal: Develop Error Models of Surrogates Faster

QOl Error

Os(u) =s(u) — §(pw)




P Reducing Sampling Size

* Problem: FOM is computationally expensive
*  Necessary FOM training points for ROM and error model

« Solution:
1. Sampling types
2. Sampling strategies




P Sampling Types

Latin Hypercube Sampling (LHS)

2. LHS with maximin criterion
o Adds constraint on distance between sampling points

3. D-Optimal design
o Maximizes determinant of information matrix
o  Reduces variance in results
o Contains replicates not useful for computational experiments
o  Replace replicates with random LHS points
o  End result may not be a true D-Optimal design




Sampling Strategies

« Distinct training set
« Augmented training set

‘ ROM Error Model

« Single training set
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" HIFIiRE-1

x

» Run 30 of CALSPAN University of Buffalo HIFIRE-1 wind tunnel tests [1]
« N = 32,768 cells

» Boundary conditions:
* Supersonicinlet

« Supersonic outlet
* No-slip enforced at wall
» Fixed temperature

F

[1] Wadhams, T. P., Mundy, E., MaclLean, M. G., and Holden, M. S., “Ground Test Studies of the HIFIRE-1 Transition Experiment Part 1:
Experimental Results,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, 2008, pp. 1134-1148. https://doi.org/10.2514/1.38338.




/" Modeling HIFiRE-1
4

Full-Order Mode| Reduced-Order Model




P/ Modeling HIFiRE-1

Full-Order Model . Reduced-Order Model . Error Model

*  Compressible RANS « Reduced-order model
Equations developed using POD

Turbulence modeled with LSPG

using SA « ROM solver: Pressio”
- CFD Solver: SPARC o Open source
- Developed for framework for ROMs
transonic and o Solves large-scale
hypersonic flows nonlinear dynamical
systems

o Uses generic
programming

*https://github.com/Pressio

* Predict quantity of
interest error

6s(u) = s(u) — 5(u)

» Seven regression models
o MLP, SVR with RBF,
SVR with linear
kernel, k-NN, linear
OLS, quadratic OLS,

RF




P Distinct Training Sets

* Reduced-order model trained with 50 points

* Error model trained with 3 sampling types
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P Distinct Training Set Normalized Error

D-Optimal and LHS sampling types produced best results

+  D-Optimal little bit better than LHS (R3 =

Normalized Actual Error
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P Single Training Set

* Leave-one-out cross validation (LOOCV)
« Same training set for reduced-order model and error model
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Normalized Actual Error
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Single Training Set Normalized Error
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/" Single Training Set Error Contours
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P Augmented Training Set

* Improve error model by augmenting with additional points

100 Augment Points
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Augmented Training Set Normalized Error
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P Computational Runtime

*  D-Optimal with LOOCV cuts computational expense by 64% compared to Distinct LHS

« Design with 20 augmented points cuts computational expense by 44%

Category Sampllng Type Total Time [s] x10° | Relative Time to Distinct LHS E
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P Conclusions

« D-Optimal design reduces development cost of error model by 15%
« Reduced total number of training points from 102 to 87

»  LOOCV with D-Optimal design reduces development cost of error model by 64%
+ Adding 20 augment points improves accuracy from R? = 0.92 to 0.97
+ Using 20 augment points reduces development cost by 44%

« May improve overall cost reduction by improving POD updates
* Recalculating POD takes up 30% of overall cost with LOOCV

+ Possibility to use rank-1 updates to POD basis [1]

[2] Brand, M., “Fast low-rank modifications of the thin singular value decomposition,” Linear Algebra and its Applications, Vol. 415, No. 1,
2006, pp. 20-30. https://doi.org/https://doi.org/10.1016/j.1aa.2005.07.021, special Issue on Large Scale Linear and Nonlinear Eigenvalue
Problems.
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