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Goal: Develop Error Models of Surrogates Faster
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Full-Order Model
• Produce solutions at

• Training points for the ROM
• Training points for Error Model
• Test points

Reduced-Order 
Model

• Produce solutions at
• Training points for the Error Model
• Test points

Error Model • Produce solutions at
• Test Points

QOI Error



Reducing Sampling Size
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• Problem: FOM is computationally expensive
• Necessary FOM training points for ROM and error model

• Solution:
1. Sampling types
2. Sampling strategies



Sampling Types
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1. Latin Hypercube Sampling (LHS)
2. LHS with maximin criterion

o Adds constraint on distance between sampling points

3. D-Optimal design
o Maximizes determinant of information matrix
o Reduces variance in results

o Contains replicates not useful for computational experiments
o Replace replicates with random LHS points
o End result may not be a true D-Optimal design



Sampling Strategies

• Distinct training set

• Augmented training set

• Single training set
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ROM Error Model



HIFiRE-1
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Modeling HIFiRE-1
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Full-Order Model Reduced-Order Model Error Model



Modeling HIFiRE-1
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Full-Order Model Reduced-Order Model Error Model

• Reduced-order model 
developed using POD 
with LSPG

• ROM solver: Pressio*

o Open source 
framework for ROMs

o Solves large-scale 
nonlinear dynamical 
systems

o Uses generic 
programming

• Compressible RANS 
Equations

• Turbulence modeled 
using SA

• CFD Solver: SPARC
oDeveloped for 

transonic and 
hypersonic flows

*https://github.com/Pressio 



Distinct Training Sets
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• Reduced-order model trained with 50 points
• Error model trained with 3 sampling types

• Number of points determined by achieving 
statistical power of 80%

Sampling Type � �����

LHS 52
LHS Maximin 53
D-Optimal 37



Distinct Training Set Normalized Error
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LHS LHS Maximin D-Optimal



Single Training Set
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• Leave-one-out cross validation (LOOCV)
• Same training set for reduced-order model and error model



Single Training Set Normalized Error
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Distinct Training Set



Single Training Set Error Contours

• Highly nonlinear error surface

• Large errors occur where
• Few training points placed
• Highly nonlinear areas

• Improve error model by improving 
spread of training points
• D-Optimal design augmented with LHS
• No distance constraint on augmented 

LHS points
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� max ,� R 2 = 0.880



Augmented Training Set
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• Improve error model by augmenting with additional points

100 Augment Points



Augmented Training Set Normalized Error
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� aug = 20 � aug = 40

� aug = 60 � aug = 100

� aug = 0



Computational Runtime
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• D-Optimal with LOOCV cuts computational expense by 64% compared to Distinct LHS
• Design with 20 augmented points cuts computational expense by 44%

Category Sampling Type Relative Time to Distinct LHS

Distinct
LHS 102 1.43 1.00 0.990

LHS Maximin 103 1.44 1.01 0.961
D-Optimal 87 1.22 0.85 0.991

Single Training Set D-Optimal 37 0.52 0.36 0.918

Augmented 
Training Set D-Optimal

57 0.80 0.56 0.970
77 1.08 0.75 0.954
97 1.36 0.95 0.952

117 1.64 1.15 0.962
137 1.91 1.34 0.985



Conclusions
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Questions?
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