

LA-UR-21-22734

Approved for public release; distribution is unlimited.

Title: Validation of Nuclear Data Sensitivity Calculations by the MCNP PERT
Card

Author(s): Lamproe, Juliann Rose
Cutler, Theresa Elizabeth
Hua, Michael Yeungjun
Hutchinson, Jesson D.
Pozzi, Sara

Intended for: 2021 MTV Virtual Workshop, 2021-03-29/2021-03-31 (Ann Arbor, Michigan,
United States)

Issued: 2021-03-19

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Validation of Nuclear Data Sensitivity Calculations by the MCNP PERT Card

Juliann R. Lamproe^{*1,2}, Theresa E. Cutler², Michael Y. Hua^{1,2}, Jesson D. Hutchinson², and Sara A. Pozzi¹

¹Department of Nuclear Engineering and Radiological Sciences, University of Michigan, ²NEN-2: Advances Nuclear Technology Group, Los Alamos National Laboratory

*Jlamproe@umich.edu

Consortium for Monitoring, Technology, and Verification (MTV)

Introduction and Motivation

- Predictive codes are used to simulate experiments.
- Improving the nuclear data results in more precise/accurate simulations causing higher-fidelity designs and reduced procedural/operational costs.
- Therefore, the improvement of nuclear data is of paramount importance.
- Nuclear data is improved via integral benchmark experiments.
 - Integral benchmark experiments compare simulated and measured quantities to derive recommended changes to improve nuclear data.
- Sensitivity quantifies how much a specific parameter (e.g., multiplication) is changed by perturbation of a contributing parameter (e.g., cross sections).
 - High sensitivity benchmark means high impact benchmark
- There is no direct tool to estimate the sensitivity of any parameter other than the effective multiplication factor.
- This work validates a method of estimating sensitivities that utilized the MCNP PERT card and tallies.

Mission Relevance

- Sensitivity calculations will be used to create high impact integral benchmark experiments to improve nuclear data.
- Improved nuclear data serves all users, which comprises the entirety of the NNSA.

MTV Impact

- Participation in the MTV Nuclear Engineering Summer School and workshop allowed for the exploration of different areas of interest for graduate studies.
- National laboratory connections allowed for participation in measurement campaigns (like MUSIC) and internships.

Defining Sensitivity

- The Taylor series expansion of some response (R) that is a function of some cross section (σ_x) can be expressed as

$$R(\sigma_x) = R(\sigma_{x,0}) + \frac{dR}{d\sigma_x} \bigg|_{\sigma_{x,0}} \Delta\sigma_x + \frac{1}{2} \frac{d^2R}{d\sigma_x^2} \bigg|_{\sigma_{x,0}} (\Delta\sigma_x)^2 + \dots$$

or more simply

$$R(\sigma_x) = R(\sigma_{x,0}) + \Delta R_1 + \Delta R_2 + \dots$$

where $\Delta\sigma_x = \sigma_x - \sigma_{x,0}$.

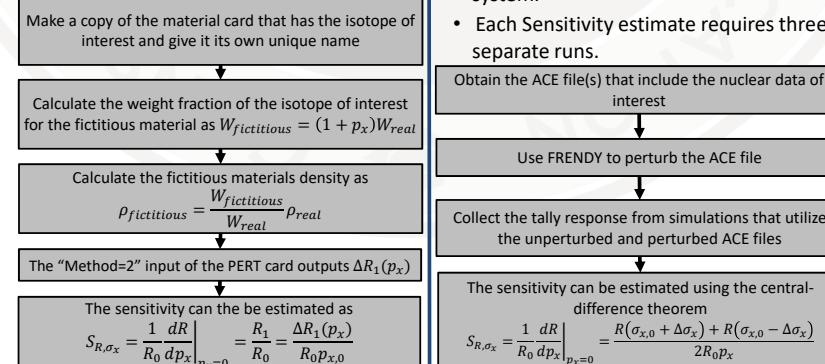
- The relative change in cross section can then be defined as

$$p_x = \frac{\Delta\sigma_x}{\sigma_{x,0}}.$$

- The terms can then be redefined as

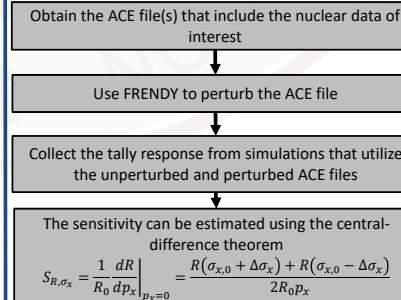
$$R_0 = R(\sigma_{x,0}),$$

$$\Delta R_1 = \frac{dR}{d\sigma_x} \bigg|_{p_x=0} p_x = R_1 p_x \rightarrow R_1 = \frac{\Delta R_1}{p_x}, \text{ and}$$


$$\Delta R_2 = \frac{d^2R}{d\sigma_x^2} \bigg|_{p_x=0} p_x^2 = R_2 p_x^2 \rightarrow R_2 = \frac{\Delta R_2}{p_x^2}.$$

- The first-order relative sensitivity coefficient can then be defined as

$$S_{R,\sigma_x} = \frac{\sigma_x}{R_0} \frac{dR}{d\sigma_x} \bigg|_{\sigma_{x,0}} = \frac{1}{R_0} \frac{dR}{dp_x} \bigg|_{p_x=0}.$$


PERT Approach

- The PERT card is limited to reaction cross section perturbations.
- Each energy bin and isotope requires an individual PERT card (run time increase by 5-10%)

Brute Force Approach

- A compact ENDF (ACE) file is the file composed of the cross-section libraries for continuous MCNP calculations
- FRENDDY is a nuclear data processing system.
- Each Sensitivity estimate requires three separate runs.

Results

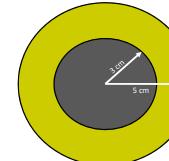


Figure 1. Geometry of the test case.

- 6 cm sphere of plutonium (94% ^{239}Pu , 6% ^{240}Pu)
- 2 cm natural copper reflector
- The response is the track length estimate of cell flux on the inner sphere.

Net Multiplicity = 1.0005

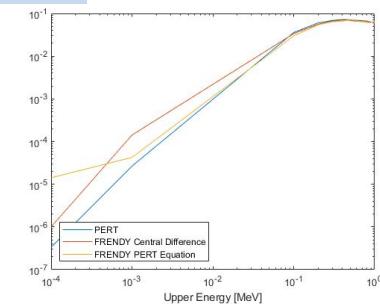


Figure 2. A comparison of the sensitivity estimations.

Conclusion and Future Work

- The agreement of the PERT card and Brute Force results proves the validity of calculating nuclear data sensitivities by use of the MCNP PERT card, especially at higher energies.
- The overall agreement will be easier to understand once an uncertainty analysis is completed.
- In the future,
 - The PERT and Brute Force method will be applied to more complex cases.
 - The validity of the new MCNP sensitivity tool can be compared against current methods.
 - Additionally, work will continue to find ways to calculate the sensitivity of additional parameters.

References

- Jeffrey Favorite, "Using the MCNP Taylor series perturbation feature (efficiently) for shielding problems," EPI Web Conf. 153 06030 (2017). DOI: <https://doi.org/10.1051/epiconf/201715306030>
- R. Kondo, T. Endo, A. Yamamoto, K. Tada, "Implementation of random sampling for ACE-format cross sections using FRENDDY and application to uncertainty reduction," Proc. M&C2019 , Aug. 25-29, Portland, USA (2019).

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under

Department of Energy National Nuclear Security Administration award number DE-NA0003920

