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Deterministic Ion Implantation

Y. Zhou et al., Nat. Comm. 8, 14451 
(2017)
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– Solid-state defects enable scalable quantum applications

– Color-centers are possible candidate
– Single photon emitters require low number of ions

– Precisely measure the conversion yield

Typical Ion Implantation Experiment:

– Measure Beam Current, then do timed implantation

– No real-time feedback of beam current

– Limited by Poisson statistics

Our approach:

In-situ counting  Detect ions as they are implanted

In-situ photoluminescence  Detect color centers as they are formed
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See EQ01.03.03 V. Chandrasekaran for 
details

<1> Event



Problems with Deterministic Defect Creation

2. Low yield of optically active 
defects

1. Few-ion implants dominated by 
Poisson statistics

  In-situ photoluminescence (PL) 
measures color centers

  In-situ counting of ions can 
beat Poisson statistics
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See EQ01.03.03
V. Chandrasekaran

for details



Ion Implantation for Defect Creation

A&D nanoImplanter
- Acceleration up to 100 kV  Si++ 130 nm range in diamond
- Beam spot size <20 nm  Targeting nanostructures
- ExB mass filter  Isotopic Resolution
- Direct write lithography   Rapid Prototyping
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In-Situ Ion Counting

Experimental Setup:

Count Ions using SCA

All Events are recorded on oscilloscope

Triggered Implantation
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In-Situ Ion Counting – Errors

False Negatives
Signal strength is determined by electron-hole 
collection efficiency, SCA throws out all events 
with too few collected e-h-pairs
 2.3 % error

False Positives
Change threshold based on in-situ data
 -0.86 % negative since fewer ions implanted

Dominated by Poisson Statistics, no distinction 
between 1 or more ions
 1.7 % error

Implant Multiple Ions

Single as Double
Some single implant events are classified as 
double implants
 -0.2 % error

30 ions /
 <1> SiV

Timed In-Situ

False Positives - < –1 ppb
False Negatives - 8.6 %
Multiple Ions - 5.8 %
Total +18.3 /

–18.3  %
+14.4 /
–0 %
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2X Improvement over 
timed implantation

<0.1> ions/pulse



Post-Implantation Analysis – Improved Errors

False Negatives
Signal strength is determined by electron-hole 
collection efficiency, SCA throws out all events 
with too few collected e-h-pairs
 2.3 % error

False Positives
Change threshold based on in-situ data
 -0.86 % negative since fewer ions implanted

Dominated by Poisson Statistics, no distinction 
between 1 or more ions
 1.7 % error

Implant Multiple Ions

Single as Double
Some single implant events are classified as 
double implants
 -0.2 % error

30 ions /
 <1> SiV

Timed In-Situ Post-Analysis

False Positives - < –1 ppb 2.3 %
False Negatives - 8.6 % –0.9 %
Multiple Ions - 5.8 % 1.7 %
Single as Double - - –0.2 %
Total +18.3 /

–18.3  %
+14.4 /
–0 %

+4.0 /
–1.1 %
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7X Improvement over 
timed implantation

Improved Thresholds



Photoluminescence of Counted Sample

Bandpass
740 ± 13nm
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High confidence in implanted # of ions
 Instead of +/- 5 ion error bar on 

#Si ions, reduce to +1.2/-0.33 ions



Yield Measurement on Counted Sample

Implanted <33.8> ions/spot

Is our classification correct?

 Hanbury-Brown-Twiss interferometry

<1.01> ±  0.07 emitter per location
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S. Lagomarsino et al., Front. Phys., 8, 626 (2021)

1 emitter

3 emitters

2 emitters

Background



Hanbury-Brown-Twiss Interferometry

 Single emitter will emit only 1 photon at a time

 Only 1 photon at each counter at any time

50:50
Beam

splitter

Photon
Counter

18 % of locations identified as single 
emitters from PL are not single emitters
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Discussion – Additional Emitters

18 % of emitters classified as SPE by PL 
contain a 2nd emitter

Possible explanation: Overlap between SiV + NV

NV is created from native N during high-
temperature anneal

Average NV 
Separation (nm)

Native N Content
1 ppb 0.1 ppb

Conversion 
Yield

45 % 230 497
10 % 381 820
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S. Pezzagna et al., New J. Phys., 12, 065017 (2010)

Our excitation volume is 340 nm and 
18 % of emitters have 2nd emitter

 If due to NV ~10 % conversion 
yield, 1 ppb N content

 If due to SiV, yield 3.54 %



Conclusion of In-Situ Counting

- In-situ single ion counting can improve confidence 
on number of ions to +4 / -1.1 %

- For implantation of 30 ions / <1> SiV, 7X 
improvement over timed implantation

- For implantation of fewer ions, improvement will be 
even greater

- PL confirms we implanted <1> SiV

- HBT shows that 18 % of locations classified as 
single emitters based on PL are not single emitters

- Likely due to natively occurring N being converted 
to NV during high-temperature annealing

13



Conclusion

FIB Implantation

Integration into
Nanostructures

 Demonstrated high-resolution 
implantation for scalable quantum 
applications

 Low yield is roadblock to making 
devices

 In-situ ion counting and in-situ 
PL for deterministic defect 
centers 

 Future in-situ laser annealing 
will enable SiV, GeV, … in 
diamond

Enabling new 
devices
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Examples of FIB Implantation

L. Marseglia et al., Opt. Express 26, 80 (2018)

Y.-I. Sohn et al., Nat. Commun. 9, 2012 (2018)

Noel H. Wan et al., arXiv 1911.05265 (submitted)
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