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Deterministic lon Implantation

)\

)’ - Solid-state defects enable scalable quantum applications
V—Q@ — Color-centers are possible candidate
Q——V/“ - Single photon emitters require low number of ions
{¥ - Precisely measure the conversion yield

Y. Zhou et al.,, Nat. Comm. 8, 14451
(2017)
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Typical lon Implantation Experiment:
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- Measure Beam Current, then do timed implantation

- No real-time feedback of beam current
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- Limited by Poisson statistics
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Our approach:
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In-situ counting > Detect ions as they are implanted
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In-situ photoluminescence - Detect color centers as they are formed
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See EQ01.03.03 V. Chandrasekaran for 20
details 77 Positonum)




Problems with Deterministic Defect Creation

1. Few-ion implants dominated by 2.  Low yield of optically active

Poisson statistics - defects
#Measured SiV
- In-situ counting of ions can “(#Implanted Si In-situ photoluminescence (PL)

measures color centers

/ Objective

beat Poisson statistics

in-situ probes

\

See EQ01.03.03
V. Chandrasekaran
for details




lon Implantation for Defect Creation
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In-Situ lon Counting

Experimental Setup:

Triggered Implantation

Count lons using SCA

All Events are recorded on oscilloscope
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In-Situ lon Counting — Errors

30 ions/ Timed
<1>SiV
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Post-Implantation Analysis — Improved Errors

Improved Thresholds

Post-Analysis
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Photoluminescence of Counted Sample

#Measured SiV

Bandpass
740 £ 13nm

Yield =

#Implanted Si Ions

High confidence in implanted # of ions .

100X
Objective

- Instead of +/- 5 ion error bar on

#Si ions, reduce to +1.2/-0.33 ions
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Yield Measurement on Counted Sample

[¥5]
=

B
o

Implanted <33.8> ions/spot

i
o

Intensity (10* counts/s)

o
vy)
Q
N
=~

0]0]
R}
O
C
D)
o

<1.01> £ 0.07 emitter per location 3 4 6 5 DDk B

X (um)

0.4

—=— Poisson fit

- . EEm Histogram
. . . " U 3 |
e . =N
Is our classification correct?
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Our error < 10 %,
literature reports > 30 % I

S. Lagomarsino et al., Front. Phys., 8, 626 (2021) I
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Hanbury-Brown-Twiss Interferometry
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Single emitter will emit only 1 photon at a time

- Only 1 photon at each counter at any time
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18 % of locations identified as single
emitters from PL are not single emitters
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Discussion — Additional Emitters

18 % of emitters classified as SPE by PL
contain a 2"d emitter

Possible explanation: Overlap between SiV + NV

NV is created from native N during high-

temperature anneal

Average NV

Separation (nm) 0.1 ppb

Conversion 230
Yield 10 % 381

820

Our excitation volume is 340 nm and
18 % of emitters have 2"d emitter

- If due to NV ~10 % conversion
yield, 1 ppb N content

- If due to SiV, yield 3.54 %
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S. Pezzagna et al., New J. Phys., 12, 065017 (2010)
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13 1 Conclusion of In-Situ Counting

- In-situ single ion counting can improve confidence
on number of ionsto +4/-1.1 %

- For implantation of 30 ions / <1> SiV, 7X
improvement over timed implantation

- For implantation of fewer ions, improvement will be
even greater

- PL confirms we implanted <1> SiV

- HBT shows that 18 % of locations classified as
single emitters based on PL are not single emitters

- Likely due to natively occurring N being converted
to NV during high-temperature annealing
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Conclusion

FIB Implantation

Demonstrated high-resolution
implantation for scalable quantum

applications _
Low yield is roadblock to making

IBIC (V)
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.. Integration into
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Examples of FIB Implantation
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Implanted Nanowires

L. Marseglia et al., Opt. Express 26, 80 (2018)

CPT linewidth (MHz)

4.0

w
o

n
o

—
o

300

Ground state splitting, o (GHz)

350

400

450

500

Y.-l. Sohn et al., Nat. Commun. 9, 2012 (2018)
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