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Abstract— The capability to exchange information with utility 

operators, aggregators, and nearby smart devices can make a grid-

interactive inverter an intelligent cyber-physical device. However, 

the capability of exchanging information can also put the inverters 

at the risk of insecure operation. In this paper, possible software 

manipulations into the inverters are studied to understand their 

vulnerability to cyberattacks. Moreover, the state-of-the-art 

system-level and device-level cyber-defense measures are 

discussed, and advantages and drawbacks of each technique are 

provided. Studies show that a reference model can be implemented 

in device-level security to effectively examine incoming setpoints 

for detecting and preventing malicious or harmful actions. This 

paper particularly underlines the significance of device-level self-

security and its advantages for grid-interactive inverters. Finally, 

recommendations for future studies are provided. 

 
Index Terms— Smart inverters, cyber-physical systems, self-

security, self-learning, inverter operating region, malicious 

setpoints, machine learning, cyber-security, false-data-injection. 

I. INTRODUCTION 

The conventional power grid is rapidly evolving to a cyber-

physical structure due to the global tendency to renewable 

energy resources and the increase of distributed generation 

units. Smart inverters provide controllable interfaces that bridge 

the cyber network with physical devices. These devices can also 

provide ancillary services to regulate the voltage and harmonic 

compensations. Recent investigations demonstrate that 

inverters can operate in grid-forming mode to form networked 

microgrids with black-start capabilities [1]-[4]. The grid-

interactive smart inverters are the backbone of the modern 

power grid, allowing high integration of renewable energy 

sources with remote and dynamic control features at a lower 

cost. For instance, California’s total solar power generation is 

nearly 13%, except for some areas offering about 25% [5]. 

California has a goal-setting of utilizing 50% renewable energy 

generation by 2030 [6]. 

  Communication feature enables information exchange 

between physical devices across the power grid through wired 

or wireless wide-area-network (WAN) or local-area-network 

(LAN). Thus, system monitoring devices, advanced metering 

infrastructures (AMIs), and Internet-of-Things (IoT) enabled 

devices can be employed for data sharing to allow autonomous 

interactions for the inverters. However, providing more access 

surfaces on the internet cause smart inverters to be highly 

vulnerable to cyber-attacks. If these attacks are deliberately 

made from secured sources with authorized access, such as a 

utility grid operator, the manipulated data can bypass the 

security protocols [7]. This can result in data modifications such 

as supervisory commands, measured system data, or power 

setpoints that can yield asymmetrical and abnormal operation, 

excessive power injection, etc. [4]. Under such circumstances, 

a system recovery might not even be possible. This can cause 

equipment destruction and large-scale blackouts that can lead 

to high economic considerations [5]-[8]. Power outages in 2015 

and 2016 in Ukraine are examples of malicious attacks that 

happened due to hacking the grid supervisory control and data 

acquisition (SCADA) [8]. 

To minimize the concerns about malicious attacks and 

achieve safer operation under these attacks, the utmost attention 

must be paid to cyber-security. Therefore, anomaly detection 

and attack prevention play vital roles in avoiding potential 

malicious attacks [7]. Former investigations promote improved 

communication and data-transfer security, falling into the basic 

network security category, to prevent cyber-attacks [8], [9]. 

Some researchers applied data-driven approaches such as 

machine learning-based heuristic algorithms [7], [8], [10]-[12], 

where the results are compared with the developed model. 

Nonetheless, authors in [7], [13], and [14] have focused on 

knowledge-based techniques where measured values with any 

time-dependent threshold are compared with the known 

constant values to detect cyberattacks. All developed 

techniques aim to improve the level of security against cyber 

threats. Furthermore, a device-level model-based self-security 

functionality for smart inverters is proposed and experimentally 

tested in [7] to examine the validity of the incoming setpoints. 

On the other hand, the model-based security is also addressed 

in [15] using a general mathematical model as the trajectories 

are bounded by a radius, and abnormal operation is detected 

when the trajectories are out of the bounded area. 

This article provides a better understanding of power 

electronics-based cyber-physical systems, particularly smart 

inverters. In this paper, cyberattack vulnerabilities and possible 

data modification attack scenarios are discussed. Consequently, 

ongoing attack prevention techniques are reviewed to keep up 

with the latest progress along with the state-of-the-art system- 

and device-level defense methodologies. Finally, some gaps for 

the discussed techniques are provided to call attention to future 

research opportunities. 

In addition to the introduction, the paper contains four more 

sections. Section II presents the cyber-physical system where 

possible cyber threats can be performed. Also, the vulnerable 

points of cyber-physical systems are identified in this section. 

Section III elaborates on possible cyber-attack scenarios for the 

inverters and their impacts on the overall system. Section IV 

reviews the literature that proposed solutions to detect and 

prevent malicious activities. Finally, in section V, the 

conclusion and recommendation for future study are given.  
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II. CYBER-PHYSICAL SYSTEM AND TYPES OF POSSIBLE 

ATTACKS 

 The next-generation smart devices such as smart inverters, 

phasor measurement units (PMUs), meters, etc., can link cyber 

networks with physical devices, also known as cyber-physical 

devices. These smart devices can communicate, share data, and 

executive commands in real-time to improve the overall 

system’s performance, efficiency, and reliability. For instance, 

Fig. 1 shows that a smart inverter can receive commands from 

the utility supervisory controller or a third-party aggregator 

through a communication link to disconnect from the grid or 

update 𝑃𝑄 setpoints to manage the power demand. Similarly, 

smart inverters connected to a grid of microgrids, also known 

as networked microgrids, can share their measurements, 

operating points, or system status data using the centralized 

controller or their local controllers. Making grid-interactive 

inverters intelligent allows inverters to operate beyond grid-

feeding mode, such as grid-supporting (ancillary services) and 

grid-forming modes of operation [1], [16], [17]. Furthermore, 

inverters located in a neighborhood can form a clustered data 

communication network to reduce the impact of cyberattacks. 

The main challenge in cyber-physical device operation is to 

maintain security as hackers intentionally focus on jeopardizing 

the device operation. Notably, the inverter-based low inertia 

power systems are more sensitive to instant changes that can 

potentially lead to voltage sags or swells and cascaded inverter 

trips [18]. Insecure network and communication protocols, 

outdated authentication, and weak points in the software are the 

main reasons that the attackers can breach the system through 

the cyber network, as shown in Fig. 1, and perform data 

modification. To develop methodologies and prevent 

cyberattacks, common types of attacks should be known, see 

Fig. 2. Attack types and their objectives targeting intelligent 

devices connected to the cyber network are listed based on the 

research conducted in [6], [8], and [19]. The outcomes of 

successful attacks highly depend on the level of information a 

hacker can obtain for each device.  In the next section, possible 

cyberattack scenarios and their outcomes will be presented.  

III. POSSIBLE MALICIOUS DATA INJECTION SCENARIOS AND 

THEIR IMPACTS 

 The most well-known attack scenario is called false data 

injection (FDI). This scenario covers all attack types provided 

in Table I, except eavesdropping. Since the power control loops 

in inverters are not typically editable due to the read-only 

memory operation, only the external data such as reference 

setpoints, data communication, tunable parameters, user 

interface software, and local feedback signals can be accessible 

in real-time [15]. This scenario is demonstrated in Fig. 3. 

Possible scenarios are given in the following subsections. 

A. Sensor Data Modification 

 Typically, inverters are equipped with their own sensors and 

measurement units. Therefore, manipulating the inverter’s 

sensor data requires physical access to the built-in sensors, 

which would less likely be the case. For a grid-interactive 

system, the state variables can be the system currents and 

voltages. If the inverters measure line currents, voltages, and 

frequency using external measurement units or sensors as 

depicted in Fig. 3, then SCP, MITM, LVP, or replaying 

intrusion actions can be accomplished by the attacker to modify 

the data sent to the inverters. The system dynamics can be 

influenced by altering the measured information, and this could 

endanger the inverter’s operation. The system dynamics can 

also significantly change if the incoming data is replayed, 

blocked, or jammed. 

TABLE I 

OBJECTIVES OF CYBERATTACK TYPES AGAINST SMART-INVERTERS 

Types of Attacks  Description  

Security Certificate Proof (SCP) 
Unauthorized access 

to key certificates. 

Man-in-the-Middle (MITM) 
Unauthorized access 

between two parties. 

Brute Force Credentials (BFC) 
Predicting user log-in 
information. 

Denial of Service (DoS) 
Jamming the network 

traffic. 

Least Privilege Violations (LPV) 
Accessing 
unauthorized 

functionalities. 

Replaying 
Repeating incoming 
data. 

Eavesdropping 

Obtaining 

information about the 

system. 

 

Fig. 2. Cyberattack vulnerabilities of cyber-physical inverters. 

 

Fig. 1. Smart inverters connected to the power grid and cyber attacker 

targeting the communication link in a cyber-physical system. 
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B. Desired Operating Point Modification  

The inputs of an inverter, such as the grid frequency, grid 

voltages, active and reactive power setpoints, and DC source 

voltage, vary depending on the local controller’s processed 

control technique. Modification to the incoming data of an 

inverter is demonstrated in Fig. 3 as the attacker targets the 

incoming information. Like the sensor data modification, if the 

desired setpoints are manipulated, the inverter operation and 

system dynamics can be jeopardized. This can result in 

undesired power flow and fluctuations in grid voltages. 

On the other hand, centralized control techniques feature data 

transfer between master and slave units to share phase and 

frequency information in a grid-forming mode of operation. 

This allows synchronization between the grid-forming inverters 

[20]-[22]. Receiving a manipulated data from the other inverter 

unit can put the system out of synchronization that can trip the 

inverters or intentionally activates the protective relays and 

provide insufficient power for the loads. 

C. Malicious Commands Sent to Nearby Protection Devices  

Cyberattacks can be performed bi-directional, and outgoing 

signals can be manipulated.  For instance, the command signals 

from inverters and relays to static switches can be manipulated, 

see Fig. 3. In the event that the command signal is altered to 

prevent the relays from tripping, high current flow can happen 

from the grid to the inverters or vice versa, which can cause 

permanent damage to the inverters, cables, and loads. 

 Notice, risk arises when islanding is required, i.e., for 

maintenance operation or installing new equipment. To protect 

the workers during their operation, the operators must make 

sure that the smart inverters are disconnected from the grid or 

microgrid, and there are no other power sources that remain 

connected. In case of a successful malicious attack, the 

command sent to the protective relays or switches can be reset 

by manipulating the anti-islanding codes. The anti-islanding 

manipulation can put people at the risk of electric shocks and 

catastrophic failures while installing new equipment.  

D. Forecasting Data Modification  

In solar power applications, smart inverters can receive PV 

forecasting information from weather services every specified 

period using the cyber network. Based on the maximum 

available power at a certain time, a smart inverter can adjust its 

output power. An inverter can send a command to a utility or 

aggregator controller to increase the power generated from 

generators some short period before the forecasted event 

happens. This period allows the generator output to reach the 

required power level because the inertia of the generators does 

not allow instant changes, while the inverter gradually reduces 

its output power. In case an inverter receives malicious PV 

forecasting data, PV power can be curtailed, and power 

generated from the conventional sources will be increased. The 

curtailed power will be wasted if there are no energy storage 

units in the system. Moreover, actively increasing and 

decreasing the inverter and generator powers can cause stress 

on the equipment. 

In the following section, investigations and methodologies 

developed to detect, mitigate, and/or prevent cyberattacks are 

discussed. 

IV. HARMFUL ACTIVITY DETECTION AND DEFENSE 

 Cyberattack detection/prevention is a trending research area 

in recent years. Even though numerous research is conducted in 

this field, no investigation still ensures safe operation for cyber-

physical devices. Techniques used to provide security can vary 

from advanced communication protocols to heavy 

computational processes, i.e., machine learning techniques. 

Some researchers use a model/knowledge-based approach 

when parameters are known or estimated to identify the attacks 

and maintain secure operation.  

The basic security requirements for any cyber-physical 

system are user interface and network security. Attackers can 

successfully perform cyberattacks when their coding skills 

bypass the security protocols, authentication barriers, user 

interface firewall, etc. Existing measures focus on data transfer 

security. Current techniques are known as encryption and 

certificate-based authentication [6]. However, these measures 

are not sufficient to overcome the security challenges for smart 

inverters. According to [6], advanced cryptography techniques 

are needed to achieve safe data transfer during each transaction. 

To achieve an interoperable and plug-and-play platform for 

data exchange and device communication, cyber-security 

protocols and standards are established by organizations like 

IEEE and IEC [23]. For instance, communication protocols 

offered by IEC 61850 are listed in Table II [1], [24], [25]. 

Furthermore, a block-chain technique is presented in [26] to 

ensure integrity and authentication while maintaining 

cryptographic communication. Any intrusion will be alarmed to 

notify the user within the network package. Moreover, a 

message authentication code (MAC) is implemented in [8] to 

perform a validity check for the incoming data.  

 Besides cryptographic data transfer, long-term software 

support for security updates and operating system software is 

needed with restoring option [27]. While [6] suggests a trusted 

execution environment for safe data transfer between two 

parties, [27] recommends a “handshake” policy to provide an 

additional security layer before initiating the data transfer and 

after completing the transaction. Recently, National Renewable 

Energy Laboratory (NREL) introduced BlackRidge Transport 

Access Control (TAC) and Seclab Denelis Modbus Airlock that 

provide a multi-layer defense to detect cyber attacks [8].  

Although these technologies can enhance communication 

security, there is always a chance that a skilled hacker can find 

a path to breach the security wall. On the other hand, most 

authentication and signature-based software protections fail if 

Fig. 3. A malicious attack scenario for a grid-interactive smart power 

electronics interface. 
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the malicious data is sent from an authorized source with 

authorized access, i.e., a third-party aggregator with obliterating 

intention interacts with grid-interactive inverters. When 

advanced network security and protocols fail, a hacker can 

attack the smart inverters through reference setpoints, tunable 

parameters, measured signals, and other external sensor data, as 

these are the only access points to perform a cyberattack. To 

accomplish safer operation and enhance the capabilities and 

smartness of the inverters, protection beyond the network 

security is essential. This can be achieved by developing 

methodologies using the system- and device-level information, 

as categorized in the following subsections. 

A. System-Level Security 

System-level defense uses system status and data sent from 

the nearby cyber-physical devices and controllers to examine 

whether there is malicious activity. Recent methodologies are 

heavily using data-driven approaches such as artificial 

intelligence (AI) and machine learning. 

  AI-based defense techniques are proposed in [28] and [29] 

to identify the FDI attacks. A nonlinear autoregressive 

exogenous model, a special type of recurrent neural network 

(RNN), is implemented in centralized DER controllers in DC 

microgrids in [28], whereas coordinated FDIs in DC microgrids 

are detected based on artificial neural networks (ANN) in [29]. 

On the other hand, a machine learning approach is proposed in 

[30] to detect FDI attacks. The authors developed a conditional 

deep belief network (CDBN) that features Conditional 

Gaussian-Bernoulli Restricted Boltzmann Machines 

(CGBRBM) to examine the real-time measurement data attack 

received from external sensors. A time-varying communication 

graph theory combined with a weighted mean subsequence 

reduced algorithm is applied in [31] to mitigate FDIs targeting 

inverter-based distributed energy resources (DERs) in 

microgrids. Lastly, a recursive systematic convolutional (RSC) 

method in [32] can be provided to detect the MITM attacks 

where the attack is oriented towards a supervisory controller 

linked to multiple distributed energy resources. 

Artificial intelligence and machine learning algorithms 

require heavy computational burdens and days of offline 

training process. To develop data-driven methods, strong 

system knowledge is essential. Lack of system knowledge can 

result in weak training of the algorithm and can potentially lead 

to damages and high economic impacts. On the other hand, 

data-driven methodologies consume high power during the 

computational process. 

Besides the data-driven approaches, there are some 

model/knowledge-based investigations in the literature. The 

model-based centralized and distributed detection methods are 

proposed in [13]. Another model-based partial primal-dual 

anomaly detection strategy is proposed in [33] for attacks 

targeting distributed secondary droop control in microgrids. 

The proposed technique only considers link and node attacks. 

Furthermore, the authors in [34] propose a distributed control 

framework for 𝑃-𝑓 control in AC microgrids using a virtual 

resilient layer with hidden networks. The event-driven 

approach introduced in [35] detects and mitigates stealth attacks 

occurring on the frequency control input in AC microgrids 

while ensuring resilient synchronization up to 𝑁 − 1 attacked 

units, where 𝑁 represents the number of grid-forming inverters. 

Watermarking is another approach to identify harmful 

attacks performed in the system. The idea of watermarking is to 

inject a signal into the system, detect the response at the 

gateway using a detector, and compare whether an error is 

observed in the measurement outcome [36]. This methodology 

typically provides authentication to the system and identifies 

spoofing, MITM, and FDI attacks. Dynamic authentication of 

IoT signals using a deep-learning-based long short-term 

memory structure is proposed in [37], and a game-theoretic 

framework that makes decisions by predicting sensitive IoT 

devices on the big scale is developed. 

B. Device-Level Security 

Even though many investigations have been reported about 

software and system-level securities, device-level detection is 

recommended in [6] using power electronics interfaces that 

shifts some inverter functionalities to energy buffer circuits to 

improve the voltage and frequency of ride-through capabilities, 

harmonics and unbalance distortions, or unintentional 

islanding. Energy storage devices will power these buffer 

circuits. However, the buffer inverters are not connected to a 

cyber network. Therefore, the term of smartness cannot be 

observed for the recommended buffer circuits. 

A smart knowledge-based device-level self-security concept 

is first introduced by [7]. This model-based anomaly detection 

forms the backbone of device-level security. The authors 

emphasize that reference model-based defense methodologies 

could be developed to examine the integrity of incoming 

information at the device level. The concept of model-based 

self-defense is represented in Fig. 4. Herein, a smart inverter 

receives data, i.e., through a communication link. This data 

could include PQ setpoints from supervisory units such as 

utility and third-party controllers, measurement data from 

nearby devices such as other smart inverters, PMUs, and smart 

meters, and solar forecasting data from weather services. 

Before engaging the incoming data to the inverter’s local 

controller, the security layer directs the data to the developed 

reference models. To enhance anomaly detection performance, 

multiple reference models can be equipped. In Fig. 4, some 

knowledge-based models are presented.  

Depending on the designer’s choice, reference models can be 

divided into two categories; (𝑖) the fixed reference models, in 

which the model parameters are not updated in real-time, and 

(𝑖𝑖) adaptive reference models, in which model parameters such 

TABLE II 
IEC 61850 SECURITY PROTOCOLS 

Protocol Name  Description  

Manufacturing-Message-Specification 

(MMS) 

Data exchange 

protocol between 
utility supervisory 

controller and cyber-

physical devices. 

Generic-Object-Oriented-Substation-

Events (GOOSE) 

Data exchange 
protocol between 

smart inverters. 

Sample-Measured-Values (SMV) 

Data exchange 
protocols from 

measurement units to 

smart inverters. 
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as grid parameters and PV forecasting data can be updated in 

real-time to represent the actual behavior or limits accurately. 

Furthermore, when enough knowledge is provided, a smart 

inverter can learn its dynamic performance, boundaries, and 

capabilities. Then, the inverter forms its reference models and 

automatically tune its parameter. The learning process becomes 

adaptive when adaptive reference models are utilized. This 

forms the concept of self-learning in self-security and allows 

inverters to make more accurate decisions under varying 

conditions comparing to the fixed reference models. Developed 

reference models examine the incoming information and send 

the expected output to the security unit that decides whether 

there is an anomaly or attack in the system. Notice, no matter 

where the data is received from, such as authorized or 

unauthorized sources, the incoming information is always 

checked using the knowledge-based models without bypassing 

the security layer. If an anomaly is detected, the received data 

is rejected, and the previous safe data remains in action. If the 

data is safe, it is engaged to the inverter’s local controller.  

In [7], anomalies or harmful activities are detected and 

prevented using three of the reference models shown in Fig.5 

by; (𝑖) checking the intersected area of the inverter’s capability 

boundary, 𝑆𝑚𝑎𝑥, and (𝑖𝑖) instability boundary, using the theory 

from [38] and [39], and (𝑖𝑖𝑖) evaluating dynamic performance 

using a reduced-order dynamic model to represent the full-order 

dynamic behavior and to perform faster operations. The 

dynamic model is used to enhance the detection performance of 

the security algorithm. If the steady-state reference model 

detects anomalies, the incoming setpoints are examined using 

the dynamic reference model to verify whether the received 

setpoints might cause normal or abnormal operation. Parameter 

uncertainties can cause variations in the steady-state model, and 

the accepted setpoints can be detected as harmful setpoints or 

vice versa. However, the dynamic reference model can further 

verify whether these setpoints are harmful or not while 

parameters vary in real-time. The anomaly detection can be 

improved by adding PV forecasting data and updating 𝑆𝑚𝑎𝑥 , 

accordingly. 

Additional to the abovementioned models, requirements 

defined by IEEE Std. 1547-2018 such as high- and low- voltage 

ride-through, etc., can be implemented as another knowledge-

based model to detect harmful activities. Smart inverters’ 

responses under the defined scenarios can be monitored. 

Unexpected behavior, trips, or anti-islanding issues can be 

investigated. Moreover, utilizing the short-term inverter PQ 

setpoints memory as a reference model can be discussed as 

another point of view for attack detection. For instance, an 

inverter can record previously accepted setpoints and compare 

the incoming PQ setpoints with the recorded data. If a drastic 

change is detected, the incoming data can be rejected. This 

approach can further be extended by including past events. For 

instance, an inverter can learn which PQ setpoint ranges lead to 

abnormal operations or inverter trips from the experience and 

record these values as well as the rejected setpoints. Then, the 

algorithm can examine the new setpoints considering the past 

events.  

 Device-level security measures can be promising to identify 

stealth and authorized intentional attacks targeting the incoming 

data. When the reference models are properly formed, the 

system can protect itself and the grid from being damaged. On 

the other hand, the self-learning feature requires significantly 

less computational time and processing power than the 

machine-learning techniques. However, this concept must be 

used as an extra security layer. For instance, malicious external 

measurement data may cause an inaccurate calculation of the 

stability boundary, and harmful PQ setpoints may fall into the 

safe region. The security algorithm consequently might engage 

the setpoints to the inverter’s local controller. The new setpoints 

can cause a sudden increase in active and/or reactive power due 

to the incoming malicious data and might result in voltage sags 

and swell at the point of common coupling. If secured network 

communication is established, and a proper system-level 

methodology is also equipped, sensor data attacks and 

anomalies can be detected.  

V. CONCLUSION AND RECOMMENDATIONS 

In this paper, a brief cyber-security assessment for the grid-

interactive smart inverters has been analyzed. At first, a cyber-

physical system was described. Then, the cyber vulnerabilities 

for the inverters were introduced. Next, possible attack 

scenarios targeting the grid-supporting, grid-following, and 

grid-forming inverters as well as the attack limitation are 

provided. Furthermore, cutting-edge defense methodologies 

against cyberattacks that are available in the literature were 

reviewed to update some of the existing knowledge with recent 

investigations. Advanced methodologies were categorized in 

the form of system-level and device-level security. The existing 

communication protocols, network security, and system-level 

security measures do not ensure complete protection since 

authentication, cryptographic, and data-driven approaches can 

be bypassed by harmful incoming data intentionally sent by an 

Fig. 4. The concept of model/knowledge-based self-security approach to detect cyberattacks. Combination of the reference model and the security layer forms 

device-level security.  
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authorized source using priority messages through authorized 

channels.  

To enhance the security, ensure safe operation, protect the 

system devices being damaged, and maintain the integrity and 

normal operation, advanced, accurate, and fast attack detection 

and prevention techniques will always be in demand. Since 

each technique has advantages and disadvantages, and no 

methodology can ensure 100% cyber-physical security for a 

system, multi-stage/level protection techniques need to be 

developed. For safer inverter operation, model-based device-

level self-security techniques need to be developed to provide 

additional protection and fill the gaps that the software- and 

system-level techniques cannot.  Therefore, the necessity of 

device-level protection measures is emphasized since smart 

inverters and the utility equipment can be protected, and normal 

operation can still be observed under cyberattacks.   
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