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Abstract— The capability to exchange information with utility
operators, aggregators, and nearby smart devices can make a grid-
interactive inverter an intelligent cyber-physical device. However,
the capability of exchanging information can also put the inverters
at the risk of insecure operation. In this paper, possible software
manipulations into the inverters are studied to understand their
vulnerability to cyberattacks. Moreover, the state-of-the-art
system-level and device-level cyber-defense measures are
discussed, and advantages and drawbacks of each technique are
provided. Studies show that a reference model can be implemented
in device-level security to effectively examine incoming setpoints
for detecting and preventing malicious or harmful actions. This
paper particularly underlines the significance of device-level self-
security and its advantages for grid-interactive inverters. Finally,
recommendations for future studies are provided.

Index Terms— Smart inverters, cyber-physical systems, self-
security, self-learning, inverter operating region, malicious
setpoints, machine learning, cyber-security, false-data-injection.

I. INTRODUCTION

The conventional power grid is rapidly evolving to a cyber-
physical structure due to the global tendency to renewable
energy resources and the increase of distributed generation
units. Smart inverters provide controllable interfaces that bridge
the cyber network with physical devices. These devices can also
provide ancillary services to regulate the voltage and harmonic
compensations. Recent investigations demonstrate that
inverters can operate in grid-forming mode to form networked
microgrids with black-start capabilities [1]-[4]. The grid-
interactive smart inverters are the backbone of the modern
power grid, allowing high integration of renewable energy
sources with remote and dynamic control features at a lower
cost. For instance, California’s total solar power generation is
nearly 13%, except for some areas offering about 25% [5].
California has a goal-setting of utilizing 50% renewable energy
generation by 2030 [6].

Communication feature enables information exchange
between physical devices across the power grid through wired
or wireless wide-area-network (WAN) or local-area-network
(LAN). Thus, system monitoring devices, advanced metering
infrastructures (AMIs), and Internet-of-Things (IoT) enabled
devices can be employed for data sharing to allow autonomous
interactions for the inverters. However, providing more access
surfaces on the internet cause smart inverters to be highly
vulnerable to cyber-attacks. If these attacks are deliberately
made from secured sources with authorized access, such as a
utility grid operator, the manipulated data can bypass the
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security protocols [7]. This can result in data modifications such
as supervisory commands, measured system data, or power
setpoints that can yield asymmetrical and abnormal operation,
excessive power injection, etc. [4]. Under such circumstances,
a system recovery might not even be possible. This can cause
equipment destruction and large-scale blackouts that can lead
to high economic considerations [5]-[8]. Power outages in 2015
and 2016 in Ukraine are examples of malicious attacks that
happened due to hacking the grid supervisory control and data
acquisition (SCADA) [8].

To minimize the concerns about malicious attacks and
achieve safer operation under these attacks, the utmost attention
must be paid to cyber-security. Therefore, anomaly detection
and attack prevention play vital roles in avoiding potential
malicious attacks [7]. Former investigations promote improved
communication and data-transfer security, falling into the basic
network security category, to prevent cyber-attacks [8], [9].
Some researchers applied data-driven approaches such as
machine learning-based heuristic algorithms [7], [8], [10]-[12],
where the results are compared with the developed model.
Nonetheless, authors in [7], [13], and [14] have focused on
knowledge-based techniques where measured values with any
time-dependent threshold are compared with the known
constant values to detect cyberattacks. All developed
techniques aim to improve the level of security against cyber
threats. Furthermore, a device-level model-based self-security
functionality for smart inverters is proposed and experimentally
tested in [7] to examine the validity of the incoming setpoints.
On the other hand, the model-based security is also addressed
in [15] using a general mathematical model as the trajectories
are bounded by a radius, and abnormal operation is detected
when the trajectories are out of the bounded area.

This article provides a better understanding of power
electronics-based cyber-physical systems, particularly smart
inverters. In this paper, cyberattack vulnerabilities and possible
data modification attack scenarios are discussed. Consequently,
ongoing attack prevention techniques are reviewed to keep up
with the latest progress along with the state-of-the-art system-
and device-level defense methodologies. Finally, some gaps for
the discussed techniques are provided to call attention to future
research opportunities.

In addition to the introduction, the paper contains four more
sections. Section Il presents the cyber-physical system where
possible cyber threats can be performed. Also, the vulnerable
points of cyber-physical systems are identified in this section.
Section Il elaborates on possible cyber-attack scenarios for the
inverters and their impacts on the overall system. Section IV
reviews the literature that proposed solutions to detect and
prevent malicious activities. Finally, in section V, the
conclusion and recommendation for future study are given.



Il. CYBER-PHYSICAL SYSTEM AND TYPES OF POSSIBLE
ATTACKS

The next-generation smart devices such as smart inverters,
phasor measurement units (PMUs), meters, etc., can link cyber
networks with physical devices, also known as cyber-physical
devices. These smart devices can communicate, share data, and
executive commands in real-time to improve the overall
system’s performance, efficiency, and reliability. For instance,
Fig. 1 shows that a smart inverter can receive commands from
the utility supervisory controller or a third-party aggregator
through a communication link to disconnect from the grid or
update PQ setpoints to manage the power demand. Similarly,
smart inverters connected to a grid of microgrids, also known
as networked microgrids, can share their measurements,
operating points, or system status data using the centralized
controller or their local controllers. Making grid-interactive
inverters intelligent allows inverters to operate beyond grid-
feeding mode, such as grid-supporting (ancillary services) and
grid-forming modes of operation [1], [16], [17]. Furthermore,
inverters located in a neighborhood can form a clustered data
communication network to reduce the impact of cyberattacks.

The main challenge in cyber-physical device operation is to
maintain security as hackers intentionally focus on jeopardizing
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Fig. 1. Smart inverters connected to the power grid and cyber attacker
targeting the communication link in a cyber-physical system.
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Fig. 2. Cyberattack vulnerabilities of cyber-physical inverters.

the device operation. Notably, the inverter-based low inertia
power systems are more sensitive to instant changes that can
potentially lead to voltage sags or swells and cascaded inverter
trips [18]. Insecure network and communication protocols,
outdated authentication, and weak points in the software are the
main reasons that the attackers can breach the system through
the cyber network, as shown in Fig. 1, and perform data
modification. To develop methodologies and prevent
cyberattacks, common types of attacks should be known, see
Fig. 2. Attack types and their objectives targeting intelligent
devices connected to the cyber network are listed based on the
research conducted in [6], [8], and [19]. The outcomes of
successful attacks highly depend on the level of information a
hacker can obtain for each device. In the next section, possible
cyberattack scenarios and their outcomes will be presented.

I11. POSSIBLE MALICIOUS DATA INJECTION SCENARIOS AND
THEIR IMPACTS

The most well-known attack scenario is called false data
injection (FDI). This scenario covers all attack types provided
in Table I, except eavesdropping. Since the power control loops
in inverters are not typically editable due to the read-only
memory operation, only the external data such as reference
setpoints, data communication, tunable parameters, user
interface software, and local feedback signals can be accessible
in real-time [15]. This scenario is demonstrated in Fig. 3.
Possible scenarios are given in the following subsections.

A. Sensor Data Modification

Typically, inverters are equipped with their own sensors and
measurement units. Therefore, manipulating the inverter’s
sensor data requires physical access to the built-in sensors,
which would less likely be the case. For a grid-interactive
system, the state variables can be the system currents and
voltages. If the inverters measure line currents, voltages, and
frequency using external measurement units or sensors as
depicted in Fig. 3, then SCP, MITM, LVP, or replaying
intrusion actions can be accomplished by the attacker to modify
the data sent to the inverters. The system dynamics can be
influenced by altering the measured information, and this could
endanger the inverter’s operation. The system dynamics can
also significantly change if the incoming data is replayed,
blocked, or jammed.

TABLE |
OBJECTIVES OF CYBERATTACK TYPES AGAINST SMART-INVERTERS

Types of Attacks Description

Unauthorized access
to key certificates.
Unauthorized access
between two parties.
Predicting user log-in
information.
Jamming the network
traffic.

Accessing
unauthorized
functionalities.
Repeating incoming
data.

Obtaining
information about the
system.

Security Certificate Proof (SCP)

Man-in-the-Middle (MITM)

Brute Force Credentials (BFC)

Denial of Service (DoS)

Least Privilege Violations (LPV)

Replaying

Eavesdropping




B. Desired Operating Point Modification

The inputs of an inverter, such as the grid frequency, grid
voltages, active and reactive power setpoints, and DC source
voltage, vary depending on the local controller’s processed
control technique. Modification to the incoming data of an
inverter is demonstrated in Fig. 3 as the attacker targets the
incoming information. Like the sensor data modification, if the
desired setpoints are manipulated, the inverter operation and
system dynamics can be jeopardized. This can result in
undesired power flow and fluctuations in grid voltages.

On the other hand, centralized control techniques feature data
transfer between master and slave units to share phase and
frequency information in a grid-forming mode of operation.
This allows synchronization between the grid-forming inverters
[20]-[22]. Receiving a manipulated data from the other inverter
unit can put the system out of synchronization that can trip the
inverters or intentionally activates the protective relays and
provide insufficient power for the loads.

C. Malicious Commands Sent to Nearby Protection Devices

Cyberattacks can be performed bi-directional, and outgoing
signals can be manipulated. For instance, the command signals
from inverters and relays to static switches can be manipulated,
see Fig. 3. In the event that the command signal is altered to
prevent the relays from tripping, high current flow can happen
from the grid to the inverters or vice versa, which can cause
permanent damage to the inverters, cables, and loads.

Notice, risk arises when islanding is required, i.e., for
maintenance operation or installing new equipment. To protect
the workers during their operation, the operators must make
sure that the smart inverters are disconnected from the grid or
microgrid, and there are no other power sources that remain
connected. In case of a successful malicious attack, the
command sent to the protective relays or switches can be reset
by manipulating the anti-islanding codes. The anti-islanding
manipulation can put people at the risk of electric shocks and
catastrophic failures while installing new equipment.

D. Forecasting Data Modification

In solar power applications, smart inverters can receive PV
forecasting information from weather services every specified
period using the cyber network. Based on the maximum
available power at a certain time, a smart inverter can adjust its
output power. An inverter can send a command to a utility or
aggregator controller to increase the power generated from
generators some short period before the forecasted event
happens. This period allows the generator output to reach the
required power level because the inertia of the generators does
not allow instant changes, while the inverter gradually reduces
its output power. In case an inverter receives malicious PV
forecasting data, PV power can be curtailed, and power
generated from the conventional sources will be increased. The
curtailed power will be wasted if there are no energy storage
units in the system. Moreover, actively increasing and
decreasing the inverter and generator powers can cause stress
on the equipment.

In the following section, investigations and methodologies
developed to detect, mitigate, and/or prevent cyberattacks are
discussed.

IV. HARMFUL ACTIVITY DETECTION AND DEFENSE

Cyberattack detection/prevention is a trending research area
in recent years. Even though numerous research is conducted in
this field, no investigation still ensures safe operation for cyber-
physical devices. Techniques used to provide security can vary
from advanced communication protocols to heavy
computational processes, i.e., machine learning techniques.
Some researchers use a model/knowledge-based approach
when parameters are known or estimated to identify the attacks
and maintain secure operation.

The basic security requirements for any cyber-physical
system are user interface and network security. Attackers can
successfully perform cyberattacks when their coding skills
bypass the security protocols, authentication barriers, user
interface firewall, etc. Existing measures focus on data transfer
security. Current techniques are known as encryption and
certificate-based authentication [6]. However, these measures
are not sufficient to overcome the security challenges for smart
inverters. According to [6], advanced cryptography techniques
are needed to achieve safe data transfer during each transaction.
To achieve an interoperable and plug-and-play platform for
data exchange and device communication, cyber-security
protocols and standards are established by organizations like
IEEE and IEC [23]. For instance, communication protocols
offered by IEC 61850 are listed in Table Il [1], [24], [25].
Furthermore, a block-chain technique is presented in [26] to
ensure integrity and authentication while maintaining
cryptographic communication. Any intrusion will be alarmed to
notify the user within the network package. Moreover, a
message authentication code (MAC) is implemented in [8] to
perform a validity check for the incoming data.

Besides cryptographic data transfer, long-term software
support for security updates and operating system software is
needed with restoring option [27]. While [6] suggests a trusted
execution environment for safe data transfer between two
parties, [27] recommends a “handshake” policy to provide an
additional security layer before initiating the data transfer and
after completing the transaction. Recently, National Renewable
Energy Laboratory (NREL) introduced BlackRidge Transport
Access Control (TAC) and Seclab Denelis Modbus Airlock that
provide a multi-layer defense to detect cyber attacks [8].

Although these technologies can enhance communication
security, there is always a chance that a skilled hacker can find
a path to breach the security wall. On the other hand, most
authentication and signature-based software protections fail if
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Fig. 3. A malicious attack scenario for a grid-interactive smart power
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the malicious data is sent from an authorized source with
authorized access, i.e., a third-party aggregator with obliterating
intention interacts with grid-interactive inverters. When
advanced network security and protocols fail, a hacker can
attack the smart inverters through reference setpoints, tunable
parameters, measured signals, and other external sensor data, as
these are the only access points to perform a cyberattack. To
accomplish safer operation and enhance the capabilities and
smartness of the inverters, protection beyond the network
security is essential. This can be achieved by developing
methodologies using the system- and device-level information,
as categorized in the following subsections.

A. System-Level Security

System-level defense uses system status and data sent from
the nearby cyber-physical devices and controllers to examine
whether there is malicious activity. Recent methodologies are
heavily using data-driven approaches such as artificial
intelligence (Al) and machine learning.

Al-based defense techniques are proposed in [28] and [29]
to identify the FDI attacks. A nonlinear autoregressive
exogenous model, a special type of recurrent neural network
(RNN), is implemented in centralized DER controllers in DC
microgrids in [28], whereas coordinated FDIs in DC microgrids
are detected based on artificial neural networks (ANN) in [29].
On the other hand, a machine learning approach is proposed in
[30] to detect FDI attacks. The authors developed a conditional
deep belief network (CDBN) that features Conditional
Gaussian-Bernoulli Restricted  Boltzmann  Machines
(CGBRBM) to examine the real-time measurement data attack
received from external sensors. A time-varying communication
graph theory combined with a weighted mean subsequence
reduced algorithm is applied in [31] to mitigate FDIs targeting
inverter-based distributed energy resources (DERS) in
microgrids. Lastly, a recursive systematic convolutional (RSC)
method in [32] can be provided to detect the MITM attacks
where the attack is oriented towards a supervisory controller
linked to multiple distributed energy resources.

Artificial intelligence and machine learning algorithms
require heavy computational burdens and days of offline
training process. To develop data-driven methods, strong
system knowledge is essential. Lack of system knowledge can
result in weak training of the algorithm and can potentially lead
to damages and high economic impacts. On the other hand,
data-driven methodologies consume high power during the
computational process.

Besides the data-driven approaches, there are some
model/knowledge-based investigations in the literature. The
model-based centralized and distributed detection methods are
proposed in [13]. Another model-based partial primal-dual
anomaly detection strategy is proposed in [33] for attacks
targeting distributed secondary droop control in microgrids.
The proposed technique only considers link and node attacks.
Furthermore, the authors in [34] propose a distributed control
framework for P-f control in AC microgrids using a virtual
resilient layer with hidden networks. The event-driven
approach introduced in [35] detects and mitigates stealth attacks
occurring on the frequency control input in AC microgrids

while ensuring resilient synchronization up to N — 1 attacked
units, where N represents the number of grid-forming inverters.

Watermarking is another approach to identify harmful
attacks performed in the system. The idea of watermarking is to
inject a signal into the system, detect the response at the
gateway using a detector, and compare whether an error is
observed in the measurement outcome [36]. This methodology
typically provides authentication to the system and identifies
spoofing, MITM, and FDI attacks. Dynamic authentication of
IoT signals using a deep-learning-based long short-term
memory structure is proposed in [37], and a game-theoretic
framework that makes decisions by predicting sensitive 10T
devices on the big scale is developed.

B. Device-Level Security

Even though many investigations have been reported about
software and system-level securities, device-level detection is
recommended in [6] using power electronics interfaces that
shifts some inverter functionalities to energy buffer circuits to
improve the voltage and frequency of ride-through capabilities,
harmonics and unbalance distortions, or unintentional
islanding. Energy storage devices will power these buffer
circuits. However, the buffer inverters are not connected to a
cyber network. Therefore, the term of smartness cannot be
observed for the recommended buffer circuits.

A smart knowledge-based device-level self-security concept
is first introduced by [7]. This model-based anomaly detection
forms the backbone of device-level security. The authors
emphasize that reference model-based defense methodologies
could be developed to examine the integrity of incoming
information at the device level. The concept of model-based
self-defense is represented in Fig. 4. Herein, a smart inverter
receives data, i.e., through a communication link. This data
could include PQ setpoints from supervisory units such as
utility and third-party controllers, measurement data from
nearby devices such as other smart inverters, PMUs, and smart
meters, and solar forecasting data from weather services.
Before engaging the incoming data to the inverter’s local
controller, the security layer directs the data to the developed
reference models. To enhance anomaly detection performance,
multiple reference models can be equipped. In Fig. 4, some
knowledge-based models are presented.

Depending on the designer’s choice, reference models can be
divided into two categories; (i) the fixed reference models, in
which the model parameters are not updated in real-time, and
(ii) adaptive reference models, in which model parameters such

TABLE Il
IEC 61850 SECURITY PROTOCOLS

Description

Data exchange
protocol between
utility supervisory
controller and cyber-
physical devices.
Data exchange
protocol between
smart inverters.

Data exchange
protocols from
measurement units to
smart inverters.

Protocol Name

Manufacturing-Message-Specification
(MMS)

Generic-Object-Oriented-Substation-
Events (GOOSE)

Sample-Measured-Values (SMV)




as grid parameters and PV forecasting data can be updated in
real-time to represent the actual behavior or limits accurately.
Furthermore, when enough knowledge is provided, a smart
inverter can learn its dynamic performance, boundaries, and
capabilities. Then, the inverter forms its reference models and
automatically tune its parameter. The learning process becomes
adaptive when adaptive reference models are utilized. This
forms the concept of self-learning in self-security and allows
inverters to make more accurate decisions under varying
conditions comparing to the fixed reference models. Developed
reference models examine the incoming information and send
the expected output to the security unit that decides whether
there is an anomaly or attack in the system. Notice, no matter
where the data is received from, such as authorized or
unauthorized sources, the incoming information is always
checked using the knowledge-based models without bypassing
the security layer. If an anomaly is detected, the received data
is rejected, and the previous safe data remains in action. If the
data is safe, it is engaged to the inverter’s local controller.

In [7], anomalies or harmful activities are detected and
prevented using three of the reference models shown in Fig.5
by; (i) checking the intersected area of the inverter’s capability
boundary, S,,.x, and (ii) instability boundary, using the theory
from [38] and [39], and (iii) evaluating dynamic performance
using a reduced-order dynamic model to represent the full-order
dynamic behavior and to perform faster operations. The
dynamic model is used to enhance the detection performance of
the security algorithm. If the steady-state reference model
detects anomalies, the incoming setpoints are examined using
the dynamic reference model to verify whether the received
setpoints might cause normal or abnormal operation. Parameter
uncertainties can cause variations in the steady-state model, and
the accepted setpoints can be detected as harmful setpoints or
vice versa. However, the dynamic reference model can further
verify whether these setpoints are harmful or not while
parameters vary in real-time. The anomaly detection can be
improved by adding PV forecasting data and updating S,,...
accordingly.

Additional to the abovementioned models, requirements
defined by IEEE Std. 1547-2018 such as high- and low- voltage
ride-through, etc., can be implemented as another knowledge-
based model to detect harmful activities. Smart inverters’
responses under the defined scenarios can be monitored.
Unexpected behavior, trips, or anti-islanding issues can be
investigated. Moreover, utilizing the short-term inverter PQ
setpoints memory as a reference model can be discussed as

Knowledge-Based Reference Models

another point of view for attack detection. For instance, an
inverter can record previously accepted setpoints and compare
the incoming PQ setpoints with the recorded data. If a drastic
change is detected, the incoming data can be rejected. This
approach can further be extended by including past events. For
instance, an inverter can learn which PQ setpoint ranges lead to
abnormal operations or inverter trips from the experience and
record these values as well as the rejected setpoints. Then, the
algorithm can examine the new setpoints considering the past
events.

Device-level security measures can be promising to identify
stealth and authorized intentional attacks targeting the incoming
data. When the reference models are properly formed, the
system can protect itself and the grid from being damaged. On
the other hand, the self-learning feature requires significantly
less computational time and processing power than the
machine-learning techniques. However, this concept must be
used as an extra security layer. For instance, malicious external
measurement data may cause an inaccurate calculation of the
stability boundary, and harmful PQ setpoints may fall into the
safe region. The security algorithm consequently might engage
the setpoints to the inverter’s local controller. The new setpoints
can cause a sudden increase in active and/or reactive power due
to the incoming malicious data and might result in voltage sags
and swell at the point of common coupling. If secured network
communication is established, and a proper system-level
methodology is also equipped, sensor data attacks and
anomalies can be detected.

V. CONCLUSION AND RECOMMENDATIONS

In this paper, a brief cyber-security assessment for the grid-
interactive smart inverters has been analyzed. At first, a cyber-
physical system was described. Then, the cyber vulnerabilities
for the inverters were introduced. Next, possible attack
scenarios targeting the grid-supporting, grid-following, and
grid-forming inverters as well as the attack limitation are
provided. Furthermore, cutting-edge defense methodologies
against cyberattacks that are available in the literature were
reviewed to update some of the existing knowledge with recent
investigations. Advanced methodologies were categorized in
the form of system-level and device-level security. The existing
communication protocols, network security, and system-level
security measures do not ensure complete protection since
authentication, cryptographic, and data-driven approaches can
be bypassed by harmful incoming data intentionally sent by an
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authorized source using priority messages through authorized
channels.

To enhance the security, ensure safe operation, protect the
system devices being damaged, and maintain the integrity and
normal operation, advanced, accurate, and fast attack detection
and prevention techniques will always be in demand. Since
each technique has advantages and disadvantages, and no
methodology can ensure 100% cyber-physical security for a
system, multi-stage/level protection techniques need to be
developed. For safer inverter operation, model-based device-
level self-security techniques need to be developed to provide
additional protection and fill the gaps that the software- and
system-level techniques cannot. Therefore, the necessity of
device-level protection measures is emphasized since smart
inverters and the utility equipment can be protected, and normal
operation can still be observed under cyberattacks.
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