
 

Abstract– This work investigates the projection of safe operation 

for grid-following inverters using a reference model. This work 

applies recursive-least square and model reference adaptive 

estimation techniques to estimate the unknown grid parameters. 

The estimated grid parameters are used in a dynamic reference 

model to project the safe operation of the inverter. This work also 

demonstrates that the controller nonlinearity and parameter 

variations can cause unsafe operations, such as unexpected 

instability at low power levels, namely hidden mode of instability. 

This instability issue in the nominal operating range may occur for 

given control parameters in a weak-grid condition. The dynamic 

reference model for PQ-controlled inverters is applied to analyze 

this instability issue using the estimated grid parameters. Both 

adaptive identification techniques can estimate the unknown 

parameters accurately, and the dynamic reference model can 

safeguard inverters from an unsafe operation, i.e., hidden 

instability, by examining the incoming new power setpoints before 

engaging them to the local controller. The findings are 

experimentally verified using a small-scale two-level 208 V, 5 kVA 

inverter feeding a 12 kW NHR 9410 power grid emulator. 

 
Index Terms –Grid-following inverters, Grid parameter 

estimation, reference model, weak grid, recursive-least square, 

model reference adaptive estimation 

I. INTRODUCTION 

A smart cyber-physical device, i.e., a smart inverter, provides 

controllable and interactive interfaces between the cyber 

network and physical devices using communication links. 

These interfaces allow autonomous and bi-directional 

information exchange between the parties while performing 

proactive actions [1]-[3]. For instance, a smart inverter can 

operate in different modes of operation, such as grid-supporting 

mode when voltage regulation and harmonic compensation are 

accomplished while overcoming various instability issues and 

grid-forming mode when networked microgrid operation with 

black-start capabilities can be achieved [4]-[6]. Inverters need 

to identify some of the system’s unknown parameters for 

implementing these advanced control features, which can be 

measured, projected, or acknowledged externally from adjacent 

smart devices. To achieve these, the inverter needs to 

communicate with several parties that impose more surface for 

detrimental events. The possibilities of harmful events increase 

when unsafe communication protocols are employed, and 

obsolete operating systems are involved [7]-[10]. 

Insecure incidents can exist in the form of intentional or 

unintentional unsafe events or naturally happened anomalies in 

the system, i.e., a malfunction in a physical system. For 

example, an authorized operator can accidentally send unsafe 

setpoints that can move the inverter operating point from a 

stable region to an unstable one, causing undesired power 

oscillation below the rated power level and jeopardizing the 

inverter’s safe operation. Alternatively, an unauthorized user 

can purposefully alter the measurement data received from an 

external sensor. Notably, the inverters’ low or zero inertia 

characteristics are more susceptible to instantaneous changes 

and can quickly lead to an undesired power oscillation of the 

power grid, mainly when the grid is weak [11]-[13]. The risk of 

having unsafe operations of inverters can increase more when 

multiple inverters are operating in a system and occupied with 

the same communication channel along with the other adjacent 

smart devices. Therefore, security actions are essential to detect 

and prevent anomalies in the system to sustain safe system 

operation. 

Several investigations have been reported in the literature to 

ensure the safe operation of the inverter under abnormal 

conditions. Self-security algorithms based on a reference model 

have been developed [14] to examine the data and perform 

critical protective decisions before utilizing the incoming 

information in the local controller. For the implementation of 

any reference model, the inverter must learn about the input and 

output circuits to determine its normal operating region by 

estimating system parameters. For the grid-following inverters, 

unknown grid parameters are required to estimate in real-time 

to develop analytical reference models as described in [15]-

[16]. In the literature, several methods are proposed for online 

grid-parameter estimation. Online grid parameter estimation 

techniques can be broadly classified as active and passive types 

[17]-[19]. In passive grid parameter estimation methods, the 

existing disturbance present in power networks is used [20]. 

Some notable passive methods are described in [21]. However, 

passive methods have some problems in experimental grid 

parameters estimation due to the lack of information. Active 

grid parameter estimation methods inject a disturbance into the 

grid or distributed generation network for parameter estimation. 

In this paper, two different grid parameter estimation technique 

has been implemented, and a comparison is performed. 

This paper contains four more sections. Section II presents 

the system description and modeling where different online grid 

parameter estimation techniques are implemented. Section III 

elaborates on different grid parameter estimation algorithms. 

Section IV presents the experimental results. Finally, the paper 

is concluded in section V. 
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II. SYSTEM DESCRIPTION AND MODELING 

The schematic diagram of the PQ-controlled grid-following 

inverter is depicted in Fig. 1. As shown in Fig. 1 inverter is 

equipped with an LCL filter and a PQ controller. The grid is 

represented by an equivalent grid inductance, 𝐿𝑔, a resistance, 

𝑅𝑔, and a grid voltage, 𝑣𝑔. The voltage and current sensors are 

located after the LCL filter at PCC. The measured voltages and 

currents at PCC are converted to the 𝑑𝑞-frame, which is used as 

inputs to the PQ-control scheme. Both P and Q controller has 

two cascaded loops consisting of outer power and inner current 

control loops. To generate the reference signal for the PWM 

generator, the outputs of the PQ controller, 𝑣𝑞
𝑖𝑛𝑣 and 𝑣𝑑

𝑖𝑛𝑣, are 

utilized, see Fig. 1. Herein, 𝑣𝑐 is the filter capacitor voltage, the 

state variable of the outer control loop and inner control loop are 

𝑦1, and 𝑦2 respectively. The 𝑃𝑄-controlled inverter operation is 

not linear for two reasons. First, measured 𝑃 and 𝑄 are used by 

the 𝑃 and 𝑄 control loops are nonlinear equations. In the 

synchronously rotating 𝑑𝑞 reference frame locked at PCC, i.e. 

𝑣𝑑
𝑝𝑐𝑐

= 0, the active and reactive power can represent as 𝑃 =

(3/2)(𝑣𝑞
𝑝𝑐𝑐

𝑖𝑞) and 𝑄 = (3/2)(𝑣𝑞
𝑝𝑐𝑐

𝑖𝑑), where, 𝑣𝑞
𝑝𝑐𝑐

 is the 

amplitude of the line-line voltage at PCC, and 𝑖𝑞  and 𝑖𝑑 

represent the line currents in 𝑑𝑞-frame [10]. ]. The linearized 

power equations around a steady-state operating point can be 

represented as; 𝑃 = (3/2)(𝑉𝑞𝑜
𝑝𝑐𝑐

𝑖𝑞 + 𝐼𝑞𝑜𝑣𝑞
𝑝𝑐𝑐

) and 𝑄 = (3/

2)(𝑉𝑞𝑜
𝑝𝑐𝑐

𝑖𝑑 + 𝐼𝑑𝑜𝑣𝑞
𝑝𝑐𝑐

), where, 𝑉𝑞𝑜
𝑝𝑐𝑐

 is the 𝑞-axis operating 

voltage, 𝐼𝑑𝑜 represents the 𝑑-axis operating currents and 𝐼𝑞𝑜 

represents the 𝑞-axis operating currents. 𝐼𝑞𝑜 and 𝐼𝑑𝑜 will appear 

in the inverter closed-loop model shown in (1). Therefore, 

eigenvalues of the closed-loop model are a function of 𝑃 and 𝑄. 

The details of the closed-loop model can be obtained from [22]-

[23]. Considering the operating point currents, i.e., 𝐼𝑞𝑜 and 𝐼𝑑𝑜,  

in this full-order model, the nonlinear operation of the inverter 

can be predicted, which can prevent the inverter from an unsafe 

operation. For the implementation of the inverter full-order 

model as a dynamic reference model to project the safe 

operation of the inverter for incoming power setpoints, the 

unknown grid parameters are required to estimate online.   

III. ONLINE GRID PARAMETERS ESTIMATION ALGORITHM 

This work implements two adaptive identification 

techniques: adaptive model reference and recursive least square 

methods to estimate unknown grid parameters. For the 

formulation of the online grid-parameter estimation techniques, 

one phase of a three-phase grid-interactive inverter is 

considered, as shown in Fig. 2. In literature, there are many 

active and passive methods [17] for grid parameter estimation, 

such as adaptive identification techniques, voltage transients, 

signal injections, etc. However, these methods cannot be 

directly applied for 𝑍𝑔 and 𝑉𝑔 estimation because the grid 

voltage, 𝑉𝑔  is unknown. Applying KVL at the PCC in Fig. 2, 

one can obtain the following equation 

𝑉𝑝𝑐𝑐 = 𝑅𝑔𝑖𝑔 + 𝐿𝑔

𝑑𝑖𝑔

𝑑𝑡
+ 𝑉𝑔                               (2) 

In this work, a low-frequency signal injection method is 

utilized for estimating the grid parameters. This signal injection 

method introduces an external perturbation momentarily when 

new setpoints are received. Applying KVL at the PCC, one can 

calculate 

𝑉̂𝑝𝑐𝑐 = 𝑅𝑔𝑖𝑔̂ + 𝐿𝑔
𝑑𝑖̂𝑔

𝑑𝑡
                                        (3) 

where, 𝑖𝑔̂ represents the current injected into the grid at 𝑓𝑖𝑛 ≠

60 𝐻𝑧 and 𝑉̂𝑝𝑐𝑐  represents the measured voltage at the PCC at 

𝑓𝑖𝑛. Notice, 𝑓𝑖𝑛 is required to be chosen such that the grid 

voltage does not have any element at that frequency, i.e. 𝑉̂𝑔 =

0.  

A. Recursive least square estimation method 

This sub-section describes the RLS formulation for the 𝑍𝑔  

estimation. The output measurement for the RLS, 𝑦(𝑡) at the 

time instant 𝑡1 can be represented as 

𝑦(𝑡1) = 𝑖𝑔̂(𝑡1),                                               (4)  

and 𝑢(𝑡) is the input measurement for the RLS 

𝑢(𝑡1) =   𝑉̂𝑝𝑐𝑐(𝑡1),                                         (5)  

Consider 𝑇 is the sampling time of the measurement and 

matrix 𝐴 = [𝑎1 𝑎2]T which includes unknown parameters and 

measurement matrix 𝑊 = [−𝑦(𝑡1) 𝑢(𝑡1)]T. The parameters 

can be expressed as 𝑎1 = (𝐿𝑔𝑇/𝑅𝑔 − 1) and 𝑎2 = 𝑇/𝐿𝑔. 

Therefore, the grid inductance can be represented as 𝐿𝑔 = 𝑇/𝑎2 

and grid resistance can be represented as 𝑅𝑔 = 𝐿𝑔𝑇/(1 + 𝑎1). 

In the recursive form, the least square problem is formulated 

using (5) and (6). Here, 𝑀 is the number of measurements, 

𝑅𝑀 is the covariance matrix, where it is initialized as is 2×2 

Fig. 1. A PQ controlled grid-following inverter (schematic diagram) 
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Fig.2.  Simplified phase-a circuit of a three-phase grid-interactive VSI. 



 

 

 

identity matrix, µ is the forgetting factor bounded as µ = [0 1] 
where µ is selected between 0.85 and 0.95. In addition, 

unknown parameter vector 𝐴 can be estimated for 𝑀 

measurements as, 

𝐴𝑀 = 𝐴𝑀−1 − 𝑅𝑀
−1𝑊(𝑡𝑀)(𝑊𝑇(𝑡𝑀)𝐴𝑀−1 − 𝑦(𝑡𝑀)),           (6) 

where, the covariance matrix 𝑅𝑀 is defined as 

𝑅𝑀 = µ ∑ µ𝑀−𝑖−1𝑊(𝑡𝑖)𝑊𝑇(𝑡𝑖) + 𝑊(𝑡𝑀)𝑊𝑇(𝑡𝑀),          (7)

𝑀−1

𝑖=1

 

Estimated  𝑅𝑔     and 𝐿𝑔 can be used to calculate the grid 

voltage using (1). 

B. Model-reference adaptive estimation method 

In addition to the recursive least square method, the parallel-

series model-reference parameter estimation method is 

implemented to estimate the unknown grid parameter. The 

system block diagram of the parallel-series model-reference 

parameter estimation method is presented in Fig. 3. Similar to 

the recursive least square estimation method model reference 

estimation method can be applied for one of the line-line 

quantities presented in (1). 

From (3), the unknown system parameters are defined as 𝑎 =
−𝑅𝑔 𝐿𝑔⁄  and 𝑏 = 1 𝐿𝑔⁄ . Likewise, the adaptable reference 

model parameters can represent as 𝑎𝑚 = −𝑅𝑔,𝑒𝑠𝑡 𝐿𝑔,𝑒𝑠𝑡⁄  and 

𝑏𝑚 = 1 𝐿𝑔,𝑒𝑠𝑡⁄ . Thus, the discrepancy in parameter values can 

be calculated from ∆𝑎 = 𝑎 − 𝑎𝑚 = −𝑅𝑔 𝐿𝑔⁄ −

(−𝑅𝑔,𝑒𝑠𝑡 𝐿𝑔,𝑒𝑠𝑡⁄ ) and ∆𝑏 = 𝑏 − 𝑏𝑚 = 1 𝐿𝑔⁄ − (1 𝐿𝑔,𝑒𝑠𝑡⁄ ). For 

accurate online estimation ∆𝑎 and ∆𝑏 should be reduced. 

Furthermore, the error in the state variable is required to be 

minimized to guarantee that the system and reference model is 

in good agreement. The dynamics of the error can be presented 

as follows,  

𝑑

𝑑𝑡
𝑒 = (𝑎𝑚 − 𝛽)𝑒 + (𝑎 − 𝑎𝑚)𝑖𝑔̂                               

(8) 

+(𝑏 − 𝑏𝑚)(𝑉̂𝑝𝑐𝑐)    

For the purpose of minimizing error, a proper positive definite 

Lyapunov function, 𝑉 presented in (9) can be defined for the 

system described in (8). The Lyapunov function should be 

chosen such that 𝑉 ≥ 0 and 𝑑𝑉 𝑑𝑡⁄ < 0. The Lyapunov 

function defined in (9) satisfied the requirements [24]-[27]. 

𝑉 =
1

2
(𝑒2 +

1

𝛾
∆𝑎2 +

1

𝛾
∆𝑏2)                     (9) 

where, 𝛾 > 0. The change in 𝑉 with time can represent as the 

following, 

𝑑

𝑑𝑡
𝑉 = 𝑒

𝑑

𝑑𝑡
𝑒 +

1

𝛾
∆𝑎

𝑑

𝑑𝑡
∆𝑎 +

1

𝛾
∆𝑏

𝑑

𝑑𝑡
∆𝑏          (10) 

Substituting (8) into (10) results in 

𝑑

𝑑𝑡
𝑉 = (𝑎𝑚 − 𝛽)𝑒2 + ∆𝑎 (𝑖𝑔̂𝑒 +

1

𝛾

𝑑

𝑑𝑡
∆𝑎)                        

(11) 

+∆𝑏 (𝑒(𝑉̂𝑝𝑐𝑐) +
1

𝛾

𝑑

𝑑𝑡
∆𝑏)  

Based on (11), if 𝑎𝑚 < 0, 𝑒𝑖𝑔̂ + (1 𝛾⁄ )∆𝑎ሶ = 0, and 𝑒(𝑉̂𝑝𝑐𝑐) +

(1 𝛾⁄ )∆𝑏ሶ = 0, then 𝑉ሶ ≤ 0. Thus, ∆𝑎ሶ = −(𝛾)𝑒𝑖𝑔̂ and ∆𝑏ሶ =

−(𝛾)𝑒(𝑉̂𝑝𝑐𝑐). Consequently, we can write 

𝑎𝑚 = 𝛾 ∫ 𝑒(𝑡)𝑖𝑔̂(𝑡)𝑑𝑡                               

(12) 

𝑏𝑚 = 𝛾 ∫ 𝑒(𝑡)(𝑉̂𝑝𝑐𝑐)𝑑𝑡                               

Once 𝑏𝑚 is estimated, the grid inductance 𝐿𝑔,𝑒𝑠𝑡 = 1 𝑏𝑚⁄ . The 

grid resistance can be estimated from 𝑅𝑔,𝑒𝑠𝑡 = − 𝑎𝑚 𝑏𝑚⁄ =

−𝑎𝑚𝐿𝑔,𝑒𝑠𝑡 . The accuracy of the online estimation can be 

enhanced by choosing 𝛾 properly [28]-[30]. Then, the estimated 

grid parameters are sent to the self-protective reference model 

to adaptively check the validity of incoming power setpoints 

[15]. 

IV. EXPERIMENTAL RESULTS 

In this section, the performance of two grid-parameter 

estimation techniques are demonstrated experimentally using 

the hardware setup shown in Fig. 4. In this setup, a three-phase 

5 kVA SiC MOSFET-based inverter is used, and the switching 

signals for the inverters are generated using the dSPACE 

MicroLabBox. In the experimental setup, the inverter feeds a 

12 kW NHR 9410 power grid emulator through a three-phase 

𝐿𝐶𝐿 filter. Also, a programmable Magna-Power SL400-15/208 

dc supply is used as input dc source for the inverter. The 

presented result in this section are recorded using Control Desk, 

a real-time software interface with dSPACE MicroLabBox, and 

then plotted using MATLAB. The experimental system 

parameters are V𝐿𝐿,𝑟𝑚𝑠 = 208 𝑉, 𝑉𝑑𝑐 = 350 𝑉, 𝐿𝑔 = 5 𝑚𝐻, 

𝐿1 = 1 𝑚𝐻, 𝐿2 = 0.5 𝑚𝐻, 𝐶𝑓(∆) = 27 𝜇𝐹, and 𝑓𝑃𝑊𝑀 =

20𝑘𝐻𝑧. 

Fig. 5 shows the estimated grid inductance and resistance 

value using model reference adaptive and recursive-least square 

method. Both methods provide an almost similar precise result, 

see Fig. 4. Initially, the estimated grid inductance and grid 

resistance for both methods are approximately 5.5 𝑚𝐻 and 

0.4177 Ω, respectively. At 𝑡 = 22.12 𝑠 additional 2.5 𝑚𝐻 is 

inserted, and the estimated grid inductance is 8.7 𝑚𝐻 with an 

error of 8.04%. For further demonstration of the accuracy of 

the two estimation methods, an additional 5 𝑚𝐻 is inserted at 

𝑡 = 40.13 𝑠. The estimated inductance value for this change is 

15.01 𝑚𝐻, with an error of 15.38 %. It must be underlined that 

the resistance and inductance of the inserted inductor are 

functions of the current (power) flow temperature and 

proximity effects in the filter inductors. Therefore, the 

estimated inductance value is not precisely matching with the 

inserted value of inductance. 

Fig. 3. General block-diagram of parallel-series model reference identification 

technique. 
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Two test scenarios are performed to demonstrate the impact 

of grid impedance on low-power hidden mode instability. In the 

first test scenario, the system initially runs when 𝐿𝑔(= 2.5 𝑚𝐻) 

and the setpoint is 𝑃∗ = 100 𝑊 and 𝑄∗ = 0 𝑉𝑎𝑟. Two active 

power setpoints, 𝑃 = 250, and 𝑃 = 1200 𝑊 are applied, and 

the dynamic responses are recorded from the dSPACE control 

desk, as shown in Fig. 6. For the applied setpoints (𝑃∗ =
100 𝑊, 250 𝑊, and 1200 𝑊), the dynamic responses are 

stable, see Fig. 6 (a). In the second test scenario, the inverter 

runs in a weak grid when 𝐿𝑔(= 5 𝑚𝐻), but for the same 

setpoints as the previous test scenario, the system has 

instability, see Fig. 6(b). When 𝑃∗ =  100 𝑊, the system is 

stable. For 𝑃∗ =  250 𝑊, the measured power fluctuates, and 

the system gradually becomes unstable. For 𝑃∗ =  1200 𝑊, the 

system is stable again; see Fig. 6(b). Thus, an inverter can move 

from stable to unstable and unstable to stable depending on the 

setpoints and grid conditions [31]-[32]. These two experimental 

test outcomes are also in agreement with the stability analysis 

demonstrated in Fig. 7. For 𝐿𝑔 = 2.5 𝑚𝐻, the eigenvalues are 

located on the left-half plane, i.e., stable operation. On the other 

hand, for 𝐿𝑔 = 5 𝑚𝐻 at a low-power level, some of the 

eigenvalues move on the right-half plane (unstable) and come 

back again to the left-half plane at a high-power level, see Fig. 

7. Therefore, for weak grid conditions, i.e., high 𝐿𝑔, power 

setpoints can cause low-frequency instability for a certain range 

of power if the damping is insufficient in the system [33]-[34]. 

Therefore, grid parameters are required to estimate accurately 

so that the reference model can predict the dynamic responses 

for given setpoints. 

To demonstrate the accuracy of the dynamic reference 

model, Points A and C was implemented 60 times, separately, 

and the statistics for the estimated location (real parts) of the 

dominant eigenvalues are plotted as shown in Fig. 8. Recursive 

Fig. 4. Hardware setup for the 5 kVA three-phase grid-following inverter. 
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Fig. 6. A zoomed-in plot of dominant low-frequency positive eigenvalues 

using the full-order dynamic model as 𝑃 is increased from 0.003 kW to 5 kW 
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least square method is implemented to estimate the grid 

parameters. Based on the number of occurrences, the 𝜇 and 𝜎 

for the Point A are −0.01, and 0.011, respectively. For the 

Point C, the 𝜇 and 𝜎 are 0.0081 and 0.0106, respectively. Point 

A was predicted as a stable operating point with an accuracy of 

85.6%, while Point C was predicted as unstable point with 

78. 5% accuracy. Therefore, the dynamic reference model is in 

good agreement with the actual cases. 

V. CONCLUSION 

This paper demonstrates the performance of the recursive-

least square and model reference estimation method for online 

grid-parameter estimation. It has been found that with a 

combined signal injection method, both recursive least square 

and model reference adaptive estimation methods can estimate 

grid parameters accurately. Furthermore, this work also 

demonstrates that the inverter’s reference model (full-order 

dynamic model) can project the dynamic response using the 

estimated grid parameters and protect the inverter from a 

harmful setpoint being engaged. This paper has experimentally 

verified the performance of the grid parameter estimation 

method and also experimentally and statistically validated the 

performance of the inverters' dynamic reference model. 
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