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= Throughout loading, we see the interface begins to exhibit slip —

Consider a Structure with a Joint

Microslip  (slipping on the extremities of contact)
Macroslip (global slipping)
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Variation in experimental response

* Recent experiments show a case where excitation of one mode changes the apparent
. Mode 2
properties of another mode. ‘

Frequency vs. Peak Modal Velocity
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Increasing excitation of Mode
325.5 - 1 perturbs the frequency and
damping observed in Mode 2
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How do we predict modal coupling?
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Nonlinear forces at the joints couple the SDOF oscillators in the modal domain.

" Few models exist that capture this for hysteretic systems.

Could we predict this using a finite element model that includes friction at the interfaces?
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Alternative to Full Order Modeling

Analysis of a
Reduced Order
Model

Transient/ Quasi-
Static Analysis of a

Full FEM

Computationally
Expensive

L
L

Spider Element

Objective: Construct a Reduced Order Model (ROM) that can capture the dynamics of
the full system in a fraction of the time AND capture coupling

N
Motivation




ROMs Used in this Study

CB Reduction i Spidered

Spidered ROM' Nodes 4P Nodes
Joint Model — RBAR/RBE?

MPCs

Full Model HCB ROM
(" 2\ ([ ‘\

Z

O Top Beam
O Bottom Beam

4

Y X

AL y

v
*Note: Refer to each paper for more information and steps for the reduction process Interface
IA. Singh, M. Wall, M. S. Allen, and R. J. Kuether, “Spider Configurations for Models with Discrete lwan Elements,” in S_CC ROMZ Deformation
Nonlinear Structures and Systems, Volume 1, Orlando, FL, Jan. 2019, pp. 25-38. doi: 10.1007/978-3-030-12391-8_4. Shape

2A. Singh, M. S. Allen, and R. J. Kuether, “Substructure Interface Reduction Techniques to Capture Nonlinearities in Bolted
Structures,” presented at the ASME 2020 International Design Engineering Technical Conferences and Computers and
ation'in Engineering Conference, Nov. 2020. doi: 10.1115/DETC2020-22417.
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Differences between Spidering and S-CC ROMs

MPC Approach S-CC Approach
Basis = Basis
= Physical coordinates = S-CC Deformation Shapes (®.)
Usage " Usage
= Linear springs/nonlinear elements in between * Linear springs/nonlinear elements attached to
two physical nodes that are spidered S-CC deformation shapes

|’ e
I Spidered
/ Nodes

RBAR/RBE3

CB Reduction

Nodes
Joint Model

MPCs

-,_/ Joint Model




Numerical Structure of Interest — 2D Beam

Preload

4

Spidered
ROM

Bottom Beam

Contact FIM 20
Interface
DOF 24
Total 44

Full Model

FIM 20
DOF 260
Total 280

DOF

S-CC ROM

= Use a 2D cantilever beam built in Abaqus
FIM 20

DOF 6

=  Compare quasi-static sims of single mode response for the full model and the ROMs
= Compare full/ROM transient responses with coupled loading

@ Total 26




Single Mode Quasi-Static Comparisons
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Apply an lwan element to each ROM and tune the four parameters iteratively (F;, K7, x, B)
One set of Iwan parameters for spidered ROM for all three modes
Two sets of Iwan parameters for S-CC ROM for all three modes

RBAR (rigid bar) spidered ROM produces higher frequency and damping errors

Single mode analysis provides a baseline to compare to the multi-mode excited ROMs
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Degree of Coupling

= S-CC reduction matrix gives an estimate of the extent of coupling that the S-CC ROM can model

= Examine the coupling between Modes 2 and 4 in two cases:
= Case 1: Mode 2 has 10x the peak amplitude of Mode 4
= Case 2: Mode 4 has 10x the peak amplitude of Mode 2

Fixed Interface Modes 2.05 46.26 62.73

S-CC DOF 1 97.93 17.86 10.63

0.02 30.84 26.39

0.00 0.00 0.00

0.00 0.00 0.00

e st 0.00 0.00 0.00
0.00 0.09 0.25
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Case 1: Mode 2 has 10x Peak
Amplitude of Mode 4

= Mode 2 influences the response of Mode 4

= Both ROMs correctly predict that the
effect of Mode 4 on Mode 2 will be
negligible

= S-CC ROM can predict the coupled effect

on the damping of Mode 4 closer to the
full model

= RBAR ROM underpredicts the coupling

= Both ROMs overpredict the frequency
response of Mode 4
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Case 2: Mode 4 has 10x Peak Amplitude of Mode 2
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Concluding Remarks

Preliminary study to evaluate coupling on reduced order models

Significant run-time reduction to compute ROMs for the 2D Cantilever
Beam

= Full Model Transient: 26 — 30 hours on a single core
= ROM Transient: 0.5 — 2 minutes on a single core

RBAR ROM produces higher errors for calibration (3 modes) than the
S-CC ROM using an lwan element

Multi-Mode excitation perturbs the response for both the full model
and the ROMs

Study opens the idea of tuning and using ROMs in an effort to
evaluate modal coupling

Future work seeks to extend this to other ROMs and to complicated
structures with different DOFs that couple
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