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The First Order (FO) model

For the ice dynamics, we consider the usual First-Order model (Blatter 1995, Pattyn 2003) for the
horizontal velocity u = (ux, uy)

−∇ · σ = −ρig∇s
where s is the surface elevation, and

σ = 2µ(u)ε, ε =

[
2εxx + εyy εxy εxz

εxy εxx + 2εyy εxz

]
, µ(u) =

1

2
A− 1

n (T )‖ε‖ 1
n−1

At the ice-bedrock interface, we consider the sliding condition

σn + βu = 0, β > 0.

Constant field β = β(x)

� Simple mathematical model, but
pay price of high-dimension
parameter space

Functional form β = β(u,p)

� Complex physically-informed model,
but (hopefully) get a low-dimension
parameter space
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Subglacial hydrology

We consider a steady distributed model (Hewitt 2013) for subglacial hydrology.
S
SS

∂h

∂t
+∇ · q =

m

ρw
mass conservation

S
SS

∂h

∂t
=
m

ρi
+
hr − h
lr
|u| − ccAhN3 cavities evolution

with melting m = (G+ β|u|2)/L, water discharge q = −khα1 |∇Φ|α2∇Φ, ice thickness H,
transmissivity k, source geothermal flux G, ice sliding velocity u, bed bumps height/length hr, lr
are given, effective pressure N = ρigH − Φ.
The unknowns are water hydropotential Φ, and water thickness h.
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Inverse FO-Hydrology

Idea: perform data assimilation of surface velocity measures to identify uncertain parameters in
both hydrology and sliding law, by solving a coupled FO-Hydrology problem.

Method: solve a deterministic inverse problem, by minimizing mismatch between computed and
observerd surface velocity. Use µf and k as control variables.

[µ, k] = arg min

∫
surf

|u− uobs|2dx+R(µ, k)

s.t.



−∇ · σ = −ρig∇s
∇ · q =

m

ρw
m

ρi
+
hr − h
lr
|u| − ccAhN3 = 0

σn + βu = 0
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Numerical experiments

� Pre-processing: solve FO+Hydro for given (µf , k) to generate surface velocity measures.
Add fudge factor to measures, to emulate for measurements errors.

� Algorithm: Quasi-Newton (BFGS) with backtrack line search.

Software
� Trilinos: general-purpose scientific library for high-performance distributed computing.

Provides linear/nonlinear algebra, solvers, discretization tools.

� Albany: parallel finite element library (built on Trilinos), with analysis/sensitivities
capabilities, timestepping, continuation, optimization, and more.

� LandIce: a package in Albany which implements ice-sheet and subglacial hydrology models.
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Idealized Dome: problem specs

� radially simmetric geometry:
H(r) = s(r) = 0.5

(
1− r2

)
/R2 km

� horizontal resolution: 1km

� prescribed uniform melting in mass eqn:
m/ρw = 5.4 mm/day

� no melting in cavities eqn

� power-law sliding: β = µfNu
q−1, q = 4/3

� linear water flux: q = −kh∇Φ.
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Idealized Dome: forward solve

Figure: Water/effective pressures (left) and surface velocity (right) obtained solving the coupled FO+Hydrology
problem for k = 1e− 5 and µf − 0.01.
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Idealized dome: inverse problem

Fwd η = 0 η = 5% η = 10% η = 20%
µf 1e-2 0.994e-2 0.994e-2 0.995e-2 0.993e-2
k 1e-5 0.994e-5 0.994e-5 0.995e-5 0.993e-5

# BFGS it - 39 39 40 35

Table: Estimated parameters for different choices of noise level.
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Figure: Convergence history of BFGS for different choices of noise level.
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Idealized dome: inverse problem

‘
Figure: Exact solution and relative error plots for sliding velocity (left) and effective pressure (right), with 20%
relative noise in the surface velocity measures.
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Considerations and future directions

� FO+Hydro solver in LandIce is robust on idealized geometry.

� Small parameter space makes inversion feasible.

� Next: synthetic problem on a real geometry (Humboldt).

� Next: assimilate real measures on a real geometry.
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