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Abstract—Deep learning is one of the most successful and far-
reaching strategies used in machine learning today. However,
the scale and utility of neural networks is still greatly limited
by the current hardware used to train them. These concerns
have become increasingly pressing as conventional computers are
soon expected to approach the physical limitations that will slow
their performance improvements in the near future. For these
reasons, scientists have begun to explore alternative computing
platforms, like quantum computers, for training neural networks.
In recent years, variational quantum circuits have emerged as
one of the most successful approaches to quantum deep learning
on noisy intermediate scale quantum devices. We propose a
hybrid quantum-classical neural network architecture where
each neuron is a variational quantum circuit. We empirically
analyze the performance of this hybrid neural network on a series
of binary classification data sets using a simulated IBM universal
quantum computer and a state-of-the-art IBM universal quantum
computer. On the simulated hardware, we observe that the
hybrid neural network achieves around 10% higher classification
accuracy and 20% better minimization of the cost function
than an individual variational quantum circuit. On the quantum
hardware, we observe that each model only performs well when
the qubit and gate count is sufficiently small.

I. INTRODUCTION

Machine learning has revolutionized the modern world.
Today, machine learning models are leveraged for nearly every
imaginable task ranging from medical diagnoses [1] to fraud
detection [2] to marketing [3]. This widespread use of machine
learning is largely due to the recent accessibility of relatively
powerful computers. In accordance with the Moore’s Law,
computer hardware has improved exponentially in scale and
speed over the past 60 years. Unfortunately, despite all of the
recent success, modern hardware still greatly restricts the prac-
ticality of certain machine learning models. Deep learning in
particular can be very computationally expensive, sometimes
requiring hours, days, or even months of training time on
today’s computers [4]. Moreover, conventional computers are
beginning to approach physical limitations that will slow their
improvements in years to come [5]. For these reasons, many
are beginning to research alternative computing platforms for
training machine learning models. Among these platforms,
quantum computers have emerged as a particularly interesting
candidate.

The appeal of a quantum computer is largely due to the
properties of quantum entanglement and quantum superpo-
sition which cannot be efficiently simulated on a classical
computer. These properties can be extremely useful as il-
lustrated by Shor’s prime factorization algorithm [6] and

Grover’s search algorithm [7] which offer an exponential
and polynomial speed up respectively over their best existing
classical counterparts. These two algorithms give a sense
of what large, high-fidelity quantum computers may offer
to the field of computer science in years to come. Today
we are still in the era of noisy intermediate scale quantum
(NISQ) computers, but already a number of quantum machine
learning algorithms have been proposed [8], [9]. We have
previously studied quantum approaches to linear regression
[10], support vector machines [11], and balanced k-means
clustering [12]. Additionally, we proposed a quantum machine
learning model called quantum discriminator that can be used
for binary classification on universal quantum computers [13].
In this paper, we propose a hybrid quantum-classical neural
network architecture and emperically analyze its performance
on several binary classification data sets.

Artificial neural networks have proven to be an extremely
successful approach to learning on conventional computers.
Nevertheless, they do have some serious limitations. Neural
networks are often prone to overfitting [14], and training
even an extremely small neural network is an NP-complete
problem [15]. These limitations have inspired many to propose
quantum approaches to deep learning [16], [17], [18], [19],
[20], [21], [22]. Unfortunately, many of these approaches
cannot be implemented on current quantum hardware, and
those that can, do not have a one-to-one correspondence with
conventional artificial neural networks. For this reason, there is
an increased interest in deep learning approaches that perform
well on near-term quantum computers. To this end, variational
quantum circuits (VQCs) have proven to be a promising
quantum analogue to artificial neurons [23], [24], [25], [26],
[27], [28], [29].

A variational quantum circuit is comprised of three key
components. First, a feature map F maps a real-valued clas-
sical data point x into a d qubit quantum state |ψ⟩:

|ψ(x)⟩ = F (x) |0⟩⊗d (1)

Next, an ansatz A manipulates the prepared quantum state
through a series of entanglements and rotation gates. The
angles of the ansatz’s rotations are parameterized by a vector
θ.

|ϕ(x,θ)⟩ = A(θ) |ψ(x)⟩ (2)

Finally, an observable O is measured, and the eigenvalue
corresponding to the resultant quantum state is recorded. In



most machine learning applications, a variational quantum
circuit is run many times using a particular input x and
parameter vector θ so that the circuit’s expectation value,
denoted by f , can be approximated.

f(x,θ) = ⟨ϕ(x,θ)|O |ϕ(x,θ)⟩ (3)

When a variational quantum circuit is used for machine learn-
ing, this approximated expectation value is typically treated as
the output of the model.

Fig. 1. Schematic of a variational quantum circuit.

The feature map of a variational quantum circuit is known
to play a key role in the expressiveness of the model [30].
In general, data should be encoded in such a way that
the value of a feature can be extracted from the prepared
quantum state through some combination of qubit rotations
and measurements. This ensures each possible input x has
a unique qubit encoding before being passed to the ansatz.
On modern hardware, it is also important to use a feature
map with limited depth, since each additional gate introduces
noise to the quantum state. We satisfy both requirements
by scaling each feature xi to fit within the interval [0, π]
and then encoding its value into the relative amplitude of a
corresponding qubit:

|qi⟩ = cos
(xi
2

)
|0⟩+ sin

(xi
2

)
|1⟩ (4)

It is worth noting that more sophisticated feature maps exist
[31], [32], [33]. However, for the data sets analyzed in this
manuscript, this straightforward feature map achieves high
accuracy while avoiding many of the complications introduced
by more complex methods.

The IBM Qiskit circuit library contains several ansatzes con-
sisting of two qubit entanglements and parameterized single
qubit rotations. We chose the RealAmplitudes ansatz (with one
repetition and full entanglement) for each variational quantum
circuit studied in Section II. This is the default ansatz used by
Qiskit’s variational quantum circuit implementation (TwoLay-
erQNN). It has also been used in a variational quantum
circuit with proven advantages over traditional feedforward
neural networks in terms of both capacity and trainability
[24]. We also chose the default observable used by Qiskit’s
variational quantum circuit implementation. Mathematically,
this observable can be described as the tensor product of d

Pauli-Z matrices (σz), where d is the number of qubits in the
quantum state:

O = σ⊗d
z (5)

This observable has the interesting property that if the mea-
sured quantum state has odd parity, the recorded eigenvalue
is -1, and if the measured quantum state has even parity, the
recorded eigenvalue is 1. This means that the expectation value
of the circuit will always be within the interval [−1, 1].

A number of studies have used a variational quantum circuit
for binary classification [34], [35], [36], [37], [38]. This can
be done by relating the expectation value of the circuit to the
probability that a point belongs to a given class. Consider a
binary classification problem in which each data point x is
labeled y = 1 or y = −1. We use the following equation
to relate the expectation value of the parity observable to the
probability that a point x is labelled y:

P (y|x) = yf(x,θ) + 1

2
(6)

Training the variational quantum circuit classifier amounts to
determining a parameter vector θ that minimizes the negative
log-likelihood of the probability distribution over the training
data set. The exact cost function used by our binary classifier
is given by the equation below:

Cost = − 1

N

N∑
i=1

log (P (yi|xi)) (7)

where N is the number of points in the training data set, xi

is the ith data point in the training set, and yi is the label of
the ith point.

Cost can be minimized using a classical optimizer such
as gradient descent. When computing the gradient of the
cost function, the derivative of the expectation value of the
variational quantum circuit with respect to each parameter of
the ansatz is computed using parameter shift rule [39]:

df

dθi
=
f(θi + s)− f(θi − s)

2
(8)

where s is a macroscopic shift determined by the eigenvalues
of the gate parameterized by θi. For all of the rotation and
phase gates available in the IBM Qiskit library, s = π/2.

In many ways, the aforementioned variational quantum cir-
cuit classifier resembles a logistic unit used in a conventional
neural network. The circuit has an input vector x and a
set of classically optimizable parameters θ. Additionally, the
output (expected value) of the variational quantum circuit is
continuously differentiable and bound to a small range of real
values. These similarities motivated us to construct a small
hybrid quantum-classical feedforward neural network using
variational quantum circuits as individual neurons. To achieve
reasonable training times on modern quantum hardware, we
restricted the neural network architecture to contain only a
single hidden layer and a single output unit.



Fig. 2. Architecture of a single hidden layer quantum neural network. The
inputs and corresponding output of a particular variational quantum circuit are
connected by arrows of the same color. The input data point x has dimension
l. The output of the entire network is denoted by z.

Using the architecture shown in Figure 2, our hybrid neural
network contains m+1 variational quantum circuits. The first
m circuits comprise the hidden layer of the feedforward net-
work. Each of these circuits has its own parameter vector θ(1)

i ,
and they all share the same input x. The output of each circuit
in the hidden-layer is stacked to create an m dimensional
vector h′ ∈ [−1, 1]m. Collectively, we denote the m circuits
of the hidden layer as a function f1 : [0, π]d → [−1, 1]m.

h′ = f1(x,θ
(1)) (9)

Before h′ is passed to the feature map of the final variational
quantum circuit, a transformation is applied so that each value
is within the interval [0, π]:

h =
π

2
(h′ + 1) (10)

The last variational quantum circuit is run with input h and
parameter vector θ(2). We denote this quantum circuit as a
function f2 : [0, π]m → [−1, 1]. All together, the hybrid neural
network is expressed by the following composite function:

fNN(x,θ
(1),θ(2)) = f2

(
1

2
(f1(x,θ

(1)) + 1),θ(2)

)
(11)

The output of the hybrid neural network can be used to
learn the probability distribution that a point x is labeled y
using the same method described by Equation 6:

P (y|x) = yfNN(x,θ
(1),θ(2)) + 1

2
(12)

Training the hybrid neural network on binary classification
problems is similar to training the individual variational quan-
tum circuit classifier. We minimize the same cost function
(given by Equation 7), and we still use parameter shift rule
to compute the gradient of each circuit. However, now we
must compute the gradient of the cost function with respect
to the output layer’s parameter vector θ(2) as well each
parameter vector in the hidden layer θ

(1)
i . This is performed

most efficiently using backpropagation.

II. RESULTS

We tested the hybrid neural network on three binary classi-
fication data sets. As a point of comparison, we also trained
an individual variational quantum circuit classifier on each
of these data sets. We trained both models on a simulated

IBM universal quantum computer and a state-of-the-art IBM
universal quantum computer. To achieve reasonable training
times, we restricted the hybrid neural network to use only
m = 2 hidden neurons. On all three data sets, 10 simulated
quantum trials and 3 actual quantum trials were performed for
both quantum models. In each trial, all ansatz parameters were
randomly initialized using a uniform distribution with a range
of [−π, π].

A. Bars and Stripes
Bars and Stripes is a synthetic data set of n × m binary

black and white images. Each image in the data set is either
a “bar” or a “stripe.” A “bar” has 1 to m− 1 horizontal rows
highlighted in black, and a “stripe” has 1 to n − 1 vertical
columns highlighted in black. In some variations of Bars and
Stripes, an entirely white image and an entirely black image
is also included. We do not include these two images since
their classification is ambiguous. Overall, the data set contains
N = 2n + 2m − 4 images. Of these images, Ns = 2n − 2 are
stripes and Nb = 2m − 2 are bars. We trained the variational
quantum circuit classifier and hybrid quantum classical neural
network on the 2×2 Bars and Stripes data set using 20 epochs
of batch gradient descent with a learning rate of 0.5. All 4
points in the data set were used for training. The results of
the simulated trials are reported in Table I and Figure 3. The
results of the quantum trials are reported in Table I.

B. Real Valued Data
We also trained the individual variational quantum circuit

and hybrid quantum-classical neural network on two real-
valued data sets. The first data set is a two dimensional,
linearly separable data set generated using Sci-Kit Learn’s
make blobs() function. The second data set is a subset of the
Iris benchmark data set consisting of all points belonging to
the versicolor and virginica classes, which are non-linearly
separable and four dimensional. Both data sets consist of
100 data points split evenly between each class. In each
experiment, 80 of the 100 data points were chosen at random
to be used for training. Training consisted of 10 epochs of
mini-batch gradient descent using a batch size of 16 points
and a learning rate of 0.1. The results of the simulated trials
are reported in Table I and Figure 3. The results of the quantum
trials are reported in Table I.

On the two dimensional data set, it is possible to visualize
the classification line and probability distribution learned by
each quantum model. In Figure 4, we have plotted this
information for one of the variational quantum circuit trials
and one of the hybrid neural network trials. The two examples
chosen were selected because their final accuracy and final cost
value were reflective of other trials of the same model type.
Additionally, both examples had roughly 50% accuracy before
training.

III. CONCLUSION

On simulated hardware, the hybrid quantum-classical neural
network always outperformed the individual variational quan-
tum circuit in terms of both accuracy and cost. Specifically, the



Fig. 3. Average cost and accuracy achieved by the variational quantum circuit (VQC) and hybrid neural network (HNN) during training on the 2× 2 Bars
and Stripes data set (BAS), a synthetic two-dimensional data set (toy), and a subset of the Iris data set (Iris). All illustrated trials were performed on simulated
quantum hardware.

in sample
accuracy

in sample
cost

out of sample
accuracy

out of sample
cost

hardware data model parameters median avg. std. median avg. std. median avg. std. median avg. std.

simulated BAS VQC 8 100.0 88.89 12.42 0.55 0.54 0.04 N/A N/A N/A N/A N/A N/A
HNN 20 100.0 100.0 0.0 0.33 0.35 0.07 N/A N/A N/A N/A N/A N/A

simulated toy VQC 4 97.5 85.5 18.34 0.37 0.46 0.14 100.0 86.5 20.13 0.35 0.43 0.15
HNN 12 97.5 93.88 9.0 0.29 0.33 0.13 97.5 94.5 8.79 0.25 0.29 0.14

simulated Iris VQC 8 88.12 81.5 14.37 0.45 0.48 0.12 87.5 82.5 17.92 0.44 0.48 0.12
HNN 20 91.25 89.88 4.24 0.37 0.39 0.09 95.0 91.5 9.23 0.38 0.39 0.10

quantum BAS VQC 8 50.0 50.0 0.0 0.71 0.71 0.01 N/A N/A N/A N/A N/A N/A
HNN 20 25.0 33.33 11.79 0.71 0.72 0.11 N/A N/A N/A N/A N/A N/A

quantum toy VQC 4 96.25 82.92 20.65 0.38 0.46 0.13 95.0 90.0 10.8 0.35 0.4 0.1
HNN 12 96.25 95.0 3.68 0.26 0.31 0.07 100.0 95.0 7.07 0.23 0.27 0.06

quantum Iris VQC 8 50.0 50.0 0.0 0.72 0.72 0.0 55.0 55.0 0.0 0.72 0.72 0.0
HNN 20 48.75 48.75 0.0 0.71 0.71 0.0 55.0 55.0 0.0 0.7 0.7 0.0

TABLE I
FINAL BINARY CLASSIFICATION RESULTS OF THE VARIATIONAL QUANTUM CIRCUIT (VQC) AND HYBRID NEURAL NETWORK (HNN) ON THE 2× 2
BARS AND STRIPES DATA SET (BAS), A SYNTHETIC TWO-DIMENSIONAL DATA SET (TOY), AND A SUBSET OF THE IRIS DATA SET (IRIS). AVERAGE

VALUES ARE DENOTED BY AVG. AND THE CORRESPONDING STANDARD DEVIATION IS DENOTED BY STD.



Fig. 4. Final classification line and probability distribution of a variational quantum circuit and a hybrid neural network trained on a two dimensional, linearly
separable data set.

average accuracy was 8 to 11 percent higher, and the average
cost was 20 to 40 percent lower. Notably, the advantages
achieved by the hybrid neural network were observed on both
the training data set and the test data set. This suggests that
they were not a product of overfitting. The learned Bernoulli
distributions illustrated in Figure 4 give some indication of
why the hybrid quantum-classical neural network achieves
better performance. The neural network is able to produce a
probability distribution with a much steeper gradient near the
classification line. This enables the neural network to classify
points with greater certainty than the individual variational
quantum circuit, which in turn helps minimize cost. On the
flip side, the hybrid neural network is more expressive than
the variational quantum circuit classifier since it has more
than twice as many parameters. Nevertheless, increasing the
number of parameters of a machine learning model does not
always guarantee better results, especially when data points
outside of the training set are considered. The proposed hybrid
neural network architecture illustrates one effective way to add
parameters to a quantum machine learning model, especially
on NISQ-era quantum computers.

Notably, when quantum hardware was used, the variational
quantum circuit classifier and the hybrid neural network both
performed extremely poorly on the Iris data set and the Bars
and Stripes data set. This is likely because the number of
qubits and number of required gates is proportional to the
dimension of the data set. Increasing the number of qubits
or increasing the number of gates adversely impacts the
fidelity of modern quantum computation. Future research may
investigate using a more sophisticated feature map or ansatz
within the variational quantum circuits used by the neural
network. Additionally, a more in depth study into hyper-
parameter optimization of the learning rate and batch size
may prove useful for improving results on modern quantum
hardware. Finally, larger and more complex hybrid neural
network architectures may be investigated on more challenging
real-world classification problems.

IV. METHODS

A. Amplitude Encoding Feature Map

The amplitude encoding feature map is implemented by first
initializing a quantum register of d qubits, each in the |0⟩ state.
Next, a single qubit parameterized RY gate is applied to each
qubit. The parameters of each gate are chosen such that the ith
qubit is rotated by an angle xi. The probability p of measuring
the ith qubit in the |0⟩ state after the feature map is applied
is given by the following equation:

p(xi) = cos2
(xi
2

)
(13)

Note that if xi is restricted to the interval [0, π], p(xi) is a one-
to-one function with a range spanning all possible probabilities
from 0 to 1. This feature map guarantees that each unique input
x will have a unique quantum encoding without requiring a
large number of quantum gates.

B. Real Amplitudes Ansatz

The RealAmplitudes ansatz from the Qiskit library consists
entirely of single qubit RY rotation gates and two qubit CX
entanglement gates. First, a parameterized RY gate is applied
to each qubit. The parameters of these RY gates are the first d
parameters of the ansatz. Next, two qubit CX gates are applied
to each possible combination of qubits in the quantum state.
The least significant qubit is used as the control bit each time.
Finally, each qubit is subject to another parameterized RY gate.
The parameters of these gates are the second d parameters of
the ansatz. Additional rounds of CX entanglements and RY
rotations can be added to the ansatz by adjusting the number
of repetitions. However, to avoid long training times, we used
one repetition for each variational quantum circuit. With this
specification, the RealAmplitudes ansatz always has exactly 2d
parameters.

C. Preprocessing Real Valued Data

As mentioned in Section IV-A, we require each feature to be
within the interval [0, π] before passing it to the feature map.
For Bars and Stripes, this is not an issue since all features have



Fig. 5. RealAmplitudes ansatz from the Qiskit library with one repetition and full entanglement.

a binary value. Alternatively, the two real-valued data sets must
be modified before training since both include many points
with feature values outside of the desired range. We prepared
these data sets for the variational quantum circuit using the
following procedure:

1) Scale the data set so that each feature has a mean of 0
and a variance of 1 using Sci-Kit Learn’s StandardScalar
class.

2) Divide the modified data set by its feature with the
largest absolute value. Now all features in the data set
have a value between -1 and 1.

3) Multiply the modified data set by π/2.
4) Add π/2 to each feature of the modified data set.

After this procedure is performed, each feature in the modified
data set will fall within the interval [0, π], ensuring that every
unique input x will have a unique quantum encoding.

D. Hardware and Job Specifications

During the simulated quantum trials, each quantum circuit
was run using the IBM QASM simulator. During the actual
quantum trials, each quantum circuit was run using the IBM
Mumbai quantum computer. This computer has 27 qubits and a
quantum volume of 128. The IBM Mumbai machine uses CX,
ID, RZ, SX, and X gates as its basis gates. When our results
were compiled, the average CNOT error of IBM Mumbai was
8.572×10−3, and the average readout error was 3.834×10−2.
To determine the output (expectation value) of a variational
quantum circuit on a particular input, we ran the circuit 1024
times and then averaged the result of each run. Each job was
initialized and sent to the quantum computer using a personal
laptop with a 2.7 GHz Dual-Core Intel i5 processor and 8
GB 1,867 MHz DDR3 memory. This laptop was also used to
process the results of each job and optimize model parameters
accordingly.
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