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Abstract: Porous liquids (PLs) represent a promising category of sorbents in carbon capture and 

separation capable of integrating the advantages of flowing liquid and porous solid systems. Well-

defined pores were engineered into liquid sorbents via liquifying molecules with stiff interior voids, 

dissolving rigid porous hosts in flowing liquids, or dispersing porous frameworks in high steric 

hindrance solvents, producing type I, II, or III PLs, respectively. Unique features of PLs have 

triggered broad interest in exploring their applications in carbon capture and separation, in which 

diverse design strategies, synthesis approaches, and enhanced performance have been reported. 

In this minireview, recent progress in the design, synthesis, and structural engineering of PLs and 

efforts towards the optimization of their carbon capture and separation behavior will be 

summarized, including the comparison between PLs with varied types. Porosity engineering into 

liquid sorbents provides opportunities to resolve challenging issues in conventional sorption and 

separation systems.

Keywords: Porous liquids; Carbon dioxide; Carbon capture; Ionic liquids; Porous materials

Carbon capture and sequestration has been developed as one of the most promising 

approaches to alleviate the global warming issues caused by greenhouse gas emissions from 

fossil fuel combustion [1]. Aqueous amine solutions are currently used for CO2 removal from low-

pressure flue gas combinations but still have unsolved issues in evaporation, degradation, and 

high-energy consumption in cycling procedures [2]. Porous solid scaffolds with defined porous 

channels (e.g., zeolites, covalent organic frameworks (COFs), and metal–organic frameworks 

(MOFs)) are promising candidates to alleviate the energy penalty problem but may have difficulty 

in integrating them into existing flow pipelines [3]. Porous liquids (PLs) are a new type of liquid 

system with persistent porosity, which have steadily gained attention over the last decade after 
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the concept was presented in 2007 by James et al. [4]. The combined features of porous solid 

and liquid fluidity in PLs illustrate the wide range of applications [5-7], particularly in selective 

sorption and separation of specific gas molecules. For example, benefiting from the superfluidity, 

PLs have a rapid heat dissipation rate and a high pumping capacity, which is preferred in the 

sorption and regeneration procedures. The advantages from the processable liquid feature allows 

for a variety of engineering solutions to address the issue of sluggish gas diffusion behaviors in 

liquid phases, such as spraying, agitation, and membrane contactors. Problems associated with 

sorbent materials as solids, such as mechanical fatigue, physical aging, and plasticization, are 

rarely encountered in PLs. The fluidity advantage of PLs will enable them to be included in 

contemporary industrial pump instruments [3, 8]. Rapid progresses related to PLs have been 

made in terms of design, synthesis, characterization and application [9-54]. The abundance of 

available advanced porous hosts, such as zeolites, COFs, MOFs, etc., combined with sterically 

hindered solvents (e.g., various classes of ionic liquids (ILs)), provide limitless opportunities for 

developing novel PLs towards diverse applications, and some of the works have been 

summarized in the reviews by our own and other groups [8, 55-58]. However, no complete 

assessment of the specific application of PLs in CO2 capture and separation has been 

summarized. This review will highlight the recent progresses related to the design principle and 

structure engineering of task specific PLs towards enhanced carbon capture and separation 

(Figure 1). We hope the insights provided herein can provide guidance on the discovery of 

promising sorbents in carbon capture and separation with high uptake capacity, good selectivity, 

rapid sorption kinetics, and energy-efficient and long-term cycling stability.

Figure 1 Utilization of porous liquids in carbon capture and separation.
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State-of-the-art PLs could be classified into three categories using James's I–II–III systems. 

Type I PLs have stiff interior voids in their molecules, leading to larger pore volume and reduced 

volatility because there is no extra solvent [59]. In 2015, Dai et al. created a type I PL from 

engineering the out-sphere of hollow silica (HS) spheres with microporous shells, which could 

block the penetration of molecules larger than 1.9 nm via the molecular sieve effect (Figure 2A). 

To maintain open structures in the PL, the fluid medium must not self-fill voids. As a corona for 

surface modification, a positively charged organosilane moiety of 2.0 nm was utilized, and the 

content of inorganic hollow spheres was 17.5%, as determined by thermogravimetric analysis 

(TGA). The as-synthesized PL was then deployed for membrane-based CO2 separation. The HS-

derived PL has a CO2 permeability of 158 Barrer, which was higher than that obtained by the 

liquid counterparts (75 Barrer) while both exhibited similar CO2/N2 selectivity of 10. This 

demonstrated that the hollow structures could speed up gas transport in dense liquids, but the 

gas selectivity was still controlled by the polymeric liquid chain structures [11]. The achievement 

that has been made in this work provide extra opportunities and guidance on further improving 

the CO2 separation performance in membrane-based processes.

Then this PL synthesis strategy was extended to the fabrication of PLs with hallow carbon 

spheres (HCS) leveraging the electrostatic interaction between HCS and polymeric ILs, in which 

HCS with empty pores could be stabilized in a dense liquid phase (Figure 2B). The content of 

HCS was ~15% in the as-afforded PL. The CO2 adsorption/desorption isotherms of the HCS-PL 

and the pure dense liquid counterparts were collected at 298 K up to 10 bar. At a CO2 pressure 

of 1 bar, the HCS-PL with extra cavity displayed a CO2 uptake capacity of 0.445%, which was 

higher than the liquid sorbents without HCS (< 0.261 wt.%). Enhanced CO2 uptake by HCS-PL 

was also observed at high CO2 pressure (10 bar), and 55.9 wt% of the adsorbed CO2 was retained 

in HCS-PL during the desorption process, indicating the promising application of PL in gas storage 

[10]. PLs composed of HS spheres with different particle size were prepared via the surface 

modification by ionic pairs being synthesized from the reaction of 3-(trihydroxysilyl)-1-

propanesulfonic acid as corona with polyether amine (M2070) as canopy (Figure 2C), which 

displayed good flowability and thermal stability. CO2 capture study revealed that for PLs with 

similar grafting density, those with bigger pore size had a higher CO2 uptake capacity at 298 K 

[13]. 

PL composed of polymer surfactant conjugated HS nanorods and bio-conjugated carbonic 

anhydrase enzyme (bCA) could achieve combined CO2 capture and conversion, in which CO2 

could go through the porous wall and be stored in the HS nanorods, bCA could act as the catalyst 

for the conversion of slowly released CO2 to HCO3
- ions (Figure 2D). The CO2 storage in PL was 
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verified by the rapid transmittance decrease caused by the formation of CaCO3 from CaCl2 and 

the as-produced HCO3
- [12]. The successful combination of CO2 capture and conversion could 

extend the application of PL systems into efficient carbon capture and utilization (CCU). 

Theoretical calculation using density functional theory (DFT) demonstrated that for HS-derived 

PLs containing organosilane moiety cation (corona) and poly(ethylene glycol)-containing 

sulfonate anion (canopy), the as-involved CO2-philic polyethylene glycol (PEG) units had the 

strongest interaction with CO2, together with weak interaction provided by hydrogen bonding [14].

Figure 2 (A) Structures of HS-derived PL and its application in membrane-based CO2 separation. 

Reproduced with permission.[11]Copyright 2015, Wiley-VCH. (B) Structures and TEM image of 

HCS-derived PL, and the CO2 uptake isotherms at 298 K. Reproduced with permission.[10] 

Copyright 2017, Wiley-VCH. (C) PLs derived from HS with different pore size and their CO2 uptake 

isotherms at 298 K. Reproduced with permission.[13] Copyright 2018, Wiley-VCH. (D) PLs for CO2 

capture and conversion. Reproduced with permission.[12] Copyright 2021, Wiley-VCH.

Type II PLs are composed of rigid and porous hosts being dissolved in selected solvents that 

are unable to enter the host cavities due to steric prevention [59]. Towards this aspect, Dai et al. 

created type I and type II PLs composed of anionic covalent cage host and crown ether solvents 

via the complexation approach in supramolecular systems (Figure 3). Simply combining 18-

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/sulfonate
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crown-6 (18-C-6) with the as-synthesized anionic covalent cage with K+ as a cation (KACC) 

resulted in Type I PL (denoted as 18-C-6-PL) including the anionic component of porous organic 

cages as and the cationic component of 18-crown-6-coordinated potassium ion. While adding 

excess amount of 15-crown-5 resulted in a Type II PL being formed by dissolving the 15-crown-

5 (15-C-5)/KACC complex in excess 15-crown-5 solvent (denoted as 15-C-5-PL). CO2 uptake 

behavior evaluation revealed that at 10 bar CO2 pressure and 298 K, the CO2 uptake capacity of 

18-C-6-PL and 15-C-5-PL achieved 0.429 and 0.375 mmol g-1, respectively, which was much 

higher compared with the pure crown ether solvent, demonstrating the existence of empty cavities 

in the PLs derived from the cages [15]. 

Theoretical study was conducted to provide guidance on the gas separation behavior of PL 

systems. For example, the Yang group recently investigated the separation behavior of some 

binary gas mixtures, such as N2/CO2 and CH4/CO2, using PLs formed by immersing a crown ether-

containing cage molecule in 15-crown-5 solvent by molecular dynamics (MD) simulations. The 

results demonstrated that the adsorption and separation performance of type II PLs possessing 

a ratio of 1:12 (cage : solvent) was better than that achieved by the counterparts possessing a 

ratio of 1:91 and 1:170 when being deploying in the separation of CO2/N2 or CO2/CH4. The study 

using the spatial distribution function and trajectories indicated that the PLs had CO2-philic 

property, resulting in CO2 being trapped in the channels. While N2 and CH4 are, however, rarely 

absorbed into the bulk phase [16]. MD simulations further demonstrated that large size of the core 

in cage molecule was preferred for applications aiming to separate CO2 and N2. For the CO2 

storage inside a cage, the key step was primarily limited by the multiple CO2 molecules packing 

into the core of the cage structure. Comparatively, the difficulty in N2 storage was primarily caused 

by the weak interactions between N2 and the cage host. Therefore, the corresponding cage 

structure engineering would greatly increase the uptake capacity towards CO2 molecules [17].
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Figure 3 Synthesis of type I and type II PLs via a supramolecular complexation approach and 

their CO2 uptake isotherms being collected at 298 K. Reproduced with permission.[15] Copyright 

2019, Wiley-VCH.

Microporous frameworks being dispersed in solvents that are able to sterically inhibit their 

entering into the pores are classified as Type III liquids [59]. MOFs composed of diverse metal 

cores and coordination ligands and zeolites represent two types of widely used porous host to 

form PLs by choosing specific liquid fluidity, particularly after surface modification. For example, 

zeolites could be dispersed in ILs and stabilized by hydrogen bonding formation between the 

Brønsted sites in H-form zeolites and the alkyl chains in ILs. In addition, the mechanical bond 

derived from the long alkyl chain of the cation in ILs which could penetrate the channel of zeolite 

at the interface position could improve the stability. Besides structure and properties of the 

zeolites, counter anions in the ILs (e.g., NTf2, BF4, CH3CH2SO4, etc.) could also influence the gas 

uptake behavior of the as-resulted type III PLs [24]. 

The large structural tunability in both the porous host and the liquid counterparts provide a large 

library for the development of type III PLs towards enhanced carbon capture. A straightforward 

way was to disperse selected MOF (ZIF-8) or zeolite (ZSM-5) featured by a small cage window 

and large sodalite cage into bulky ILs with a dication structure coupled with the NTf2 anion (Figure 

4A). The existence of permanent porosity in the as-formed PLs was verified by the CO2 adsorption 

behavior and positron annihilation lifetime spectroscopy (PALS) measurement. Particularly, at 

ambient conditions, a substantial hysteresis loop in CO2 sorption/desorption was observed, 

highlighting the promise to use these PLs for rationally controlling or gating gas sorption behavior 

[19]. IL composed of 1,6-bis(3-butylimidazolium-1-yl)hexane cation and 
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bis(trifluoromethylsulfonyl)amide anion was also deployed as the fluidity composition to produce 

type III PL with ZIF-67 as the porous host, which displayed 55 times the CO2 uptake capacity 

compared to the pure IL [22]. Other similar PL types included the combination of 

alkylphosphonium halides with ZIF-8 [23, 24]. 

Other solvents are also deployed in PL synthesis, together with the modification of the porous 

host to achieve long-term stable dispersion. Poly(dimethylsiloxane) (PDMS) was demonstrated 

as a good bulky solvent in PL synthesis. UiO-66 and those with -NH2 or C-Br bonds in the 

frameworks with isoreticular structure could be well dispersed and stabilized in PDMS after being 

coated by a layer of a PDMS-tethered methacrylate polymer. CO2 sorption demonstrated that PLs 

derived from UiO-66 or UiO-66-NH2 exhibited higher CO2 sorption capacity than a UiO-66-Br2-

derived PL and the PDMS liquid (Figure 4B) [21]. 

UiO-66 with hydroxyl groups or ZIF-8 with amino groups could act as the porous host to form 

PLs with flexible oligomer species being synthesized via the reaction of polyether amine (M2070) 

and organosilane (KH569). The as-formed oligomer could react with the -OH or -NH2 

functionalities within the MOF structures to stabilize the dispersion. CO2 uptake isotherms and 

the breakthrough test revealed the improved CO2 sorption and separation behavior of the as-

produced PLs compared with the oligomer and the M2070 liquid sorbents (Figure 4C) [3].

UiO-66 containing imidazole functionalities could react with alkyl halides to form imidazolium 

halide-modified MOFs, which then after anion exchange with PEG-containing sulfonate, generate 

PLs with abundant cavities (Figure 4D). The as-prepared Im-UiO-PL achieved promising CO2 

uptake capacity, which was 14 times higher than that being obtained by the pure dense liquid 

counterpart. In addition, the captured CO2 could be released at elevated temperatures and 

converted to cyclic carbonates [20]. Surface modification of ZIF-67 particles by basic N-

heterocyclic carbenes allowed its stable dispersion in organic solvents with relatively large steric 

hindrance, such as cycloalkanes and mesitylene. The as-produced PLs performed well in CO2 

adsorption exceeding the uptake capacity obtained by the pure organic solvents (Figure 4E) [18].
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Figure 4 (A) Type III PL formed by dispersing MOFs or zeolites in bulky ionic liquid. Reproduced 

with permission.[19] Copyright 2018, American Chemical Society. (B) PL formation via the 

dispersion of surface modified UiO-66 into PDMS and the CO2 sorption isotherms. Reproduced 

with permission.[21] Copyright 2019, American Chemical Society. (C) PLs composed of hydroxyl 
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group-modified UiO-66 as porous host and oligomer as the liquid phase. Reproduced with 

permission.[3] Copyright 2021, American Chemical Society. (D) Imidazolium ionic liquids-modified 

MOFs as PLs in CO2 capture and conversion. Reproduced with permission. [20] Copyright 2021, 

Wiley-VCH. (E) PL formed by dispersing carbene-modified ZIF-67 in mesitylene and its CO2 

uptake isotherms. Reproduced with permission.[18] Copyright 2020, Springer Nature.

In the aspect of diverse porous hosts, a three-dimensional (3D) covalent organic framework 

(COF) could act as the rigid host with permanent cavity, which after colloidal modification by 

imidazolium ILs containing aldehyde functionalities and bulk anion (BArF), could be well dispersed 

and stabilized in bulky imidazolium ILs to afford type III PLs. Compared with the pure IL, CO2 

uptake capacity of the COF-derived PL was 10 times higher [25]. An extensive study 

demonstrated the synthesis of diverse type III PLs using MOFs, zeolites, or porous organic 

polymers (PAF-1) and the solid host and non-ionic liquids, including silicone oils, triglyceride oils, 

or PEGs as the liquid compositions. For all the diverse combinations, CO2 solubility in the PLs all 

displayed improvement of 3-6 times compared to the liquid component [26]. The ionic liquid 

polymers being synthesized by neutralization reaction of M2070 with poly(4-styrene sulfonic acid) 

could act as a good bulky liquid phase to disperse and stabilize HCS for PL production and 

enhanced CO2 capture [27].

In summary, diverse PLs (type I, II, and III) have been designed and synthesized that are 

composed of a rigid porous host (HS, HCS, cages, MOFs, zeolites, COFs, etc.) and a bulky liquid 

phase (ILs, organosilanes, bulky alkanes, etc.), and the CO2 sorption/separation behaviors were 

evaluated by isotherm collection, breakthrough test, or membrane-based separation. Although 

the above-mentioned progress has been made, in most of the works, CO2 uptake behavior was 

deployed as an indicator to show the benefits by introducing extra pore volumes into the liquid 

phase. Compared with the CO2 capture investigation using ILs or porous scaffolds, studies on the 

CO2 sorption/separation behaviors using PLs are still in the preliminary stage. 

Some of the aspects requiring a deep understanding in future studies include: (1) although PLs 

displaying improved higher CO2 uptake capacity than the dense liquid phase, they are still inferior 

compared to the porous host. (2) State-of-the-art fluidity counterparts in PLs synthesis are neutral 

components, but basic ILs (e.g., amino group-functionalized ILs [60, 61] and superbase-derived 

ILs [62, 63]) are more preferred in CO2 capture and conversion. Rigid porous hosts capable of 

withstanding strong basicity are highly required. (3) Studies on membrane-based CO2 separation 

using PLs are still limited. In traditional CO2 separation using supported IL-based membranes 
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(SILMs), the gas permeability is the product of solubility and diffusivity [5]. Although diverse task-

specific ILs (TSILs) towards CO2 chemisorption have been developed to deliver much higher CO2 

solubility, the current SILMs were still limited to the physisorption ones, mainly owing to the 

relatively high viscosity (sluggish diffusivity) of the chemisorption ILs, particularly after CO2 

capture [64]. According to the Cohen-Turnbull equation, the gas diffusivity increases as the empty 

space increases by providing a fast transport pathway [65]. Therefore, considering the benefits of 

introducing porous volumes into the dense IL phase in CO2 transport, PLs will provide a large 

tuning space to overcome the current limitations of basic TSILs and promote the CO2 transport in 

SILMs surpassing the upper bound of the Robeson plot.
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