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Abstract: Porous liquids (PLs) represent a promising category of sorbents in carbon capture and
separation capable of integrating the advantages of flowing liquid and porous solid systems. Well-
defined pores were engineered into liquid sorbents via liquifying molecules with stiff interior voids,
dissolving rigid porous hosts in flowing liquids, or dispersing porous frameworks in high steric
hindrance solvents, producing type |, Il, or lll PLs, respectively. Unique features of PLs have
triggered broad interest in exploring their applications in carbon capture and separation, in which
diverse design strategies, synthesis approaches, and enhanced performance have been reported.
In this minireview, recent progress in the design, synthesis, and structural engineering of PLs and
efforts towards the optimization of their carbon capture and separation behavior will be
summarized, including the comparison between PLs with varied types. Porosity engineering into
liquid sorbents provides opportunities to resolve challenging issues in conventional sorption and

separation systems.
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Carbon capture and sequestration has been developed as one of the most promising
approaches to alleviate the global warming issues caused by greenhouse gas emissions from
fossil fuel combustion [1]. Aqueous amine solutions are currently used for CO, removal from low-
pressure flue gas combinations but still have unsolved issues in evaporation, degradation, and
high-energy consumption in cycling procedures [2]. Porous solid scaffolds with defined porous
channels (e.g., zeolites, covalent organic frameworks (COFs), and metal-organic frameworks
(MOFs)) are promising candidates to alleviate the energy penalty problem but may have difficulty
in integrating them into existing flow pipelines [3]. Porous liquids (PLs) are a new type of liquid
system with persistent porosity, which have steadily gained attention over the last decade after
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the concept was presented in 2007 by James et al. [4]. The combined features of porous solid
and liquid fluidity in PLs illustrate the wide range of applications [5-7], particularly in selective
sorption and separation of specific gas molecules. For example, benefiting from the superfluidity,
PLs have a rapid heat dissipation rate and a high pumping capacity, which is preferred in the
sorption and regeneration procedures. The advantages from the processable liquid feature allows
for a variety of engineering solutions to address the issue of sluggish gas diffusion behaviors in
liquid phases, such as spraying, agitation, and membrane contactors. Problems associated with
sorbent materials as solids, such as mechanical fatigue, physical aging, and plasticization, are
rarely encountered in PLs. The fluidity advantage of PLs will enable them to be included in
contemporary industrial pump instruments [3, 8]. Rapid progresses related to PLs have been
made in terms of design, synthesis, characterization and application [9-54]. The abundance of
available advanced porous hosts, such as zeolites, COFs, MOFs, etc., combined with sterically
hindered solvents (e.g., various classes of ionic liquids (ILs)), provide limitless opportunities for
developing novel PLs towards diverse applications, and some of the works have been
summarized in the reviews by our own and other groups [8, 55-58]. However, no complete
assessment of the specific application of PLs in CO, capture and separation has been
summarized. This review will highlight the recent progresses related to the design principle and
structure engineering of task specific PLs towards enhanced carbon capture and separation
(Figure 1). We hope the insights provided herein can provide guidance on the discovery of
promising sorbents in carbon capture and separation with high uptake capacity, good selectivity,

rapid sorption kinetics, and energy-efficient and long-term cycling stability.
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Figure 1 Utilization of porous liquids in carbon capture and separation.



State-of-the-art PLs could be classified into three categories using James's |-lI-lll systems.
Type | PLs have stiff interior voids in their molecules, leading to larger pore volume and reduced
volatility because there is no extra solvent [59]. In 2015, Dai et al. created a type | PL from
engineering the out-sphere of hollow silica (HS) spheres with microporous shells, which could
block the penetration of molecules larger than 1.9 nm via the molecular sieve effect (Figure 2A).
To maintain open structures in the PL, the fluid medium must not self-fill voids. As a corona for
surface modification, a positively charged organosilane moiety of 2.0 nm was utilized, and the
content of inorganic hollow spheres was 17.5%, as determined by thermogravimetric analysis
(TGA). The as-synthesized PL was then deployed for membrane-based CO, separation. The HS-
derived PL has a CO, permeability of 158 Barrer, which was higher than that obtained by the
liquid counterparts (75 Barrer) while both exhibited similar CO./N, selectivity of 10. This
demonstrated that the hollow structures could speed up gas transport in dense liquids, but the
gas selectivity was still controlled by the polymeric liquid chain structures [11]. The achievement
that has been made in this work provide extra opportunities and guidance on further improving
the CO, separation performance in membrane-based processes.

Then this PL synthesis strategy was extended to the fabrication of PLs with hallow carbon
spheres (HCS) leveraging the electrostatic interaction between HCS and polymeric ILs, in which
HCS with empty pores could be stabilized in a dense liquid phase (Figure 2B). The content of
HCS was ~15% in the as-afforded PL. The CO, adsorption/desorption isotherms of the HCS-PL
and the pure dense liquid counterparts were collected at 298 K up to 10 bar. At a CO, pressure
of 1 bar, the HCS-PL with extra cavity displayed a CO, uptake capacity of 0.445%, which was
higher than the liquid sorbents without HCS (< 0.261 wt.%). Enhanced CO, uptake by HCS-PL
was also observed at high CO, pressure (10 bar), and 55.9 wt% of the adsorbed CO, was retained
in HCS-PL during the desorption process, indicating the promising application of PL in gas storage
[10]. PLs composed of HS spheres with different particle size were prepared via the surface
modification by ionic pairs being synthesized from the reaction of 3-(trihydroxysilyl)-1-
propanesulfonic acid as corona with polyether amine (M2070) as canopy (Figure 2C), which
displayed good flowability and thermal stability. CO, capture study revealed that for PLs with
similar grafting density, those with bigger pore size had a higher CO, uptake capacity at 298 K
[13].

PL composed of polymer surfactant conjugated HS nanorods and bio-conjugated carbonic
anhydrase enzyme (bCA) could achieve combined CO, capture and conversion, in which CO,
could go through the porous wall and be stored in the HS nanorods, bCA could act as the catalyst

for the conversion of slowly released CO, to HCOj ions (Figure 2D). The CO, storage in PL was
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verified by the rapid transmittance decrease caused by the formation of CaCO; from CacCl, and
the as-produced HCO; [12]. The successful combination of CO, capture and conversion could
extend the application of PL systems into efficient carbon capture and utilization (CCU).
Theoretical calculation using density functional theory (DFT) demonstrated that for HS-derived
PLs containing organosilane moiety cation (corona) and poly(ethylene glycol)-containing
sulfonate anion (canopy), the as-involved CO,-philic polyethylene glycol (PEG) units had the

strongest interaction with CO,, together with weak interaction provided by hydrogen bonding [14].
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Figure 2 (A) Structures of HS-derived PL and its application in membrane-based CO, separation.
Reproduced with permission.['"ICopyright 2015, Wiley-VCH. (B) Structures and TEM image of
HCS-derived PL, and the CO, uptake isotherms at 298 K. Reproduced with permission.l'®
Copyright 2017, Wiley-VCH. (C) PLs derived from HS with different pore size and their CO, uptake
isotherms at 298 K. Reproduced with permission.!'3l Copyright 2018, Wiley-VCH. (D) PLs for CO,
capture and conversion. Reproduced with permission.['?l Copyright 2021, Wiley-VCH.

Type Il PLs are composed of rigid and porous hosts being dissolved in selected solvents that
are unable to enter the host cavities due to steric prevention [59]. Towards this aspect, Dai et al.
created type | and type Il PLs composed of anionic covalent cage host and crown ether solvents
via the complexation approach in supramolecular systems (Figure 3). Simply combining 18-
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crown-6 (18-C-6) with the as-synthesized anionic covalent cage with K* as a cation (KACC)
resulted in Type | PL (denoted as 18-C-6-PL) including the anionic component of porous organic
cages as and the cationic component of 18-crown-6-coordinated potassium ion. While adding
excess amount of 15-crown-5 resulted in a Type Il PL being formed by dissolving the 15-crown-
5 (15-C-5)/KACC complex in excess 15-crown-5 solvent (denoted as 15-C-5-PL). CO, uptake
behavior evaluation revealed that at 10 bar CO, pressure and 298 K, the CO, uptake capacity of
18-C-6-PL and 15-C-5-PL achieved 0.429 and 0.375 mmol g, respectively, which was much
higher compared with the pure crown ether solvent, demonstrating the existence of empty cavities
in the PLs derived from the cages [15].

Theoretical study was conducted to provide guidance on the gas separation behavior of PL
systems. For example, the Yang group recently investigated the separation behavior of some
binary gas mixtures, such as N,/CO, and CH4/CO,, using PLs formed by immersing a crown ether-
containing cage molecule in 15-crown-5 solvent by molecular dynamics (MD) simulations. The
results demonstrated that the adsorption and separation performance of type Il PLs possessing
a ratio of 1:12 (cage : solvent) was better than that achieved by the counterparts possessing a
ratio of 1:91 and 1:170 when being deploying in the separation of CO,/N, or CO,/CH,. The study
using the spatial distribution function and trajectories indicated that the PLs had CO,-philic
property, resulting in CO, being trapped in the channels. While N, and CH, are, however, rarely
absorbed into the bulk phase [16]. MD simulations further demonstrated that large size of the core
in cage molecule was preferred for applications aiming to separate CO, and N,. For the CO,
storage inside a cage, the key step was primarily limited by the multiple CO, molecules packing
into the core of the cage structure. Comparatively, the difficulty in N, storage was primarily caused
by the weak interactions between N, and the cage host. Therefore, the corresponding cage

structure engineering would greatly increase the uptake capacity towards CO, molecules [17].
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Figure 3 Synthesis of type | and type Il PLs via a supramolecular complexation approach and
their CO, uptake isotherms being collected at 298 K. Reproduced with permission.l'® Copyright
2019, Wiley-VCH.

Microporous frameworks being dispersed in solvents that are able to sterically inhibit their
entering into the pores are classified as Type Il liquids [59]. MOFs composed of diverse metal
cores and coordination ligands and zeolites represent two types of widely used porous host to
form PLs by choosing specific liquid fluidity, particularly after surface modification. For example,
zeolites could be dispersed in ILs and stabilized by hydrogen bonding formation between the
Brensted sites in H-form zeolites and the alkyl chains in ILs. In addition, the mechanical bond
derived from the long alkyl chain of the cation in ILs which could penetrate the channel of zeolite
at the interface position could improve the stability. Besides structure and properties of the
zeolites, counter anions in the ILs (e.g., NTf,, BF,, CH3;CH,SO,, etc.) could also influence the gas
uptake behavior of the as-resulted type Ill PLs [24].

The large structural tunability in both the porous host and the liquid counterparts provide a large
library for the development of type Ill PLs towards enhanced carbon capture. A straightforward
way was to disperse selected MOF (ZIF-8) or zeolite (ZSM-5) featured by a small cage window
and large sodalite cage into bulky ILs with a dication structure coupled with the NTf, anion (Figure
4A). The existence of permanent porosity in the as-formed PLs was verified by the CO, adsorption
behavior and positron annihilation lifetime spectroscopy (PALS) measurement. Particularly, at
ambient conditions, a substantial hysteresis loop in CO, sorption/desorption was observed,
highlighting the promise to use these PLs for rationally controlling or gating gas sorption behavior

[19]. IL composed of 1,6-bis(3-butylimidazolium-1-yl)hexane cation and
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bis(trifluoromethylsulfonyl)amide anion was also deployed as the fluidity composition to produce
type Il PL with ZIF-67 as the porous host, which displayed 55 times the CO, uptake capacity
compared to the pure IL [22]. Other similar PL types included the combination of
alkylphosphonium halides with ZIF-8 [23, 24].

Other solvents are also deployed in PL synthesis, together with the modification of the porous
host to achieve long-term stable dispersion. Poly(dimethylsiloxane) (PDMS) was demonstrated
as a good bulky solvent in PL synthesis. UiO-66 and those with -NH, or C-Br bonds in the
frameworks with isoreticular structure could be well dispersed and stabilized in PDMS after being
coated by a layer of a PDMS-tethered methacrylate polymer. CO, sorption demonstrated that PLs
derived from UiO-66 or UiO-66-NH, exhibited higher CO, sorption capacity than a UiO-66-Br,-
derived PL and the PDMS liquid (Figure 4B) [21].

UiO-66 with hydroxyl groups or ZIF-8 with amino groups could act as the porous host to form
PLs with flexible oligomer species being synthesized via the reaction of polyether amine (M2070)
and organosilane (KH569). The as-formed oligomer could react with the -OH or -NH,
functionalities within the MOF structures to stabilize the dispersion. CO, uptake isotherms and
the breakthrough test revealed the improved CO, sorption and separation behavior of the as-
produced PLs compared with the oligomer and the M2070 liquid sorbents (Figure 4C) [3].

UiO-66 containing imidazole functionalities could react with alkyl halides to form imidazolium
halide-modified MOFs, which then after anion exchange with PEG-containing sulfonate, generate
PLs with abundant cavities (Figure 4D). The as-prepared Im-UiO-PL achieved promising CO,
uptake capacity, which was 14 times higher than that being obtained by the pure dense liquid
counterpart. In addition, the captured CO, could be released at elevated temperatures and
converted to cyclic carbonates [20]. Surface modification of ZIF-67 particles by basic N-
heterocyclic carbenes allowed its stable dispersion in organic solvents with relatively large steric
hindrance, such as cycloalkanes and mesitylene. The as-produced PLs performed well in CO,

adsorption exceeding the uptake capacity obtained by the pure organic solvents (Figure 4E) [18].
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Figure 4 (A) Type lll PL formed by dispersing MOFs or zeolites in bulky ionic liquid. Reproduced
with permission.['®] Copyright 2018, American Chemical Society. (B) PL formation via the
dispersion of surface modified UiO-66 into PDMS and the CO, sorption isotherms. Reproduced
with permission.l2'l Copyright 2019, American Chemical Society. (C) PLs composed of hydroxyl



group-modified UiO-66 as porous host and oligomer as the liquid phase. Reproduced with
permission.B! Copyright 2021, American Chemical Society. (D) Imidazolium ionic liquids-modified
MOFs as PLs in CO, capture and conversion. Reproduced with permission. 2 Copyright 2021,
Wiley-VCH. (E) PL formed by dispersing carbene-modified ZIF-67 in mesitylene and its CO,
uptake isotherms. Reproduced with permission.l'8 Copyright 2020, Springer Nature.

In the aspect of diverse porous hosts, a three-dimensional (3D) covalent organic framework
(COF) could act as the rigid host with permanent cavity, which after colloidal modification by
imidazolium ILs containing aldehyde functionalities and bulk anion (BArF), could be well dispersed
and stabilized in bulky imidazolium ILs to afford type Il PLs. Compared with the pure IL, CO,
uptake capacity of the COF-derived PL was 10 times higher [25]. An extensive study
demonstrated the synthesis of diverse type Il PLs using MOFs, zeolites, or porous organic
polymers (PAF-1) and the solid host and non-ionic liquids, including silicone oils, triglyceride oils,
or PEGs as the liquid compositions. For all the diverse combinations, CO, solubility in the PLs all
displayed improvement of 3-6 times compared to the liquid component [26]. The ionic liquid
polymers being synthesized by neutralization reaction of M2070 with poly(4-styrene sulfonic acid)
could act as a good bulky liquid phase to disperse and stabilize HCS for PL production and

enhanced CO, capture [27].

In summary, diverse PLs (type I, Il, and lll) have been designed and synthesized that are
composed of a rigid porous host (HS, HCS, cages, MOFs, zeolites, COFs, etc.) and a bulky liquid
phase (ILs, organosilanes, bulky alkanes, etc.), and the CO, sorption/separation behaviors were
evaluated by isotherm collection, breakthrough test, or membrane-based separation. Although
the above-mentioned progress has been made, in most of the works, CO, uptake behavior was
deployed as an indicator to show the benefits by introducing extra pore volumes into the liquid
phase. Compared with the CO, capture investigation using ILs or porous scaffolds, studies on the
CO, sorption/separation behaviors using PLs are still in the preliminary stage.

Some of the aspects requiring a deep understanding in future studies include: (1) although PLs
displaying improved higher CO, uptake capacity than the dense liquid phase, they are still inferior
compared to the porous host. (2) State-of-the-art fluidity counterparts in PLs synthesis are neutral
components, but basic ILs (e.g., amino group-functionalized ILs [60, 61] and superbase-derived
ILs [62, 63]) are more preferred in CO, capture and conversion. Rigid porous hosts capable of
withstanding strong basicity are highly required. (3) Studies on membrane-based CO, separation
using PLs are still limited. In traditional CO, separation using supported IL-based membranes
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(SILMs), the gas permeability is the product of solubility and diffusivity [5]. Although diverse task-

specific ILs (TSILs) towards CO, chemisorption have been developed to deliver much higher CO,

solubility, the current SILMs were still limited to the physisorption ones, mainly owing to the

relatively high viscosity (sluggish diffusivity) of the chemisorption ILs, particularly after CO,

capture [64]. According to the Cohen-Turnbull equation, the gas diffusivity increases as the empty

space increases by providing a fast transport pathway [65]. Therefore, considering the benefits of

introducing porous volumes into the dense IL phase in CO, transport, PLs will provide a large

tuning space to overcome the current limitations of basic TSILs and promote the CO, transport in

SILMs surpassing the upper bound of the Robeson plot.
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