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> | Hydrogen + Dislocations: How do they get along?

H is important fuel and proper storage is important, however it also leads
to Hydrogen Embrittlement (HE)

To understand HE we must understand where H is going. Even with
typically low H solubilities, enrichment near defects can result in HE.

H-enhanced local plasticity(HELP) is a common theory used to explain the
origin of HE that is concerned with Cottrell atmosphere.

To better understand HELP we focus on the formation of atmospheres in Al |
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- Transient formation of a H Cottrell atmosphere
« Compare and contrast to theoretical expressions

« MD simulation setup

| Outline

3

Solute-Solute interactions at the core

Manuscript for the presented work has been submitted



4 ‘ Previous work Boltzmann Heatmap for Edge Dislocation: Al-H

Molecular statics can calculate H insertion energy, E; .

Models and theories rely on E; . to understand
atmosphere behavior
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Peak Hydrogen Concentration Saturation

MD work with Cottrell atmospheres has been done but 00 o Frverr— l | |
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5
Understanding formation helps inform HELP =200 - e Boltzmann distribution ~ —
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5 ‘ Difficulty simulating atmosphere

On MD time scales, 300K shows slow H diffusion

Low Peierls stress materials edge bounces around

Dislocation needs to stay stationary.

Recenter the c.0.m. on partial planes to keep in place 2
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6 ‘ MD mediated atmosphere formation
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7 ‘ Convergence Calculations
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: | How does it match theory?

(@) 600 K
E 7.0
Fit to Cottrell theory shows good agreement % 6ol
o= E 5.0
X2t (B00K) ~ 2.8 530
-~ * 2.'{3 t 5
X(t)=Xg+ Xt — Xﬂ){l — E_(U’td) } 5: %ZBEr;mzms 2401
t = V2b2 kgT /DW (Xsat/Xo)3/? t2,(800K)=0.0684 ns %3.0-
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32
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atmosphere also shows good agreement
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X, =background concentration T =temp
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W = |minypq(x)AV| Epperly & Sills J. Mech. Phys. Solids 141, 103944 (2020)
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I
9 | Theoretical Overestimation of Peak Concentrations m

The peaks estimated by MD
are much lower than predicted Boltzmann: Fermi-Dirac:
E. . must be less favorable n. = 1
ins MU , L7 e—(Ei—m)/kpT 41
near dislocation e +
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10 | Solute-Solute Interaction in Zr-T*

T-T interactions in HCP Zr also show a solute-solute effect

With more T loading enrichment increases at vac-type
dislocation loop.

0.16

reveals a strong T-T

N

E s S Fitting to equations
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0.001 0.002 0.003 0.004 0.005 0.006 0.007

cr (T/Zr)

*Skelton, et. al. manuscript submitted
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Peak concentration
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Solute-Solute Interaction in Ni-H

* This phenomenon is observed in systems outside of Al-H

 Ni-H systems with variable loading of H show different enrichment at the core

—  xH=0.001 33
—  xH=0.0025 o
—  xH=0.005 B
—— xH=0.01 2 45
— xH=0.025 E
xH=0.05 4.0

(Y]
L4
T T

Reolative core coneent

1 1 1 1 1. L
500 1000 1500 2000 2500 3000 3500 4000 0.00 0.01
t.ps

.M

1 1 1
0.02 0.03 0.04 0.05
xH

.}




Reflective walls
> I Measuring Solute-Solute Interactions
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13 | Conclusions

Simulated the transient formation of hydrogen
Cottrell atmospheres

Compared to theoretical expressions

Calculated the solute-solute interactions near a
dislocation

Solute-Solute Interactions should be considered

Relative Concentration

relative peak hydrogen concentration
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Thanks for your time,
questions?
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Running average to Instantaneous value

t

. 1
Xylx,y,t) = ?J. Xy(x,y, t)dt
0
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Zr-T Solute-Solute Interactions
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