
Fast estimation of reaction rates in spherical and non-spherical porous catalysts 

John P. Wakefielda,∗ , Aaron M. Lattanzib , M. Brennan Pechad , Peter N. Ciesielskid , Jesse Capecelatrob,c 

aUniversity of Michigan, Department of Mathematics 
bUniversity of Michigan, Department of Mechanical Engineering 
cUniversity of Michigan, Department of Aerospace Engineering 

dNational Renewable Energy Laboratory 

Abstract 

We present a methodology for modeling multi-step reaction rates in porous catalyst particles for use in CFD–DEM and 
two fluid models. Single-step effectiveness factors based on a Thiele modulus, while useful, cannot accurately capture the 
cascading reaction systems common in high temperature vapor-phase chemical reactors like fluidized catalytic cracking 
units and catalytic biomass fast pyrolysis systems. Instead, multi-step effectiveness vectors derived from steady-state 
solutions to the governing reaction-diffusion equations are needed. Solutions for various catalyst shapes are presented, 
including spheres, cylinders, and prisms. Computational challenges inherent in repeated evaluation of reaction rates with 
diffusion limitations are discussed, and an efficient implementation based on pre-computed lookup tables is proposed and 
demonstrated on a simulation of a fluidized bed reactor. Open-source code is provided for the compilation of reaction 
rate tables for use in ODE, DEM, and two-fluid models. 
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1 1. Introduction 

2 Many industrial processes involve heterogeneous chem-
3 ical reactions between a fluid and a solid surface. Of par-
4 ticular interest are fluidized bed reactors, in which large 
5 numbers of small catalyst or fuel particles are present. 
6 These particles are typically porous to increase catalyst 
7 availability. However, accurately modeling reaction rates 
8 within porous catalysts is challenging. When consider-
9 ing reacting systems at industrial scale, resolution at the 

10 molecular or pore scale is not computationally feasible. In-
11 stead, mean (i.e. ‘effective’) reaction rates must be used. 
12 Previous works have modeled reactors with gas-solid 
13 interactions consisting of a single reaction limited by diffu-
14 sion within particles [1, 2, 3] and multiple reactions with-
15 out diffusion limitations [4, 5, 6, 7]. For a single-stage 
16 reaction, an effectiveness factor is defined as the ratio of 
17 actual reaction rate integrated over the particle to the reac-
18 tion rate without diffusion limitations integrated over theR 

nom nom 
19 particle; ṙ dV = ηp Vp ṙ where ṙ is the reaction

Ω 
20 rate without diffusion limitations, ṙ is the actual reaction 
21 rate inside the particle, Ω is the set of points within the 
22 boundary of the superficial particle, and Vp is the volume 
23 of the particle. Solutions to scalar diffusion limited pro-
24 cesses inside non-spherical geometries and resulting effec-
25 tiveness factors have also been explored previously [8, 9]. 
26 Zhu et al. [10] showed accurate effective multi-stage reac-
27 tion rates are important for matching experimental data. 
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Wei [11] proposed diagonalization for decoupling sys- 28 

tems of irreversible first-order reactions. This was revis- 29 

ited by Lattanzi et al. [12], who introduced the multi- 30 

stage effectiveness vector (MEV), a vector ηp of effective- 31R 
ηp nomness factors ηp such that ṙij dV = Vp ṙ where 32i Ω i 

ṙij is the observed rate of mass conversion from species i 33 

nomto species j and ˙ is the same rate without diffusionr 34ij 
limitations. The dependence of the factor ηp only upon 35i 
the source species is a consequence of the first order as- 36 

sumption. The present work discusses the limitations of 37 

this approach with respect to Biot number, the possible 38 

extensions of this approach, and, most importantly, the 39 

practicality of utlizing this approach to estimate rate con- 40 

stants in simulations of fluidized bed reactors under the 41 

pseudo-steady state assumption. 42 

We present a general ‘recipe’ for the computation of 43 

first order multistage reactions by reducing them to com- 44 

binations of single-stage reactions (Sec. 2.1). We extend 45 

the work of Wei [11] and Lattanzi et al. [12] to enable 46 

practical implementation in reactor-scale codes. Catalyst 47 

geometry may introduce complexity into the estimation 48 

of single-stage reaction rates, but does not affect the con- 49 

struction of multi-stage rates from single-stage rates. Sec- 50 

tion 3 discusses the efficiency of some effectiveness fac- 51 

tor forms in the context of computational fluid dynamics 52 

(CFD) discrete element modeling (DEM) in which enor- 53 

mous numbers of reaction rate evaluations are required. 54 

Efficient calculation of corrected reaction rates based upon 55 

pre-compiled tables is proposed (Sec. 2.2) and utilized in 56 

a proof of concept CFD–DEM computation of catalysis 57 
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58 in a fluidized bed (Sec. 4). The pre-processing compu-
59 tations for arbitrary first-order chemistry are open-source 
60 and made available to aid in the implementation of the ap-
61 proach described here to reactor-scale simulation method-
62 ologies like CFD–DEM and two-fluid models. 
63 The approach presented herein applies to any number 
64 of reaction stages and allows for decreased reaction rates 
65 due to environmental factors, e.g. coking on catalyst par-
66 ticles in fluidized catalytic cracking (FCC). Though the 
67 present discussion has general applicability to coupled and 
68 reversible kinetics, the primary focus of this work pertains 
69 to modeling of fluidized catalytic systems (e.g., [1, 7]) in 
70 which reactions are irreversible. However, reversible reac-
71 tions can be modeled using this framework under certain 
72 conditions. The primary limitation of this approach is a 
73 harsh restriction on applicable boundary conditions (Ap-
74 pendix A). 

75 2. The Multistage Problem 

76 As a fundamental modeling assumption we split the 
77 domain into two parts: one inside the superficial volume 
78 of the catalyst particle and one entirely within the fluid 
79 phase. Points ‘inside the catalyst’ are points at which 
80 advection becomes negligible due to the small dimension 
81 of the pores. In this section we will focus on the regions 
82 ‘inside’ the catalyst particles. Careful consideration of the 
83 outer surface of the superficial pellet and models of the 
84 fluid boundary layer remain an area for future research. 
85 Let Nr be the number of gaseous reactants, Np be the 
86 number of (not necessarily gaseous) products, and N = 
87 Nr + Np be the total number of species. Index reacting 
88 species such that 1 ≤ i ≤ Nr and Nr +1 = N −Np ≤ i ≤ N 
89 are strictly products (i.e., not a reactant in any reaction). 
90 The rate constant for conversion of species i to species j 
91 is denoted kij . The constraint that solid species may not 
92 react results in kij = 0 for all Nr +1 = N −Np +1 ≤ i ≤ N . 
93 Gaseous species within the porous catalyst are gov-
94 erned by 

∂(�ρgYi) 
+ r · (u �ρgYi) =r · (�ρgDirYi)

∂t | {z } 
Ji 

NX 
− ψkij �ρgYi| {z } (1) 
j=1 

ṙij 

NX 
+ ψkji�ρgYj 
j=1 

| {z } 
ṙim 

95 where 1 ≤ i ≤ Nr, ρg is the gas phase density, � is the 
96 particle voidage, Yi is the mass fraction of species i, Di 
97 is the (effective) diffusion coefficient of the i-th species, 
98 and ψ is deactivation factor due to other phenomena (e.g., 
99 coking). 

¯Let Di be the effective diffusivity of species i within the 100 

particle, L be a characteristic length scale, T be a a charac- 101 

teristic time, and let T t̂ = t to obtain nondimensionalized 102 

equations 103 � � � �L2 ∂(ρ̂gYi) 
+ Pei r̂ · (û (ρ̂gYi)) =r̂ · ρ̂gD̂ 

ir̂(Yi)
T D̄ 

i ∂t̂  ⎛ ⎞ 
NX ψkij L2 

− ρ̂g ⎝ ⎠ YiD̄i | 
j=1 {z } 

φ2 
i 

N � �X ψkjiL
2 

+ ρ̂g Yj¯ 
j=1 | 

D{zi } 
φ2 
ij 

(2) 

where the Péclet number is Pei ¯ Di) and nondi-= uL/(T ¯ 104 

mensional fluid quantities are û = u/ū, ρ̂g = �ρg /�ρg, and 105 

D̂i = Di/D̄ 
i. Assume ū and D̄ 

i are chosen such that û 106 

and D̂ 
i are order one. If we take the convective term to be 107 

small, Di is constant in space (D̂i = 1), density variations 108 

are small throughout the particle (ρ̂g ≈ 1), and consider 109 

the steady state problem we obtain 110 

NX 
−r̂ 2Yi + φ2 

i Yi − φ2 
ij Yj = 0. (3) 

j=1 

The concentration of the i-th species is Ci = �ρg Yi/Wi, 111 

allowing us to rewrite Eq. (3) in terms of concentration as 112 

113 
NX Wj−r̂ 2Ci + φ2 

i Ci − φ2 
ij Cj = 0, (4)
Wij=1 

where we have assumed that deviations in �ρg are negligi- 114 

ble throughout the particle. Effective diffusion within the 115 

particle will be modeled by Knudsen diffusion [13, 14] 116 r 
Dpore 8RT � Di = . (5)
3 πWi τ 

We will solve in terms of mass fraction (Eq. (3)) as it more 117 

obviously conserves mass and is consistent with typical 118 

implementatons in CFD codes. 119 

For the boundary condition, we assume Fick’s law holds 120 

at the interior edge of the catalyst particle, yielding the 121 

mass flux jint = −Di(�ρgrYi). The mass flux from the 122i 
solid to the free stream can be approximated by jext · n = 123i 
�ρg kc (Yi − Yi,∞) where kc is a mass transfer coefficient, 124 

Yi,∞ is the free stream concentration of the i-th species, 125 

and n is a unit normal vector [15]. The resulting boundary 126 

= jextcondition is obtained by setting jint , 127i i 

1 r̂Yi · n + Yi = Yi,∞. (6)
Bii 

Bi = kcL/Di is the mass transfer Biot number. It will 128 

ultimately be required Bi = Bi1 = Bi2 = · · · = BiNr ; the 129 

reason for this condition is discussed in Appendix A. 130 
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Symbol 

B 
Bg 

Bs 

bij 
Bii 
Bi 
Ci 
Di 

Dpore 

� 
φ2 and φ2 
i ij 

ηp 

ηp 
i 

η(λ, Bi) 
H(λ, Bi) 

jint 
i 

jext 
i 
kc 

kij 
L 
λk 

Λ 
Nr 

Np 

N 
Ω 
Pei 
ψ 
R 
R 
ṙij 
nomṙij 
ρg 

T 
τ 
u 
Vp 

Wi 

W 
Yi 
Yi,∞ 

Y∞ 

Ŷ 
Ŷk 

Description 

reaction rate transform for all species 
reaction rate transform for gaseous species 
reaction rate transform for solid species 
entries of B, Bg 

Biot number for species i 
Biot number for all species 
concentration of i-th species 
effective scalar diffusion coefficient of species i 
catalyst particle pore diameter 
catalyst particle voidage 
Thiele moduli 
multistep effectiveness vector 
effectiveness factor for species i in particle p 
single-stage effectiveness factor 
Diagi(η(λi, Bi)) 
mass flux of species i inside superficial particle 
mass flux of species i to particle boundary 
mass transfer coefficient at particle boundary 
reaction rate constant (species i to species j) 
nondimensionalization length 
kth eigenvalue of B 
Diagk(λk) 
number of reacting gaseous species 
number of product species 
total number of species (N = Nr + Np) 
superficial particle domain 
Péclet number for i-th species 
deactivation due to coking 
ideal gas constant 
matrix of eigenvectors of B 
actual effective reaction rate (species i to j) 
nominal reaction rate 
gas density 
nondimensional time 
catalyst particle tortuosity 
fluid velocity 
volume of particle p 
molecular weight of i-th species 
mixture molecular weight 
mass fraction of species i 
mass fraction of species i in free stream 
vector of Yi,∞ 

ˆ = R−1Ytransformed mass fractions Y 
ˆkth entry of Y 

(a) List of symbols used in computation of effectiveness factors. 

Symbol 

Aij 
C 
dp 

Dg,i 
εg 

Eaij 
fdrag 
p 
F 
g 
G 
mp 
CAmp 
CKmp 
Mi 

µg 

Pg 

pg 

τg 

Tg 

T0 

ug 

ug@p 

Yg,i 

Description 

pre-exponential factor (Eq. (50)) 
force of collisions 
particle diameter 
gas-phase diffusivity of species i 
gaseous volume fraction 
activation energy (Eq. (50)) 
force of drag on particle 
force between particles and fluid 
acceleration due to gravity 
smoothing kernel 
particle mass 
mass of uncoked particle 
mass of coke on particle 
mass source/sink for species i 
dynamic viscosity 
static pressure 
pressure 
fluid stress tensor 
gas temperature 
reference temperature (Eq. (50)) 
fluid velocity 
u evaluated at particle p 
gas phase mass fraction of species i 

(b) List of symbols used in CFD–DEM (Sec. 4). 

Table 1: List of symbols. 
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� 

� 

133 

134 

135 

136 161 

142 

143 

144 

2.1. Reduction of the Multi-Stage Problem species. In a manner similar to Eq. (2) we define φ2 and131 159i 

132 
φ2 for strictly product species as well. ThenThe reaction rates coupling the systems in Eqs. (2) and (3) ij 160 

∈ RNr ×Nrare of the form −BgY where Bg contains en- � 1 
= δij φ2 

i − φij 
2 . Diag(Y )K1 − KT Ytries bij In what follows we will diagonalize ψ DBY ,= 

L2 
the matrix Bg , thus obtaining decoupled equations in an 
alternative coordinate system. Omitting hats for ease of where �� 

137 notation, Eq. (3) becomes, for i ∈ {1, 2, . . . , Nr}, 

−r2Yi + bi · Y = 0 in Ω̂ 

1 (7) 
rYi · n + Yi = Yi,∞ on ∂Ω̂ 

Bii 

138 where bi is the i-th row of the matrix Bg. Letting BgR = 
139 RΛ be an eigendecomposition of Bg where Λij = δij λi and 
140 Y = RŶ , where entries Ŷk of Ŷ  are functions of x, Eq. (7) 
141 becomes 

0 = −r2RŶ + Bg RŶ 

Bg ∈ RN×NrB = 
Bs 

has entries bij = φi 
2δij − φ2 

ij and D is the diagonal ma- 162 

¯trix with entries Di on the diagonal. (We use the notation 163 

Diag (am) to mean the M × M square matrix with en- 164m 
tries a1, a2, . . . , aM on the diagonal and zeros elsewhere.) 165 

The first Ng rows of B correspond to the consumption of 166 

gaseous reactants; let Bs ∈ RNp×Nr be the matrix con- 167 

taining rows Nr + 1 through N of B. The rates at which 168 

species are created in the catalyst particle are entries Mp 
169i 

of the vector Mi
p: 170 Z = −r2RŶ + RΛŶ ��� −Diag(Y )K1 + KT YM p = �ρgψ dV 

= R −r2Ŷ + ΛŶ . Ω 

1 
Z 

Z 
= �ρgDB Y dV (12) 

ΩL2Because R is invertible, 
1 

ˆ = �ρgDBR Ŷ dV. (13)−r2Ŷ 
k + λkYk = 0 (8) L2 

Ω 

for each k. Similarly, letting Bi be the matrix with entries 0TFor conservative reactions, 1T DB = RThe vector M p 

Ŷi 

. 
Biij = δij Bii, for the boundary conditions yields can be constructed entirely from the values dV for

Ω 
1 ≤ i ≤ Nr. For irreversible reactions, Bg is a lower tri-

Bi−1 rY · n + Y = Bi−1 r(RŶ ) · n + RŶ = Y∞ 
173 

angular matrix; the eigenvalues are then on the diagonal, 174 

and eigenvectors can be found by simple substitution. We 
145 where Y∞ is a vector with entries Yi,∞. Because R is linear 175 

will proceed to outline how this can be computed numeri-
146 operator and constant throughout the particle, 176 

cally (Sec. 2.2) and how these single-step solutions can be � �
found for a variety of shapes (Sec. 3). 

R−1Bi−1 ˆ + ˆ = R−1Y∞.R rY · n Y (9) 

147 From Eq. (9) we observe that diagonalization only truly 
148 decouples the equations if R−1Bi−1R is a diagonal matrix, 
149 which is only the case if the Biot number is the same for all 
150 species. A more thorough discussion of why this approach 
151 is not readily applicable to the case of differing Biot num-
152 bers is shown in Appendix A. From this point forward we 
153 will make the assumption that Biot numbers are the same 
154 for all species, allowing us to write Eq. (9) as 

1
(rŶk · n) + Ŷk = (R

−1Y∞)k. (10)
Bi 

155 To obtain formulas for effective reaction rates, first let 
156 K ∈ RNr ×N be the matrix consisting of rate constants 

2.2. Numerical Solutions 179 

Because we can construct effective reaction rates from 180 

the integrals of our new coordinates over the particle, we 181 

can turn our attention to computing these quickly. The 182 

approach taken here is to construct a table of reference 183 

solutions that can be interpolated to approximate the re- 184 

Ẑ(λ,Bi)quired quantities. Let represent a reference solu- 185 

tion corresponding to constants λ and Bi, i.e. 186 

Z(λ,Bi) Z(λ,Bi)−r2 ˆ + λ ̂  = 0 in Ω̂ (14a) 

Z(λ,Bi) Z(λ,Bi)1 r ̂  · n + ˆ = 1 on ∂Ω.ˆ (14b)
Bi 

First, observe that this is a linear partial differential equa- 187 

tion (PDE); if Ẑ(λ,Bi) satisfies Eq. (14) then⎤⎡ 
k11 k12 · · · k1N ⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

Z(λ,Bi)) = 0−r2(αẐ(λ,Bi)) + λ(α ˆ in Ω̂k21 k22 · · · k2N 
. . .. . . . . .. . . 

(15a)
K = . (11) 

1 
Z(λ,Bi)) = αr(αẐ(λ,Bi)) · n + (α ˆ on ∂Ω̂. (15b) 

kNr 1 kNr 2 · · · kNr N Bi 

Z(λk ,Bi)¯ In light of this, let Ŷ 
k = αk 

ˆ . Because Ŷ 
k satisfies 189 

157 We choose arbitrary Di =6 0 for species i > Nr in order 
Eq. (8) the desired PDE is satisfied in the interior of the 

158 to obtain a non-dimensional time for the strictly product 190 
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191 domain. To ensure the correct boundary condition we need 
192 to satisfy Eq. (10), thus 

Z(λk,Bi)1
(rŶk · n) + Ŷk = 

1
(r(αkẐ(λk ,Bi)) · n) + αk 

ˆ 
Bi Bi � � 

= αk 
1 r ̂  · n + ˆZ(λk ,Bi) Z(λk ,Bi) | 
Bi {z } 

1 

= (R−1Y∞)k. (16) 

193 Pointwise solutions are then X 
Ẑ(λk ,Bi)(x)Yi(x) = ri,p (R

−1Y∞)k (17)| {z }
k 

αk 

194 or in matrix form 

Z(λk ,Bi)(x)) α,Y (x) = R Diagk( ˆ (18) 

195 where αk is the k-th entry of α. For effectiveness factors 
ˆ

196 we need the integral of Yi over Ω; these are Z ZX 
Ẑ(λk,Bi) dVYi dV = ri,p αk 

ˆ ˆΩ Ω �k � 
= R Diagk (Vp η(λk, Bi)) R

−1Y∞ , (19)
i 

197 where Z 
1 

Ẑ(λk ,Bi) dVη(λk, Bi) = (20)
Vp Ω̂ 

198 are single stage effectiveness factors. Combining Eq. (13) 
199 with Eq. (19) yields 

Mp 1 � �
¯ = Diagi Di BR Diagk (η(λk, Bi)) R

−1 Y∞
�ρg Vp L2| {z } 

an N × Nr matrix that depends on T and ψ 

(21a)� � 
Diagi(D̄ 

i) RΛ 
= Diagk (η(λk, Bi)) R

−1Y∞,
L2 BsR 

(21b) 

¯where we note that the last line depends only on Di/L2 
200 , 
201 R, Λ, Bs, and the integrals of effectiveness factors. The 

¯ 
202 ‘diffusion coefficients’ Di (arbitrary constants for solids), 
203 matrix R, vector of eigenvalues, and matrix Bs comprise 
204 in total N + (N + 1) Nr scalars. 

Ẑ(λ,Bi)
205 There are no restrictions upon how or its in-
206 tegrals are computed for a given λ or domain, and differ-
207 ent approaches will be appropriate for different domains 
208 and for λ of different magnitudes. For example, many of 
209 the eigenvalues will be zero, in which case the solution is 
210 constant and no computation is required. Moreover, the 
211 intended quantity is not the pointwise solution but the in-
212 tegral of the solution (Eq. (19)); this sometimes leads to 
213 selection of a method different from the one that would 
214 typically be used for the pointwise solution. As an exam-
215 ple, separation of variables solutions (Sec. 3.1) have slow 
216 pointwise convergence when the domain has corners, but 
217 the convergence of the integral of the solution is largely 
218 unaffected. A more thorough discussion of methods and 
219 domains is presented in Sec. 3. 

2.3. Computation of Rates 220 

Computation of the multi-step effectiveness vector (or 221 

computed rate) is done in three steps: 222 

1. given B(T ), obtain the diagonalization (λ and R) 223 

2. invert R to obtain α = R−1Y∞ 224 

3. for each λk obtain the corresponding η(λk, Bi) 225 

Each of these steps may either be done online (i.e., for each 226 

required temperature and Biot number) or pre-computed 227 

(i.e., stored in a lookup table and looked up as needed). 228 

By caching the correct values, effectiveness factors for a 229 

given temperature and set of free stream concentrations 230 

can be found by a simple matrix multiplication. Many 231 

quantities, like multi-step effectiveness vectors (MEVs), 232 

can be computed using tables of these values. 233 

Recall � is the catalyst particle voidage, ρg is the case 234 

density, assumed to be the same inside and outside the 235 

particle, ψ is the deactivation due to coking, and Yi,∞ is 236 

the free stream mass fraction of the i-th species. At each 237 

point in the catalyst the i-th chemical is produced at a 238 

rate (mass per unit time) of 239 ⎛ ⎞ X X 
�ρg ⎝− ψkij Yi + ψkjiYj ⎠ 

j j 

which, when integrated over the volume of the catalyst 240 

particle Vp, yields change in mass of the i-th species due 241 

to particle p, which we will denote Mi
p , by 242 Z Z 

M p X X 
i = − ψkij Yi dV + ψkji Yj dV (22a)

�ρg ˆ ˆΩ Ωj jX X 
ηp ηp= − ψkij Vp i Yi,∞ + ψkjiVp j Yj,∞, (22b) 

j j 

where Z 243 

Yi,∞η
p =

1 
Yi dV. (23)i Vp Ω̂ 

(Note the components of the MEV ηp are distinct from 244i 
the single-stage effectiveness factors η(λk, Bi).) Eq. (22a) 245 

is preferred to Eq. (22b) because it recovers the correct 246 

reaction rate in the absence of some or all product species; 247 

the effectiveness factor is undefined in these cases. Fur- 248 

ther, it should be emphasized that, while the single-stage 249 

effectiveness factors η(λk, Bi) are bounded between zero 250 

and one, the multi-stage effectiveness factors ηp may ex- 251i 
ceed one, as intermediate species may be created within 252 

the particle and promptly consumed. Also observe 253 

MpL2 � � 
i = BȲ , (24)

iVp�ρg Di 
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254 so we have 

Mp 

=
1 
DRΛR−1RH(λ, Bi)R−1Y∞

Vp�ρg L2 

1 
= 
L2 
DRΛH(λ, Bi)R−1Y∞ (25a) ⎛ ⎞ � �⎜ ⎟⎜ 1 ⎟ 

= ⎜ DR ΛH(λ, Bi) R−1⎟ Y∞, (25b)⎝ L2 |{z}⎠| {z } G 
F| {z } 

E 

255 where H(λ, Bi) is the matrix with effectiveness factors 
256 η(λk, Bi) (Eq. (20)) on the diagonal, Λ is the matrix with 

¯ 
257 λi on the diagonal, and D is the matrix with Di on the 
258 diagonal. Recall the matrix B depends on the penalty to 
259 reaction rate due to accumulation of coke ψ multiplica-
260 tively, i.e. B = ψB0 where B0 is the (constant) matrix ob-
261 tained in the case ψ = 1. The eigenvalues λk then depend 
262 multiplicatively (i.e., λk = ψλ0 ) on ψ, but the eigendecom-k 
263 position does not. There are then two reasonable sets of 
264 lookup tables to create: one if the nominal reaction rates 
265 are constant throughout the simulation, and one if envi-
266 ronmental factors (e.g., accumulation of coke) effect the 
267 nominal reaction rates. In the case of constant reaction 
268 rates, store a table T 7→ E and compute 

Mp 

= EY∞. (26)
Vp�ρg 

269 If nominal reaction rates are modified by a factor ψ, store a 
270 table (λ, Bi) 7→ η(λ, Bi) and a table T 7→ (λ1, . . . , λN , F, G) 
271 to compute 

Mp 

= F Diagk (λkη(λk, Bi)) GY∞. (27)
Vp�ρg 

272 Because η(λk, Bi) = η(ψλ0 k, Bi) depends nonlinearly on ψ, 
273 we must either store the factorization information (as de-
274 scribed here) or store a two dimensional table (T, yCK ) 7→ 
275 E where yCK is the mass fraction of coke on the particle. 
276 An explicit algorithm by which the MEV may be ap-
277 proximated is as follows. 

278 Pre-processing: 
279 

< T (2) < T (I)280 1. Choose temperatures T (1) < · · · 
281 spanning the range that may appear in the sim-
282 ulation. 
283 2. For each T (i) compute the corresponding ma-
284 trix B(T (i)) and, per Eq. (19), 

Y (i) = R Diagk (Vp η(λk, Bi)) R
−1Y∞ (28) 

285 To compute reaction rates: Given a temperature T , 

286 1. Find i such that T (i) ≤ T ≤ T (i+1). 
T − T (i+1) 

287 2. Compute w = . 
T (i) − T (i+1) 

3. Approximate the MEV 288 

η ≈ wY (i) + (1 − w)Y (i+1). (29) 

Here we use a linear interpolation in temperature; more 289 

complex interpolations (e.g. [16]) may be used as well. 290 

Some irreversible reactions may result in complex eigen- 291 

values, requiring a two-dimensional interpolation to obtain 292 

single stage effectiveness factors; a thorough investigation 293 

of this is left for future research. 294 

In the remainder of this paper, after some brief notes 295 

about diagonalization of B, we will discuss methods for 296 

finding single-stage solutions as they relate to the present 297 

application (Sec. 3) and present a proof of concept for 298 

usage of these computations in a CFD–DEM simulation 299 

(Sec. 4). Further, the authors of this code make avail- 300 

able a library to assist in implementing these methods into 301 

reactor-scale codes.1 
302 

3. The Single-Stage Problem 303 

To complete the computation introduced in Sec. 2.1, 304 

single-stage effectiveness factors are required. Single-stage 305 

effectiveness factors are defined as 306 Z 
1 

η = Z dV, (30)
Vp Ω 

where Z solves 307 

−r2Z + a 2Z = 0 in Ω (31a) 

Bi−1 rZ · n + Z = 1 on ∂Ω (31b) 

where n is the outward normal and Ω is the (dimensional 308 

or nondimensional) domain in question. For reversible re- 309 

actions it is possible for eigenvalues of B to be complex; 310 

while that case is allowed in the diagonalizatio process, we 311 

will not discuss solutions to the single-stage problem in 312 

that case. 313 

The topic of the single-stage effectiveness factor (for 314 

a2 real) has been well-explored in the literature. However, 315 

we will briefly summarize some of the existing literature 316 

on this topic and comment upon the suitability of certain 317 

computation or estimation techniques for this particular 318 

purpose. The diagonalization process imposes no restric- 319 

tions on the method that may be used for computation of 320 

single-stage effectiveness factors, presuming the eigenval- 321 

ues of B remain real. The constraints that are important 322 

are numerical, both with regard to efficiency and mini- 323 

mization of error. 324 

A general discussion effectiveness factors as well as sim- 325 

ple expressions for spheres, slabs, and some other common 326 

shapes (Tbl. 2) can be found in standard texts (e.g. [18, 327 

1Code written in Python for building pre-computed lookup tables 
can be found at github.com/johnpwakefield/mevlib. 
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Sphere 
3 arp tanh(arp)

η = aBi−1 + 
arp arp − tanh(arp) 

Cylinder η = lim (AN + BK ) 
N,K→∞

NX 16 I1(pnrp)
AN = 

π2rppn(2n + 1)2 I0(pnrp)n=0 

K � �X 8 hp
BK = tanh qk

hpqkj2 2 
k=1 k s � �2

π(2n + 1) 
pn = a2 + 

hps 
j2 
kqk = a2 + 
r2 
p 

jk is the increasing sequence of zeros of J0 

Rectangular Prism 

� �X X 32 1 ` p,d
η = tanh βd,m,n

βd,m,nπ4` p,d (2m + 1)2(2n + 1)2 2 
d∈{x,y,z} m,n � �2X π(2m + 1) 

β2 2 = a +d,m,n ` p,d0 
d0 6=d 

General Geometries (Aris [17]) 

� � 
1 1 

η = coth 3Φ − 
Φ 3Φ � �2

Vp k 
Φ2 = 

Sp Deff 

� 

Table 2: Single-stage effectiveness factors η for a variety of shapes. 

328 19, 15, 13]). Effectiveness factors for shapes like cylin-
329 ders [8] or prisms can be found exactly through separation 
330 of variables; these are discussed further in Sec. 3.1. 
331 Some estimation techniques for general shapes also ex-
332 ist [17, 18, 20]. In particular, the approximation for spheri-
333 cal geometry with the proper nondimensionalization is of-
334 ten used regardless of geometry, with minimal error [21, 
335 22]. However, the propogation of these errors through the 
336 diagonalization process for coupled reactions has yet to be 
337 studied. Further discussion of general estimates for effec-
338 tiveness factors can be found in [21, 22, 23, 17, 19, 15, 18]. 
339 For the present application, fast and accurate evalua-
340 tions of effectiveness factors are required. Evaluation of an 
341 exact (potentially unclosed) form (e.g. from Sec. 3.1) may 
342 be extremely slow in practice. More general estimates may 
343 prove to be useful here, but further study of the propoga-
344 tion of the error in these estimates through the diagonal-
345 ization process is required. For the proof of concept that 
346 follows, simple lookup tables with interpolation are used. 

�−1 

Interpolation error is well understood, the time required 347 

to interpolate from a one dimensional table is negligible, 348 

and the required computation time to obtain single stage 349 

effectiveness factors is not incurred at runtime; the time 350 

required to compile a table ahead of time is negligible. 351 

3.1. Separation of Variables 352 

Separation of variables, sometimes referred to as ex- 353 

pansion in eigenfunctions, is a well-known technique by 354 

which many linear PDEs in some domains may be solved. 355 

A thorough treatment of this simple technique may be 356 

found in any standard PDE text, e.g. [24]. We will, how- 357 

ever, comment on the suitability of these solutions for the 358 

purpose of providing single-stage effectiveness factors in 359 

the present context, using the cylinder as an illustrative 360 

example. The separation of variables solution for Eq. (31) 361 

relies on well-known properties of Bessel functions [25, 26], 362 

was first presented in the context of chemical engineering 363 
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370 

371 

364 by Gunn [8], and has been commented on by later au-
365 thors [9]. This approach is difficult to modify for finite 
366 Biot number, so we have taken Bi−1 = 0 for this discus-
367 sion. 
368 The solution in the interior of the cylinder is given by 

Z(r, z) = Z1(r, z) + Z2(r, z) (32) 

369 where 

∞ � �X 4 π(2n + 1) I0 (υn r)
Z1(r, z) = sin z 

π(2n + 1) hp I0 (υn rp)n=0 
(33) 

with 
2υ2 = a + 

π

h2

2 

(2n + 1)2 
n 

p 

and �r � �� � �j hp 
2 
ka2 +cosh 

hundreds of thousands of particles in a complex simula- 402 

tion, but negligible in the context of a single computation 403 

or pre-computation of a table. 404 

4. Integration into Reactor Models 405 

We will now turn our attention to an CFD–DEM sim- 406 

ulation of an FCC unit using the kinetics from Xiong et al. 407 

[28]. For the present mechanism with particles of diameter 408 

dp = 210 µm the leading eigenvalue (with nondimensional- 409 

ization by the particle diameter) of λ1 = b11 ≈ 9.6331 cor- 410 

responds to a single-stage effectiveness factor of η(λ1, 0) ≈ 411 

0.6591; reaction rates computed with diffusion limitations 412 

differ significantly from those computed without in this 413 

case. Following Lattanzi et al. [12] we use the correlation 414 

of Sirkar [29] and obtain Biot numbers on the order of 500 415 

to 8000, depending on the species weight, justifying the use 416 

of the Bi → ∞ limiting case. Simulations are performed 417 

∞X z − 

hp 
2 
k 

jk r within NGA, a second-order, finite volume, variable den-J02 
p 2r rp�r �Z2(r, z) = 2 sity, low Mach number code [30, 31, 4]. A semi implicit

jkJ1(jk) 
, 

j 
r 

Crank–Nicholson scheme was used to achieve second order k=1 cosh a2 + 2 
p 2 

accuracy in time. The bounded quadratic upwind biased 421 

(34) interpolative convective scheme (BQUICK) [32] was used 422 

372 where jk are the increasing sequence of zeros of J1. The 
373 corresponding effectiveness factor is presented in Tbl. 2. 
374 For the present application the single stage effective-
375 ness factor must be evaluated once for every active species 
376 for every temperature present in the domain. The required 
377 frequency of evaluation makes non-closed forms like those 
378 obtained from separation of variables considerably expen-

sive. One approach to this problem is to determine 379 an 
380 exact or heuristic number of terms that must be evaluated 
381 to obtain the desired error. For example, the formula for 
382 the effectiveness factor in a cylinder (Tbl. 2) has two dis-
383 tinct parts, whose relative importance is highly dependent 
384 upon the aspect ratio γ (see Fig. 1). To utilize these esti-
385 mates without precompilation of tables, functions K(δ, γ) 
386 and N(δ, γ) such that 

|AN(δ,γ) − A∞ + BK(δ,γ) − B∞| < δ (35) 

387 and 
ιAN(δ, γ) + ιB K(δ, γ), (36) 

388 where ιA and ιB are the computational costs of comput-
389 ing a single term in AN and BK respectively would need 
390 to be found. This is essentially the problem addressed 
391 in [23, 9]. Another technique not explored in the litera-
392 ture is to utilize series convergence acceleration techniques 
393 (e.g. Aitken acceleration, see [27] for an overview) in the 
394 context of these series. Figure 2 shows convergence of sums 
395 AN and BK (see Tbl. 2) as a function of computational 
396 ‘cost units.’ One ‘cost unit’ is approximately the the time 
397 it takes to perform one floating point multiplication; this 
398 accurately weights the high cost of evaluating Bessel func-
399 tions. Ultimately, the computational time taken to esti-
400 mate the single-stage effectiveness factor is unacceptable 
401 for a computation that must be performed separately for 

for advancement of scalars (e.g., mass fractions). In this 423 

section we will describe how heterogeneous chemistry with 424 

rates computed per Sec. 2.1 may be integrated into such a 425 

code. This both provides a proof of concept for the present 426 

approach (and by extension [12]) as well as an guide for 427 

future implementations of similar rate computations. 428 

Though the catalyst particle contains a mixture of solid 429 

catalyst and gas, in the description that follows we will 430 

treat the region containing the catalyst particle as solid; 431 

we are operating under the assumption that the pores are 432 

small enough that flow through them is negligible com- 433 

pared to the fluid outside the catalyst. For chemistry, it 434 

is assumed the concentration gradient inside the catalyst 435 

particle does not deviate significantly from the steady state 436 

solution at any given time, i.e. any change of the bound- 437 

ary condition results in a near instantaneous adaptation 438 

of the interior to the corresponding steady state solution. 439 

This avoids the need for a mass balance between the cat- 440 

alyst pores and the surrounding fluid (e.g., see [7, 33]). 441 

For this reason, the amount of any particular gas-phase 442 

reactant inside the catalyst particle is determined by the 443 

surrounding flow and the steady-state solution, and only 444 

the reaction rate is required. For other models of this type 445 

see [3, 34, 5]. 446 

4.1. Governing Equations 447 

In the gaseous phase (outside the superficial particle 448 

volume) conservation of mass for each species is given by 449 

∂ 
(εgρg Yg,i)+r·(εg ρgYg,iug) = εg r·(ρgDg,irYg,i)+Mi,

∂t 
(37) 

where ρg is the gas density, εg is the gas volume frac- 450 

tion, Yg,i is the mass fraction in the gaseous phase of the 451 
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2(a) Effectiveness factor η as a function of Thiele modulus a (equivalent (b) Effectiveness factor and constituent parts AN and BK (see Tbl. 2) as 
to eigenvalues in the multi-step case) and aspect ratio. a function of aspect ratio. 

Figure 1: Effectiveness factor in a cylinder as a function of aspect ratio. 

Table 3: Species and Catalyst Parameters 

(a) Molecular weights of lump species. (b) Particle parameters need to compute diffusion co-
efficients per Eq. (5). 

Species Mol. Weight [g · mol−1] 

Feed Oil (S) 444.0 
Diesel (D) 230.0 
Gasoline (G) 115.0 
Liquid Petroleum Gas (LP G) 52.0 
Dry Gas (DR) 16.0 
Coke (CK ) 400.0 

452 i-th species, ug is the gas phase velocity, Dg,i is the gas 
453 phase diffusivity of the i-th species, and Mi is the chemi-
454 cal source term for the i-th species (see Table 5). Details 
455 on the formulation of Eq. (37) can be found in [31]. Be-
456 cause we are operating in the CFD–DEM framework, Mi 

457 is ultimately obtained from projecting the source terms for 
458 each particle Mp (Eqs. (22), (26), (27)). These equationsi 
459 can be summed to obtain total mass conservation X∂ 

(εgρg) + r · (εgρg ug ) = Mj . (38)
∂t 

j 

460 In the absence of mass transfer from the gas phase to the 
461 solid phase the right-hand side of Eq. (38) is zero. If coke 
462 is generated, then X 

Mj = −MCK. (39) 
j 

463 Similarly, conservation of momentum is given by 

∂ 
(εgρg ug )+r·(εgρgugug) = εg r·τg +F +εg ρgg, (40)

∂t 

where464 � � 
2T

τg = −pgI + µg rug + (rug ) − (r · ug ) I (41)
3 

Pore Diameter (Dpore) 0.002 
Voidage (�) 0.319 
Tortuosity (τ ) 7.0 

is the stress tensor, pg is the pressure, µg is the dynamic 465 

viscosity, I is the identity tensor, F are forces between the 466 

particles and the fluid, and g is acceleration due to gravity. 467 

Viscosity µg is held constant (Table 5). We employ the 468 

equation of state for an ideal gas 469 

ρg
Pg = RTg , (42)

W 

where Pg is the static pressure, W is the mixture molec-P 470 

ular weight (W −1 = j Yj /Wj ) and R is the ideal gas 471 

constant. The molecular weights used for the demonstra- 472 

tions in this section can be found in Table 3a. 473 

Mass source terms are given by Eqs. (22a) and (22b). 474 

The free stream mass fractions are given by the mass frac- 475 

tions in the fluid phase interpolated at the particle location 476 

Y∞ = . 477Y | For species other than coke, mass exchange xp 

is projected onto the Eulerian mesh (Eq. (47)). For coke, 478 

this remains the correct formula for generated mass, but 479 

this mass stays on the particle, making the mass of the 480 

particle the sum of the catalyst mass and the mass of the 481 

coke 482 

CA CK mp = m + m . (43)p p 

CAThe mass of the catalyst mp is constant, but the mass of 483 
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Figure 2: Convergence of the single-stage effectiveness factor in a cylinder. 

484 coke changes per 

CKdmp 
= Mp (44)CK. dt 

485 The motion of the p-th particle is governed by 

dxp 
= up

dt 
dup 

+ fdrag dmp
mp = Vpr · τg| + up + mpg + Cpxpdt dt 

(45) 
486 where 

fdrag �g 
p = mp (ug@p − up) F (�g, Rep), (46)

τp 

487 and C is the force of collisions. In the expression above, 
488 Rep = �gρg |ug@p − up| dp/µg , where dp is the particle di-
489 ameter and ug@p is the gas velocity evaluated at the par-
490 ticle position. For the proof of concept presented here, the 
491 particles are treated as spheres to make use of standard 
492 models for drag and collisions. For non-spherical parti-
493 cles, development of accurate approximations to drag re-
494 main an active area of research [35, 36, 37]. Here, the 
495 drag correlation of Tenneti et al. [38], valid for spheres at 
496 finite volume fraction and Reynolds number, is used. The 
497 force of collisions C are modeled by the soft-sphere model 
498 of Cundall and Strack [39] with coefficient of restitution 
499 e = 0.8. At present, heat transfer between the phases is 
500 ignored and the temperature is held constant at 600 ◦C. 
501 Because this is a proof of concept for the general method 
502 presented above, the interpolation from a table of relevant 
503 temperatures is conducted nonetheless. 

Information from particle p to the fluid mesh, namely 504 

the rate of mass accumulation/destruction of species i, 505 

Mp 
506i , and the force, are projected onto the fluid mesh by 

NpX 
Mi(x) = G (|x − xp|) Mp (47)i 

p=1 

and 507 

Np � �X 
fdrag dmpF(x) = G (|x − xp|) + up , (48)p dt 

p=1 

respectively, where G is the smoothing Kernel taken to be 508 

Gaussian with a characteristic size of 7dp. Further details 509 

can be found in Capecelatro and Desjardins [31]. To sum- 510 

marize, single stage effectiveness factors (Sec. 3) are used 511 

in Eq. (25b) to compute effective reaction rates (Eq. (21)) 512 

by 513 

Mp = EY∞ (49a) 

= F Diagk (λkη(λk, Bi)) GY∞, (49b) 

where the former (Eq. (49a)) is used when deactivation 514 

due to coking is not modeled and the latter (Eq. (49b)) is 515 

used when it is. These are then, for CFD–DEM, projected 516 

onto the computational mesh via Eq. (47). 517 

4.2. Reaction Mechanism 518 

Figure 3 depicts the reaction mechanism considered in 519 

the present study proposed by [28] and used in [12]. Reac- 520 

tion parameters are shown in Tables 3 and 4. Each reaction 521 
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Table 4: Reaction coefficients (see Fig. 3). All reactions are at reference temperature 773K. 

Reaction Pre-Exponential Factor (Aij ) [s−1] Activation Energy (Eaij ) [kJ · mol−1] 

S → D (k12) 1.413 47.6 
S → G (k13) 4.337 43.4 
S → LP G (k14) 1.163 38.5 
S → DR (k15) 0.114 30.2 
S → CK (k16) 0.386 30.0 
D → G (k23) 0.229 54.1 
D → LP G (k24) 0.161 62.9 
D → DR (k25) 0.041 66.7 
D → CK (k26) 0.137 65.0 
G → LP G (k34) 0.128 80.5 
G → DR (k35) 0.030 85.2 
G → CK (k36) 0.103 77.3 

S 0 k12 k13 k14 k15 k16 

0 0 k23 k24 k25 k26 

0 0 0 k34 k35 k36 

0 0 0 0 0 0 
0 0 0 0 0 0 

S 

Ξ = 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 

D 
G 

LP G 
. 

rate constant is of the form �� �� 
Eaij 1 1 

kij = Aij exp − − , (50)
R Tg T0 

where Aij is a pre-exponential factor, Eaij is the activation 523 

energy, R is the ideal gas constant, and T0 = 773 K is 524 

the reference temperature. For reactions that do not take 525 

place, Aij = 0. The matrix K becomes 526 

S D G LPG DR DK⎡ ⎤ 

k12 k13 k14 k15 k16 

D 

k24k25 

k36 

k23 

G 

k35 k34 

LP G 

DR 

CK 

Figure 3: A schematic of the reaction mechanism originally from [28] 

k26 

DR 

0 0 0 0 0 0 CK 

4.3. Particle in a Box 527 

Before proceeding to CFD–DEM, we demonstrate the 528 

framework on an ODE model. Consider a case in which a 529 

single catalyst particle of diameter 400 µm is placed inside 530 

a small, periodic domain with feed oil (S). Here ‘small’ 531 

means that the time required for the concentration outside 532 

the superficial particle to become uniform is negligible. 533 

We would in this case expect over time to be left with 534 

liquid petroleum gas (LP G), dry gas (DR), and coke (CK ). 535 

If we further assume that the gas phase is fully mixed, 536 

and used in [12]. i.e. the mass fractions of each of the preceding species is 
constant in the gas phase, then this becomes a simple ODE 
that we can use to illustrate the chemistry model described 
above without the complications of fluid flow around the 
particles. This is in essence a zero dimensional model; the 
reaction rates discussed here may be used for these models 
as well. 
The domain, denoted by V , is an L3 box with initial 

mass fractions 

537 

538 

539 

540 

541 

542 

543 

544 

545 

∞ , Y LP G (Y S 
∞, Y D 

∞ , Y G , Y DR ) = (0.80, 0.00, 0.00, 0.00, 0.00).∞ ∞ 
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Table 5: Parameters for the fluidized bed test case. 

Domain Dimensions 30 mm × 15 mm 
Eulerian Mesh 768 × 384 
Particle Diameter 210 µm 
Number of Particles 212552 
Inlet Velocity −10.1434 m · s
Particle Voidage (�) 0.319 
Particle Material Density −31160 kg · m
Force of Gravity (g) −29.81 m · s
Temperature 
Dynamic Viscosity (µg) 

600 K 
−23.1462 × 10−5 N · s · m

Species Diffusivity (Dg,i) 2 −14.4946 × 10−5 m · s

Figure 4: Species mass as a function of time computed with catalyst 
deactivation from accumulation of coke as approximated by the ODE 
model (Eq. (52)). 

546 Under the perfect mixing assumption, the mean gaseous 
547 mass fraction in the domain is the same as the mass frac-
548 tion at the boundary of the particle, so Z 

L3Yi,∞ = Yg,i dV. (51) 
V 

549 Using Eqs. (22) we can then write an ODE for the (homo-
550 geneous) gaseous volume fractions inside this box as Z Z 

d 
εgρgYi,∞ =

d 
εgρg Yg,i dV = Mi dV = Mi

p . 
dt dt V V 

(52) 
551 Eq. (26) or (27) can be used to evaluate the right-hand 
552 side. Note that, because coke is produced and remains 
553 on the particle, the gas density ρg is a dynamic quantity. 
554 Results of the resulting simulation with catalyst deactiva-
555 tion due to coking is shown in Fig. 4. As expected, the 
556 three reacting species S, G, and DR are consumed over 
557 time, leaving a distribution of D, LP G, and CK over long 
558 enough timescales. Because the total amount of reactants 
559 are limited, the influence of coke accumulation in this sce-
560 nario are small. 

561 4.4. Fluidized Bed 

562 We will now turn our attention to a two-dimensional 
563 CFD–DEM simulation of a fluidized bed reactor. The sim-
564 ulations are based on the cases in [40], but with catalyst 
565 properties and kinetics to match [12, 28]. The fluidized 
566 bed has a width of 0.15m and a height of 0.3 m; it is 
567 approximated by a 384 × 768 mesh. The domain con-
568 tains 212552 spherical particles with a diameter of 210 µm, 
569 material density of 1160 kg · m−3 , and internal voidage of 
570 � ≈ 0.319 (see Tbl. 5). Particles are held in a plane, but 
571 a domain thickness of 300 µm was used for volume frac-
572 tion computations [41]. The inflow velocity was chosen to 

be 0.1434 m · s−1 , in the range of 7-12 times the minimum 573 

fluidization velocity. The inflow gas contains only feed oil, 574 

with component mass fractions 575 

(Y in, YD 
in, YG 

in, Y in 
DR) = (0.04, 0.00, 0.00, 0.00, 0.00).S LPG, Y in 

Coke (CK) does accumulate on the particles and the mass 576 

of the particles does change as a result, but the accumu- 577 

lation is not significant over the timescales considered. 578 

Figure 5 depicts a fully evolved state (t = 5.4 s). First, 579 

significant differences in mass conversion exist at differ- 580 

ent points across the width of the bed, and these effects 581 

can be seen in the flow downstream of the top of the bed. 582 

This strongly suggests that the bubbling structure of the 583 

bed influences reaction rates in a manner not captured by 584 

models compartmentalized in only the vertical direction. 585 

Quantitative agreement of models with experimental flu- 586 

idized bed reactors will require not only accurate reaction 587 

rates in the vicinity of individual particles, but also model- 588 

ing of the fluidized bed within which those particles exist. 589 

It is likely that, even in the absence of quantitative accu- 590 

racy, models of this type can be qualitatively useful in the 591 

design of efficient fluidized bed reactors. 592 

The breakdown of average time spent in each routine 593 

during a single timestep of the CFD–DEM simulation is 594 

given in Fig. 6. The majority of the time is spent solving 595 

the pressure Poisson equation to enforce continuity (Eq. (38)).596 

We briefly note that the pressure Poisson equation was 597 

solved via an efficient multigrid method, and other solu- 598 

tion procedures are unlikely to result in significantly re- 599 

duced time. The particle update (Eq. (45)) contributes to 600 

approximately 30% of the time, with the majority spent 601 

in computing collisions. Here, collisions are solved us- 602 

ing nearest-neighbor detection that scales as O (Np log Np) 603 

where Np the number of particles. Most importantly, the 604 

computation of reaction rates only contributes to ∼ 2% 605 

of the total time due to the use of efficient lookup tables. 606 

Thus, the proposed framework allows for intraparticle dy- 607 

namics to be captured in a reactor-scale model at negligible 608 

cost. 609 
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(c) Liquefied Petroleum Gas (LP G) concentra-
(a) Particle positions (teal) and magnitude of (b) Feed Oil (S) concentration (white/green) tion (purple/white) with white contours at �f = 
fluid velocity (red/white). with white contours at �f = 0.7. 0.7. 

Figure 5: A fully evolved state of the fluidized bed test case. 

610 5. Conclusions and Areas for Future Research The limitations of this approach lead directly to av- 629 

enues for future work. The ostensible goal of the present 630 

This work presents a general framework for modeling 
631 

611 work is to assist in design of particle and reactor geometry 
of first order heterogeneous chemical reactions in porous 

632 
612 taking into account the dynamics of the reactor (i.e., mod-

particles. Open source code is provided that generates 
633 

613 els including particles moving within a fluid rather than 
pre-computed lookup tables for efficient implementation 

634 
614 a one dimensional model of a bed of particles). At the 

in CFD–DEM. The proposed methodology is built under 
635 

615 desired scale, resolving the interior of the particle is im-
the assumptions that the interior can be described with 

636 
616 practical, but there may be better simplified models for 

constant diffusion coefficients, the Biot number describing 
637 

617 reaction rates within a single particle. 
the boundary condition does not vary significantly between 

638 
618 Efficient methods for solving single-stage problems in 

species, and the intraparticle dynamics maintain a quasi-
639 

619 the presence of small Biot numbers also remain an area 
620 steady state. The constraints on chemistry are clearly 

640for future research. Reversible reactions may introduce 
621 separate from constraints on geometry, and a computa-

641complex eigenvalues and, while the diagonalization is still 
tionally efficient scheme for approximating rates in CFD 

642 
622 valid, the single-stage problem becomes complex, requir-

simulations is obtained by decomposing the problem into 
643 

623 ing different numerical or analytical methods for comput-
decoupled subproblems. Single stage effectiveness factors 

644 
624 ing integrals of solutions. Further, should interpolation be 

for a variety of common catalyst shapes are summarized 
645 

625 used in this case, the validity of a two dimensional inter-
(Tbl. 2). The available code and estimates should acceler-

646 
626 polation in this context would need to be explored. 

ate the introduction of this functionality into other CFD 
647 

627 The model for coking (or other environmental penalties 
628 codes by providing pre-processing steps. 
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Other
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Figure 6: Distribution of time spent computing a single timestep 
of the CFD–DEM simulations with the parameters in Table 5. The 
subject of the present work falls within the ‘Reaction Rates’ category. 
‘Particles’ consists of drag computations, projection of quantities to 
and from the mesh, and resolving particle collisions. 

648 expressed through ψ) are assumed to be uniform through-
649 out the particle. Exact or approximate site tracking re-
650 mains an area for future research. Practical models for 
651 inhomogeneous deactivation within catalyst particles in 
652 the context of simulations of many particles will require 
653 reduced order representations of historical reaction sites, 
654 and it is at this point unclear what a practical representa-
655 tion of these distributions would be. 
656 The restrictions on types of chemical reactions are sig-
657 nificant; the requirement of first order kinetics is particu-
658 larly restrictive. For the diagonalization proposed in [12] 
659 to be possible, Eq. (2) must be linear in mass fraction (or 
660 equivalently, concentration). A violation of this assump-
661 tion would either require discovery of an equivalent tensor 
662 decomposition for polynomial dependence (e.g. second or-
663 der reactions) upon mass fraction or a clever nonlinear 
664 decoupling technique in the general case. 
665 The boundary conditions for reacting particles remains 
666 an important area of research more generally. The exterior 
667 of the catalyst particle is clearly more available than the 
668 porous interior; it is possible the integral of the bulk near 
669 the superficial boundary of the particle is not the appropri-
670 ate estimate. Mass transport at the superficial boundary 
671 of the reacting particle is affected by the aforementioned 
672 geometry problems, the fluid boundary layer, the differ-
673 ence in (effective) diffusion at the boundary, the frequent 
674 proximity of other catalyst particles in the intended appli-
675 cation, and the precise location at which the ‘free stream’ 
676 boundary values are estimated. There is not at present 
677 sufficient models for the interplay of these effects. 
678 This generalized approach for quickly computing multi-

stage reaction rates provides a framework for applications 679 

to other catalysis and pyrolysis processes (e.g. [42]), ad- 680 

sorption of CO2 [43, 2] or SO2 [44], among others. Ap- 681 

plying this method to another application only requires 682 

computing the matrix B from reaction rates, determining 683 

the regimes of the eigenvalues of this matrix, and solving 684 

the single-stage problem for these eigenvalues. Though 685 

the single-stage problem may prove difficult in some of 686 

those cases (e.g. in the case of complex eigenvalues), stan- 687 

dard methods for approaching these problems exist, and 688 

the computation of those solutions can be separated from 689 

the online computational cost. For the case of real eigen- 690 

values (e.g. in the case of irreversible reactions), general 691 

estimates have been presented that are independent of ge- 692 

ometry, providing an alternative to a second interpolation. 693 

Computationally feasible corrections of reaction rates due 694 

to intraparticle diffusion limitations both in catalysis and 695 

other applications has the potential to improve accuracy 696 

of small-scale and reactor-scale simulations across concen- 697 

tration, temperature, and particle size/shape regimes. 698 
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875 Appendix A. Differing Biot Numbers 

876 One of the limitations of the present approach is the in-
877 ability to accurately handle different Biot numbers across 
878 species. In this section we will discuss why it is difficult (or 
879 impossible) to use this approach with Biot numbers that 
880 vary across species; a linear decoupling of the type dis-
881 cussed in Sec. 2.1 may not be possible in this case. Begin 
882 by taking the approach of Sec. 2.2 from Eq. (6) without 
883 the assumption that Biot numbers are equal for all species. 
884 For the type of method proposed here, Ŷ 

k must be written 
885 as some linear combination of reference solutions, each of 
886 which must be a solution to Eq. (8) for λk. The equation X 

Z(λk ,bj )Ŷk = αk,j ˆ (A.1) 
j 

887 then needs to satisfy Eq. (6). For a representation of this 
888 form to exist, it needs to be possible to find coefficients 
889 αj,k such that the left side of Eq. (6) is constant on the 
890 boundary. Here, instead of letting Bi be a scalar, let Bi 
891 be the matrix with Biot numbers for each species Bi1, Bi2, 
892 . . . , BiNr on the diagonal (Bi = Diagi(Bii)). First, observe 

(Bi−1(rY · n) + RY )i 

= (Bi−1R−1(rŶ · n) + R−1Ŷ )i 

ˆ=
1 X 

li,k(rŶ 
k · n) + 

X 
li,kYk

Bii 
k k X X1 

Z(λk,bj ) Ẑ(λk ,bj )= li,kαk,j (r ̂  · n) + li,kαk,j 
Bii 

k,j k,j X � � Xbj 
Z(λk ,bj ) Ẑ(λk ,bj )= li,kαk,j 1 − ˆ + li,kαk,j 

Bii
k,j k,j � �X Xbj bj 

Ẑ(λk ,bj )= li,kαk,j + li,kαk,j 1 − . 
Bii Bii

k,j k,j | {z } | {z } 
Si Ti 

893 For this quantity to be constant, we must find a sequence 
894 (bj ) such that Si and Ti are constant. As long as Si con-
895 verges (as is the case when it is a finite sum), it is constant. 
896 Ti is made constant in the case of all equal Biot numbers 
897 by taking bj = Bij so that Ti = 0. In the case of non-equal 
898 Biot numbers, it is not clear how αk,j and bj may be cho-
899 sen, nor if it is possible for them to be chosen. In the case 
900 in which (bj ) is an infinite sequence, this truncation will 
901 introduce an additional source of error. 
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