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Abstract

We present a methodology for modeling multi-step reaction rates in porous catalyst particles for use in CFD-DEM and
two fluid models. Single-step effectiveness factors based on a Thiele modulus, while useful, cannot accurately capture the
cascading reaction systems common in high temperature vapor-phase chemical reactors like fluidized catalytic cracking
units and catalytic biomass fast pyrolysis systems. Instead, multi-step effectiveness vectors derived from steady-state
solutions to the governing reaction-diffusion equations are needed. Solutions for various catalyst shapes are presented,
including spheres, cylinders, and prisms. Computational challenges inherent in repeated evaluation of reaction rates with
diffusion limitations are discussed, and an efficient implementation based on pre-computed lookup tables is proposed and
demonstrated on a simulation of a fluidized bed reactor. Open-source code is provided for the compilation of reaction

rate tables for use in ODE, DEM, and two-fluid models.

Keywords: intraparticle diffusion, effectiveness factor, lumped kinetics, catalysis, non-spherical

1. Introduction

Many industrial processes involve heterogeneous chem-
ical reactions between a fluid and a solid surface. Of par-
ticular interest are fluidized bed reactors, in which large
numbers of small catalyst or fuel particles are present.
These particles are typically porous to increase catalyst
availability. However, accurately modeling reaction rates
within porous catalysts is challenging. When consider-
ing reacting systems at industrial scale, resolution at the
molecular or pore scale is not computationally feasible. In-
stead, mean (i.e. ‘effective’) reaction rates must be used.

Previous works have modeled reactors with gas-solid
interactions consisting of a single reaction limited by diffu-
sion within particles [1, 2, 3] and multiple reactions with-
out diffusion limitations [4, 5, 6, 7]. For a single-stage
reaction, an effectiveness factor is defined as the ratio of
actual reaction rate integrated over the particle to the reac-
tion rate without diffusion limitations integrated over the
particle; fQ 7 dV = 9P V, 7" where 7"°™ is the reaction
rate without diffusion limitations, 7 is the actual reaction
rate inside the particle, 2 is the set of points within the
boundary of the superficial particle, and V,, is the volume
of the particle. Solutions to scalar diffusion limited pro-
cesses inside non-spherical geometries and resulting effec-
tiveness factors have also been explored previously [8, 9].
Zhu et al. [10] showed accurate effective multi-stage reac-
tion rates are important for matching experimental data.

*Corresponding author
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Wei [11] proposed diagonalization for decoupling sys-
tems of irreversible first-order reactions. This was revis-
ited by Lattanzi et al. [12], who introduced the multi-
stage effectiveness vector (MEV), a vector nP of effective-
ness factors 7} such that [, 7; dV = nf V,7"™ where
745 is the observed rate of mass conversion from species %
to species j and 7}”™ is the same rate without diffusion
limitations. The dependence of the factor n? only upon
the source species is a consequence of the first order as-
sumption. The present work discusses the limitations of
this approach with respect to Biot number, the possible
extensions of this approach, and, most importantly, the
practicality of utlizing this approach to estimate rate con-
stants in simulations of fluidized bed reactors under the
pseudo-steady state assumption.

We present a general ‘recipe’ for the computation of
first order multistage reactions by reducing them to com-
binations of single-stage reactions (Sec. 2.1). We extend
the work of Wei [11] and Lattanzi et al. [12] to enable
practical implementation in reactor-scale codes. Catalyst
geometry may introduce complexity into the estimation
of single-stage reaction rates, but does not affect the con-
struction of multi-stage rates from single-stage rates. Sec-
tion 3 discusses the efficiency of some effectiveness fac-
tor forms in the context of computational fluid dynamics
(CFD) discrete element modeling (DEM) in which enor-
mous numbers of reaction rate evaluations are required.
Efficient calculation of corrected reaction rates based upon
pre-compiled tables is proposed (Sec. 2.2) and utilized in
a proof of concept CFD-DEM computation of catalysis
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in a fluidized bed (Sec. 4). The pre-processing compu-
tations for arbitrary first-order chemistry are open-source
and made available to aid in the implementation of the ap-
proach described here to reactor-scale simulation method-
ologies like CFD-DEM and two-fluid models.

The approach presented herein applies to any number
of reaction stages and allows for decreased reaction rates
due to environmental factors, e.g. coking on catalyst par-
ticles in fluidized catalytic cracking (FCC). Though the
present discussion has general applicability to coupled and
reversible kinetics, the primary focus of this work pertains
to modeling of fluidized catalytic systems (e.g., [1, 7]) in
which reactions are irreversible. However, reversible reac-
tions can be modeled using this framework under certain
conditions. The primary limitation of this approach is a
harsh restriction on applicable boundary conditions (Ap-
pendix A).

2. The Multistage Problem

As a fundamental modeling assumption we split the
domain into two parts: one inside the superficial volume
of the catalyst particle and one entirely within the fluid
phase. Points ‘inside the catalyst’ are points at which
advection becomes negligible due to the small dimension
of the pores. In this section we will focus on the regions
‘inside’ the catalyst particles. Careful consideration of the
outer surface of the superficial pellet and models of the
fluid boundary layer remain an area for future research.
Let N, be the number of gaseous reactants, IV, be the
number of (not necessarily gaseous) products, and N =
N; + N, be the total number of species. Index reacting
speciessuch that 1 <4 < N, and N,+1=N-N, <i< N
are strictly products (i.e., not a reactant in any reaction).
The rate constant for conversion of species ¢ to species j
is denoted k;;. The constraint that solid species may not
react results in k;; = O for all N, +1 = N—-N,+1 <i < N.

Gaseous species within the porous catalyst are gov-
erned by

A(epyYi)

ot +V - (uep,Y;)

=V - (ep,D;VY;)
—_——

J;

N
_ Z'I/}kljﬁpgm 1)
2 Xy

Tij

N
+) YkjiepgY;
where 1 < i < N, p, is the gas phase density, € is the
particle voidage, Y; is the mass fraction of species i, D;
is the (effective) diffusion coefficient of the i-th species,
and 1 is deactivation factor due to other phenomena (e.g.,
coking).

Let D; be the effective diffusivity of species i within the
particle, L be a characteristic length scale, T be a a charac-
teristic time, and let T¢ = ¢ to obtain nondimensionalized
equations

100

101

102

103

L\ 9(pyYi) S (e (s % 5 DN
(TQ>&?-u@kumm»—V(%mvmn
ZN: k”LQ
7

¢12j

(2)
where the Péclet number is Pe; = uL/(TD;) and nondi-
mensional fluid quantities are @ = w/u, p, = €py/€p,, and
D, =D, /ﬁi. Assume @ and D; are chosen such that @
and D; are order one. If we take the convective term to be
small, D; is constant in space (D; = 1), density variations
are small throughout the particle (p, ~ 1), and consider
the steady state problem we obtain

N
—V?Y; + ¢7Y; — Z@ZJYJ =0. (3)
j=1

The concentration of the i-th species is C; = epyYi/W;,
allowing us to rewrite Eq. (3) in terms of concentration as

2 WJ
’LjW

N
—V2C; + ¢iCi = Y &

Jj=1

C; =0, (4)

where we have assumed that deviations in ep, are negligi-
ble throughout the particle. Effective diffusion within the
particle will be modeled by Knudsen diffusion [13, 14]

D /8RT €
D, = = —. 5
3 Wi T (5)

We will solve in terms of mass fraction (Eq. (3)) as it more
obviously conserves mass and is consistent with typical
implementatons in CFD codes.

For the boundary condition, we assume Fick’s law holds
at the interior edge of the catalyst particle, yielding the
mass flux ji" = —D;(ep,VY;). The mass flux from the
solid to the free stream can be approximated by &' - n =
€pg ke (Y; — Y, o) where k. is a mass transfer coefficient,
Y; « is the free stream concentration of the i-th species,
and n is a unit normal vector [15]. The resulting boundary

condition is obtained by setting jint = jo&xt,

LY n 4 Y = Vi 6
Bi = k.L/D; is the mass transfer Biot number. It will
ultimately be required Bi = Bi; = Biy = -+ = Bin,; the

reason for this condition is discussed in Appendix A.
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Symbol ‘ Description

B reaction rate transform for all species
B, reaction rate transform for gaseous species
B reaction rate transform for solid species
bi; entries of B, By
Bi; Biot number for species 4
Bi Biot number for all species
C; concentration of i-th species
D; effective scalar diffusion coefficient of species ¢
Dpore catalyst particle pore diameter
€ catalyst particle voidage
#? and qﬁfj Thiele moduli
n? multistep effectiveness vector
nt effectiveness factor for species 4 in particle p
n(A, Bi) single-stage effectiveness factor
H(A,Bi) | Diag,(n(\;, Bi))
jint mass flux of species ¢ inside superficial particle
et mass flux of species ¢ to particle boundary
ke mass transfer coefficient at particle boundary Symbol ‘ Description
ki react%on ra.te Co.nsta.mt (species i to species j) A pre-exponential factor (Eq. (50))
L nondimensionalization length C I t collisi
Ak kth eigenvalue of B Orc? © C(,) 151015
A Diag,(A\r) dp particle dlametgr ' o
N, number of reacting gaseous species Dy,i gas-phase diffusivity of species i
N, number of product species Eg gaseous volume fraction
N total number of species (N = N, + N,,) Ea; activation energy (Eq. (50))
Q superficial particle domain fgrag force of drag on partic]e
Pe; Péclet number for i-th species F force between particles and fluid
Y Fleactlvatlon due to coking g acceleration due to gravity
R ideal gas constant .
R matrix of eigenvectors of B g smo?thlng kernel
Tij actual effective reaction rate (species i to j) meA particle mass ]
i nominal reaction rate m% « mass of uncoked par‘glcle
g gas density m, mass of coke on particle
T nondimensional time M; mass source/sink for species 4
T catalyst particle tortuosity g dynamic viscosity
u fluid velocity ) P, static pressure
Vi volume of pa?tlcle P . Py pressure
W; molecular weight of i-th species .
. . T, fluid stress tensor
w mixture molecular weight g
Y; mass fraction of species i 1 gas temperature
Y o mass fraction of species 7 in free stream To reference temperature (Eq. (50))
Y. vector of Y;,oo Ug fluid VelOCity
Y transformed mass fractions ¥ = R~'Y Ugap | w evaluated at particle p
Vi kth entry of ¥ Yy gas phase mass fraction of species @
(a) List of symbols used in computation of effectiveness factors. (b) List of symbols used in CFD-DEM (Sec. 4).

Table 1: List of symbols.
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2.1. Reduction of the Multi-Stage Problem

The reaction rates coupling the systems in Egs. (2) and (3)

are of the form —B,Y where B, € RN*Nr contains en-
tries b;; = 0y (bf - % In what follows we will diagonalize
the matrix By, thus obtaining decoupled equations in an
alternative coordinate system. Omitting hats for ease of

notation, Eq. (3) becomes, for i € {1,2,..., N, },

VY, +b,-Y =0 in Q
1 . (7)

where b; is the i-th row of the matrix B,. Letting ByR =
RA be an eigendecomposition of By where A;; = d;;\; and

Y = RY, where entries Y}, of ¥ are functions of z, Eq. (7)
becomes

0= -V?RY + B,RY
= —V2RY + RAY
—R(-V2Y +AY).
Because R is invertible,
—VQYk + /\kf/k =0 (8)

for each k. Similarly, letting Bi be the matrix with entries
Bi;; = 0;;Bi;, for the boundary conditions yields

Bi'!VY .n+Y =Bi 'V(RY) -n+ RY =Y,

where Y is a vector with entries Y; ... Because R is linear
operator and constant throughout the particle,

R-'Bi"'R (VY-n) fY =R Y, 9)

From Eq. (9) we observe that diagonalization only truly
decouples the equations if R"'Bi" 'R is a diagonal matrix,
which is only the case if the Biot number is the same for all
species. A more thorough discussion of why this approach
is not readily applicable to the case of differing Biot num-
bers is shown in Appendix A. From this point forward we
will make the assumption that Biot numbers are the same
for all species, allowing us to write Eq. (9) as

1

Bi(v?k n) + Ve = (R 1Yo ).

(10)

To obtain formulas for effective reaction rates, first let
K € RN"*N he the matrix consisting of rate constants

kin ko kin
ko1 koo kon
K= . , (11)
kn.1 kw2 kn.N

We choose arbitrary D; # 0 for species i > N, in order
to obtain a non-dimensional time for the strictly product

species. In a manner similar to Eq. (2) we define ¢7 and
fj for strictly product species as well. Then

¢ (Diag(Y)K1— K'Y) = %DBY,

where
| By NXN,
B = { B } cR

S

2
i
trix with entries D; on the diagonal. (We use the notation
Diag,, (a,) to mean the M x M square matrix with en-
tries a1, as,...,ap on the diagonal and zeros elsewhere.)
The first IV, rows of B correspond to the consumption of
gaseous reactants; let B, € RV»*Nr be the matrix con-
taining rows N, + 1 through N of B. The rates at which
species are created in the catalyst particle are entries MY
of the vector M}

has entries b;; = ¢12(5ij — and D is the diagonal ma-

MP = / epgth (—Diag(Y)K1+ K'Y) dV
Q

1
epgDB/ Y dV (12)
Q

A

1 N
= —e¢ep,DBR [ Y dV. 13
2 €Pg
L Q

For conservative reactions, 17 DB = 07. The vector MP
can be constructed entirely from the values fQ Y; dV for
1 < ¢ < N,. For irreversible reactions, By is a lower tri-
angular matrix; the eigenvalues are then on the diagonal,
and eigenvectors can be found by simple substitution. We
will proceed to outline how this can be computed numeri-
cally (Sec. 2.2) and how these single-step solutions can be
found for a variety of shapes (Sec. 3).

2.2. Numerical Solutions

Because we can construct effective reaction rates from
the integrals of our new coordinates over the particle, we
can turn our attention to computing these quickly. The
approach taken here is to construct a table of reference
solutions that can be interpolated to approximate the re-
quired quantities. Let Z(*B) represent a reference solu-
tion corresponding to constants A and Bi, i.e.
in O

—V2ZWBD) L\ Z(B) — (14a)

1

S vZ(B) 1 Z(AB) _ g

Bi on 99).

(14b)
First, observe that this is a linear partial differential equa-
tion (PDE); if Z(MBY satisfies Eq. (14) then

in O

—V2(aZXMBY) £ N(azWB)) =0 (15a)

1 N . o . A
§V(OzZ()"B’)) n+ (@ZXB)Yy=a  on d.

1 (15b)

In light of this, let Vi = apZPeB) | Because Y} satisfies
Eq. (8) the desired PDE is satisfied in the interior of the
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domain. To ensure the correct boundary condition we need
to satisfy Eq. (10), thus

1
Bi
o <1vz<wi> ‘n+ zw’Bw)

Bi

1 N N R ] A .
E(VY]C . n) +Y, = (V(akZO\k,Bl)) . Il) =+ akz(kk,Bl)

1

= (R'Y)- (16)
Pointwise solutions are then
Yif@) =) rip (R'Yoe)y Z0P(@)  (17)
or in matrix form
Y (x) = RDiag, (Z*P) (2)) a, (18)

where ay, is the k-th entry of a. For effectiveness factors
we need the integral of Y; over €); these are

/ Y, dV =) ripox / 7B qy
a P a

= (RDiagy, (V,n(Ax, Bi)) R'Yo.),,  (19)
where .
(A, Bi) = — / ZOeB) qy (20)
Vo Ja

are single stage effectiveness factors. Combining Eq. (13)
with Eq. (19) yields

Mp 1 1 D M . —
ooV, = 72008 (Di) BRDiagy (n(w, BD) B Yo

an N X N, matrix that depends on T" and

(21a)

Diag,(D; RA . . -
B % { B.R ]Dlagk (n(Ae, Bi)) R™'Y,

(21Db)

where we note that the last line depends only on D;/L?,
R, A, B, and the integrals of effectiveness factors. The
‘diffusion coefficients’ D; (arbitrary constants for solids),
matrix R, vector of eigenvalues, and matrix By comprise
in total N + (N + 1) N, scalars.

There are no restrictions upon how Z*BY or its in-
tegrals are computed for a given A or domain, and differ-
ent approaches will be appropriate for different domains
and for A of different magnitudes. For example, many of
the eigenvalues will be zero, in which case the solution is
constant and no computation is required. Moreover, the
intended quantity is not the pointwise solution but the in-
tegral of the solution (Eq. (19)); this sometimes leads to
selection of a method different from the one that would
typically be used for the pointwise solution. As an exam-
ple, separation of variables solutions (Sec. 3.1) have slow
pointwise convergence when the domain has corners, but
the convergence of the integral of the solution is largely
unaffected. A more thorough discussion of methods and
domains is presented in Sec. 3.

2.3. Computation of Rates

Computation of the multi-step effectiveness vector (or
computed rate) is done in three steps:

1. given B(T'), obtain the diagonalization (A and R)
2. invert R to obtain & = R~1Y,,
3. for each Ay obtain the corresponding (X, Bi)

Each of these steps may either be done online (i.e., for each
required temperature and Biot number) or pre-computed
(i.e., stored in a lookup table and looked up as needed).
By caching the correct values, effectiveness factors for a
given temperature and set of free stream concentrations
can be found by a simple matrix multiplication. Many
quantities, like multi-step effectiveness vectors (MEVs),
can be computed using tables of these values.

Recall € is the catalyst particle voidage, pg4 is the case
density, assumed to be the same inside and outside the
particle, 1) is the deactivation due to coking, and Y; o is
the free stream mass fraction of the i-th species. At each
point in the catalyst the i-th chemical is produced at a
rate (mass per unit time) of

epg | =D ki Yi+ > vk;iV;
J J

which, when integrated over the volume of the catalyst
particle V},, yields change in mass of the i-th species due
to particle p, which we will denote M?, by

MP
: :*Zlﬁkij/Yideszkﬂ/deV (22&)
€Pg F 9) 5 19
= =Y ki Ve Yice + > 0kiiVol Yo, (22b)
J J
where

Viewrll = 3 [ YoV (23)
Vo Ja

(Note the components of the MEV 7! are distinct from
the single-stage effectiveness factors n(Ag, Bi).) Eq. (22a)
is preferred to Eq. (22b) because it recovers the correct
reaction rate in the absence of some or all product species;
the effectiveness factor is undefined in these cases. Fur-
ther, it should be emphasized that, while the single-stage
effectiveness factors 7(Ag, Bi) are bounded between zero
and one, the multi-stage effectiveness factors 7! may ex-
ceed one, as intermediate species may be created within
the particle and promptly consumed. Also observe

MPL? -

VoepsDi (BY), (24)

7 )
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so we have

M? ! DRAR'RH(X,Bi)R™'Y.
= — 1
Vpepg  L? ’ >
1 N
= ﬁDRAH()\,Bl)R vy, (25a)
1 N
= (LZDR) AHABI)R ' | Yy,  (25b)
G

F

E

where H(A,Bi) is the matrix with effectiveness factors
n(Ag, Bi) (Eq. (20)) on the diagonal, A is the matrix with
\; on the diagonal, and D is the matrix with D; on the
diagonal. Recall the matrix B depends on the penalty to
reaction rate due to accumulation of coke v multiplica-
tively, i.e. B = ¢ B’ where B’ is the (constant) matrix ob-
tained in the case ¥ = 1. The eigenvalues A\; then depend
multiplicatively (i.e., Ap = 1A},) on ¢, but the eigendecom-
position does not. There are then two reasonable sets of
lookup tables to create: one if the nominal reaction rates
are constant throughout the simulation, and one if envi-
ronmental factors (e.g., accumulation of coke) effect the
nominal reaction rates. In the case of constant reaction
rates, store a table T'— FE and compute

MP
=FY,.
Viepg

(26)

If nominal reaction rates are modified by a factor v, store a

table (A, Bi) — n(A, Bi) and atable T — (A1,...,An, F, G)
to compute
P
= FDiag,, (\en(\e, Bi)) GYae. 27
o v, BY) (27)

Because n(Ag, Bi) = n(¢A,, Bi) depends nonlinearly on 1,
we must either store the factorization information (as de-
scribed here) or store a two dimensional table (T, ycx) —
FE where yco i is the mass fraction of coke on the particle.

An explicit algorithm by which the MEV may be ap-
proximated is as follows.

Pre-processing:

1. Choose temperatures T < 72 < ... < ()
spanning the range that may appear in the sim-
ulation.

2. For each T compute the corresponding ma-
trix B(T®) and, per Eq. (19),

Y = RDiag,, (V, n(\, Bi)) R™'Yoo  (28)

To compute reaction rates: Given a temperature 7',
1. Find i such that 7() < T < 70+,
T — T(i+1)

2. Compute w = W

3. Approximate the MEV

nrwY W 4 (1-w)Y D (29)
Here we use a linear interpolation in temperature; more
complex interpolations (e.g. [16]) may be used as well.
Some irreversible reactions may result in complex eigen-
values, requiring a two-dimensional interpolation to obtain
single stage effectiveness factors; a thorough investigation
of this is left for future research.

In the remainder of this paper, after some brief notes
about diagonalization of B, we will discuss methods for
finding single-stage solutions as they relate to the present
application (Sec. 3) and present a proof of concept for
usage of these computations in a CFD-DEM simulation
(Sec. 4). Further, the authors of this code make avail-
able a library to assist in implementing these methods into
reactor-scale codes.’

3. The Single-Stage Problem

To complete the computation introduced in Sec. 2.1,
single-stage effectiveness factors are required. Single-stage
effectiveness factors are defined as

Al
n=— [ Zdv, (30
VP Q )
where Z solves
~V?Z+ad*Z =0 in Q (31a)
Bi''VZ-n+2Z=1 on O (31b)

where n is the outward normal and 2 is the (dimensional
or nondimensional) domain in question. For reversible re-
actions it is possible for eigenvalues of B to be complex;
while that case is allowed in the diagonalizatio process, we
will not discuss solutions to the single-stage problem in
that case.

The topic of the single-stage effectiveness factor (for
a? real) has been well-explored in the literature. However,
we will briefly summarize some of the existing literature
on this topic and comment upon the suitability of certain
computation or estimation techniques for this particular
purpose. The diagonalization process imposes no restric-
tions on the method that may be used for computation of
single-stage effectiveness factors, presuming the eigenval-
ues of B remain real. The constraints that are important
are numerical, both with regard to efficiency and mini-
mization of error.

A general discussion effectiveness factors as well as sim-
ple expressions for spheres, slabs, and some other common
shapes (Thl. 2) can be found in standard texts (e.g. [18,

1Code written in Python for building pre-computed lookup tables
can be found at github.com/johnpwakefield /mevlib.
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Table 2: Single-stage effectiveness factors n for a variety of shapes.

19, 15, 13]). Effectiveness factors for shapes like cylin-
ders [8] or prisms can be found exactly through separation
of variables; these are discussed further in Sec. 3.1.

Some estimation techniques for general shapes also ex-
ist [17, 18, 20]. In particular, the approximation for spheri-
cal geometry with the proper nondimensionalization is of-
ten used regardless of geometry, with minimal error [21,
22]. However, the propogation of these errors through the
diagonalization process for coupled reactions has yet to be
studied. Further discussion of general estimates for effec-
tiveness factors can be found in [21, 22, 23, 17, 19, 15, 18].

For the present application, fast and accurate evalua-
tions of effectiveness factors are required. Evaluation of an
exact (potentially unclosed) form (e.g. from Sec. 3.1) may
be extremely slow in practice. More general estimates may
prove to be useful here, but further study of the propoga-
tion of the error in these estimates through the diagonal-
ization process is required. For the proof of concept that
follows, simple lookup tables with interpolation are used.

Interpolation error is well understood, the time required
to interpolate from a one dimensional table is negligible,
and the required computation time to obtain single stage
effectiveness factors is not incurred at runtime; the time
required to compile a table ahead of time is negligible.

8.1. Separation of Variables

Separation of variables, sometimes referred to as ex-
pansion in eigenfunctions, is a well-known technique by
which many linear PDEs in some domains may be solved.
A thorough treatment of this simple technique may be
found in any standard PDE text, e.g. [24]. We will, how-
ever, comment on the suitability of these solutions for the
purpose of providing single-stage effectiveness factors in
the present context, using the cylinder as an illustrative
example. The separation of variables solution for Eq. (31)
relies on well-known properties of Bessel functions [25, 26],
was first presented in the context of chemical engineering
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by Gunn [8], and has been commented on by later au-
thors [9]. This approach is difficult to modify for finite
Biot number, so we have taken Bi~! = 0 for this discus-
sion.

The solution in the interior of the cylinder is given by

Z(r,z) = Z1(r,z) + Za(r, 2) (32)
where
> 4 . (7(2n+1) Iy (v 1)
Zi(r,z) = sin < z)
7;0 m(2n + 1) hy Iy (vp, rp)
(33)
with )
02 =a®+ %(%L +1)?
P
and

% cosh< a2+% (z—h;)) Jo (%T)

Za(r,z) =2 Z : /.
k=1 cosh a? + Ik i1 (k)
( ) (34)

T

where ji are the increasing sequence of zeros of J;. The
corresponding effectiveness factor is presented in Thl. 2.

For the present application the single stage effective-
ness factor must be evaluated once for every active species
for every temperature present in the domain. The required
frequency of evaluation makes non-closed forms like those
obtained from separation of variables considerably expen-
sive. One approach to this problem is to determine an
exact or heuristic number of terms that must be evaluated
to obtain the desired error. For example, the formula for
the effectiveness factor in a cylinder (Thl. 2) has two dis-
tinct parts, whose relative importance is highly dependent
upon the aspect ratio v (see Fig. 1). To utilize these esti-
mates without precompilation of tables, functions K (4, )
and N(0,7) such that

‘?"m

3 |
>
vl

|AN(5,7) — Aso + Bk (s,7) — Boo| <9 (35)
and
taN(8,7) + K (6,7),

where 14 and tp are the computational costs of comput-
ing a single term in Ay and By respectively would need
to be found. This is essentially the problem addressed
in [23, 9]. Another technique not explored in the litera-
ture is to utilize series convergence acceleration techniques
(e.g. Aitken acceleration, see [27] for an overview) in the
context of these series. Figure 2 shows convergence of sums
Ay and Bk (see Thl. 2) as a function of computational
‘cost units.” One ‘cost unit’ is approximately the the time
it takes to perform one floating point multiplication; this
accurately weights the high cost of evaluating Bessel func-
tions. Ultimately, the computational time taken to esti-
mate the single-stage effectiveness factor is unacceptable
for a computation that must be performed separately for

(36)

hundreds of thousands of particles in a complex simula-
tion, but negligible in the context of a single computation
or pre-computation of a table.

4. Integration into Reactor Models

We will now turn our attention to an CFD-DEM sim-
ulation of an FCC unit using the kinetics from Xiong et al.
[28]. For the present mechanism with particles of diameter
d, = 210 pm the leading eigenvalue (with nondimensional-
ization by the particle diameter) of \y = b1; =~ 9.6331 cor-
responds to a single-stage effectiveness factor of 7(A1,0) =~
0.6591; reaction rates computed with diffusion limitations
differ significantly from those computed without in this
case. Following Lattanzi et al. [12] we use the correlation
of Sirkar [29] and obtain Biot numbers on the order of 500
to 8000, depending on the species weight, justifying the use
of the Bi — oo limiting case. Simulations are performed
within NGA, a second-order, finite volume, variable den-
sity, low Mach number code [30, 31, 4]. A semi implicit
Crank—Nicholson scheme was used to achieve second order
accuracy in time. The bounded quadratic upwind biased
interpolative convective scheme (BQUICK) [32] was used
for advancement of scalars (e.g., mass fractions). In this
section we will describe how heterogeneous chemistry with
rates computed per Sec. 2.1 may be integrated into such a
code. This both provides a proof of concept for the present
approach (and by extension [12]) as well as an guide for
future implementations of similar rate computations.

Though the catalyst particle contains a mixture of solid
catalyst and gas, in the description that follows we will
treat the region containing the catalyst particle as solid;
we are operating under the assumption that the pores are
small enough that flow through them is negligible com-
pared to the fluid outside the catalyst. For chemistry, it
is assumed the concentration gradient inside the catalyst
particle does not deviate significantly from the steady state
solution at any given time, i.e. any change of the bound-
ary condition results in a near instantaneous adaptation
of the interior to the corresponding steady state solution.
This avoids the need for a mass balance between the cat-
alyst pores and the surrounding fluid (e.g., see [7, 33]).
For this reason, the amount of any particular gas-phase
reactant inside the catalyst particle is determined by the
surrounding flow and the steady-state solution, and only
the reaction rate is required. For other models of this type
see [3, 34, 5].

4.1. Governing Equations

In the gaseous phase (outside the superficial particle
volume) conservation of mass for each species is given by

% (Egnggyi)+V-(£gngg,iug) = €gV'(pg'Dg,iVYg7i)+Mi,

(37)
where p, is the gas density, €, is the gas volume frac-
tion, Yy ; is the mass fraction in the gaseous phase of the
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Figure 1: Effectiveness factor in a cylinder as a function of aspect ratio.

Table 3: Species and Catalyst Parameters

(a) Molecular weights of lump species.

(b) Particle parameters need to compute diffusion co-
efficients per Eq. (5).

Species | Mol. Weight [g - mol~"] Pore Diameter (D 0.002
Feed Ol (9) 444.0 ore Diameter (Dpore) | 0

z Voidage (€) 0.319
Diesel (D) 230.0 Tortuosity (7) 7.0
Gasoline (G) 115.0 Y .
Liquid Petroleum Gas (LPG) 52.0
Dry Gas (Dg) 16.0
Coke (Ck) 400.0

i-th species, uy is the gas phase velocity, Dy ; is the gas
phase diffusivity of the i-th species, and M; is the chemi-
cal source term for the i-th species (see Table 5). Details
on the formulation of Eq. (37) can be found in [31]. Be-
cause we are operating in the CFD-DEM framework, M;
is ultimately obtained from projecting the source terms for
each particle M? (Egs. (22), (26), (27)). These equations
can be summed to obtain total mass conservation

% (egpg) +V - (egpguy) = Z M. (38)

In the absence of mass transfer from the gas phase to the
solid phase the right-hand side of Eq. (38) is zero. If coke
is generated, then

ZM]‘ = —Mcxk.

J

(39)

Similarly, conservation of momentum is given by

0
pn (€gPgtg) +V - (egpgtgtty) = €,V -Tg+F +egpgg, (40)

where

2
7y = =T+ g (Vg + (V)" = 2w T) (1)

is the stress tensor, pg is the pressure, pg is the dynamic
viscosity, I is the identity tensor, F are forces between the
particles and the fluid, and g is acceleration due to gravity.
Viscosity pg is held constant (Table 5). We employ the
equation of state for an ideal gas

P, ="PiRT,,

where P, is the static pressure, W is the mixture molec-
ular weight (W~ = 37, Y;/W;) and R is the ideal gas
constant. The molecular weights used for the demonstra-
tions in this section can be found in Table 3a.

Mass source terms are given by Egs. (22a) and (22b).
The free stream mass fractions are given by the mass frac-
tions in the fluid phase interpolated at the particle location
Y. =Y] - For species other than coke, mass exchange
is projected onto the Eulerian mesh (Eq. (47)). For coke,
this remains the correct formula for generated mass, but
this mass stays on the particle, making the mass of the
particle the sum of the catalyst mass and the mass of the
coke

my = mSA + mSK. (43)

CA

5 1s constant, but the mass of

The mass of the catalyst m
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Figure 2: Convergence of the single-stage effectiveness factor in a cylinder.

coke changes per

dmCK
The motion of the p-th particle is governed by
dx
T
du . dm
Myt = VoV Tl + £+ =P, +myg + C
(45)
where
. €
-fz(vi = mp,ng (ugap — up) Feg, Rep), (46)

p

and C' is the force of collisions. In the expression above,
Re, = €404 [Ugap — Up|dp/ g, where d, is the particle di-
ameter and uqa)p is the gas velocity evaluated at the par-
ticle position. For the proof of concept presented here, the
particles are treated as spheres to make use of standard
models for drag and collisions. For non-spherical parti-
cles, development of accurate approximations to drag re-
main an active area of research [35, 36, 37]. Here, the
drag correlation of Tenneti et al. [38], valid for spheres at
finite volume fraction and Reynolds number, is used. The
force of collisions C' are modeled by the soft-sphere model
of Cundall and Strack [39] with coefficient of restitution
e = 0.8. At present, heat transfer between the phases is
ignored and the temperature is held constant at 600 °C.
Because this is a proof of concept for the general method
presented above, the interpolation from a table of relevant
temperatures is conducted nonetheless.

Information from particle p to the fluid mesh, namely
the rate of mass accumulation/destruction of species ¢,
M?, and the force, are projected onto the fluid mesh by

NP
Mi(x) =) G (je —ay|) Mf

(47)
p=1
and
Y dm
Flz) =Y G(lz—=,)) (f;}fag + dtpup) . (48)
p=1

respectively, where G is the smoothing Kernel taken to be
Gaussian with a characteristic size of 7d,. Further details
can be found in Capecelatro and Desjardins [31]. To sum-
marize, single stage effectiveness factors (Sec. 3) are used
in Eq. (25b) to compute effective reaction rates (Eq. (21))
by

MP? = FEY,,
= FDiag;, (Axn(Ag, Bi)) GYo,

(49a)
(49b)

where the former (Eq. (49a)) is used when deactivation
due to coking is not modeled and the latter (Eq. (49b)) is
used when it is. These are then, for CFD-DEM, projected
onto the computational mesh via Eq. (47).

4.2. Reaction Mechanism

Figure 3 depicts the reaction mechanism considered in
the present study proposed by [28] and used in [12]. Reac-
tion parameters are shown in Tables 3 and 4. Each reaction

10
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Table 4: Reaction coefficients (see Fig. 3). All reactions are at reference temperature 773K.

Reaction | Pre-Exponential Factor (4;;) [s7'] | Activation Energy (Ea;;) [kJ - mol™!]
S—D  (ki2) 1.413 47.6
S—G  (ki3) 4.337 43.4
S — LPG (k14) 1.163 38.5
S — Dr (ki5) 0.114 30.2
S—Ck (ki) 0.386 30.0
D— G (ko3) 0.229 54.1
D — LPG (ka4) 0.161 62.9
D — Dgr (k25) 0.041 66.7
D — Ck (ko) 0.137 65.0
G — LPG (k34) 0.128 80.5
G — Dr  (kss5) 0.030 85.2
G — CK (k‘36> 0.103 77.3
rate constant is of the form
Ea;; (1 1
kij = Aij exp (— ;;” (Tg - To)) ; (50)
where A;; is a pre-exponential factor, Ea;; is the activation
energy, R is the ideal gas constant, and Ty = 773K is
the reference temperature. For reactions that do not take
place, A;; = 0. The matrix K becomes
S D G LPG Dgrp Dg
S 0 ko ks ki ks ks S
O e O P T PO R S il B
D o 0 o0 0 0 0| LPG"
0 O 0 0 0 0 Dp
kag | ka5 | k24 ka3 0 O 0 0 0 0 Ck
G
4.8. Particle in a Box
kse | kss k34 .
Before proceeding to CFD-DEM, we demonstrate the
LPG +— framework on an ODE model. Consider a case in which a
single catalyst particle of diameter 400 pm is placed inside
a small, periodic domain with feed oil (S5). Here ‘small’

! Dp ¢+—-

—)C

K

Figure 3: A schematic of the reaction mechanism originally from [28]
and used in [12].

11

means that the time required for the concentration outside
the superficial particle to become uniform is negligible.
We would in this case expect over time to be left with
liquid petroleum gas (LPG), dry gas (Dg), and coke (Ck).
If we further assume that the gas phase is fully mixed,
i.e. the mass fractions of each of the preceding species is
constant in the gas phase, then this becomes a simple ODE
that we can use to illustrate the chemistry model described
above without the complications of fluid flow around the
particles. This is in essence a zero dimensional model; the
reaction rates discussed here may be used for these models
as well.

The domain, denoted by V, is an L? box with initial
mass fractions

(Y2, YP yC yLPC yDPry = (0.80,0.00,0.00,0.00,0.00).
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Figure 4: Species mass as a function of time computed with catalyst
deactivation from accumulation of coke as approximated by the ODE
model (Eq. (52)).

Under the perfect mixing assumption, the mean gaseous
mass fraction in the domain is the same as the mass frac-
tion at the boundary of the particle, so
L¥Y o = / Y, dV. (51)

\%

Using Egs. (22) we can then write an ODE for the (homo-
geneous) gaseous volume fractions inside this box as

% €gPgYi 00 = % /ngngg,i dV = /V/\/lZ dV = M?.

(52)
Eq. (26) or (27) can be used to evaluate the right-hand
side. Note that, because coke is produced and remains
on the particle, the gas density p, is a dynamic quantity.
Results of the resulting simulation with catalyst deactiva-
tion due to coking is shown in Fig. 4. As expected, the
three reacting species S, G, and DR are consumed over
time, leaving a distribution of D, LPG, and CK over long
enough timescales. Because the total amount of reactants
are limited, the influence of coke accumulation in this sce-
nario are small.

4.4. Fluidized Bed

We will now turn our attention to a two-dimensional
CFD-DEM simulation of a fluidized bed reactor. The sim-
ulations are based on the cases in [40], but with catalyst
properties and kinetics to match [12, 28]. The fluidized
bed has a width of 0.15m and a height of 0.3m; it is
approximated by a 384 x 768 mesh. The domain con-
tains 212552 spherical particles with a diameter of 210 pm,
material density of 1160 kg - m~3, and internal voidage of
€ =~ 0.319 (see Thl. 5). Particles are held in a plane, but
a domain thickness of 300 um was used for volume frac-
tion computations [41]. The inflow velocity was chosen to

Table 5: Parameters for the fluidized bed test case.

Domain Dimensions 30mm x 15mm
Eulerian Mesh 768 x 384
Particle Diameter 210 pm
Number of Particles 212552

Inlet Velocity 0.1434m -s~!
Particle Voidage (¢) 0.319
Particle Material Density 1160 kg - m~3
Force of Gravity (g) 9.81m-s2
Temperature 600 K
Dynamic Viscosity () 3.1462 x 107°N-s-m~2
Species Diffusivity (Dy,;) 4.4946 x 10~°m? - s~ 1

be 0.1434m - s~', in the range of 7-12 times the minimum
fluidization velocity. The inflow gas contains only feed oil,
with component mass fractions

(Y YR Vi Yis., Yir) = (0.04,0.00,0.00,0.00,0.00).

Coke (CK) does accumulate on the particles and the mass
of the particles does change as a result, but the accumu-
lation is not significant over the timescales considered.

Figure 5 depicts a fully evolved state (¢t = 5.4s). First,
significant differences in mass conversion exist at differ-
ent points across the width of the bed, and these effects
can be seen in the flow downstream of the top of the bed.
This strongly suggests that the bubbling structure of the
bed influences reaction rates in a manner not captured by
models compartmentalized in only the vertical direction.
Quantitative agreement of models with experimental flu-
idized bed reactors will require not only accurate reaction
rates in the vicinity of individual particles, but also model-
ing of the fluidized bed within which those particles exist.
It is likely that, even in the absence of quantitative accu-
racy, models of this type can be qualitatively useful in the
design of efficient fluidized bed reactors.

The breakdown of average time spent in each routine
during a single timestep of the CFD-DEM simulation is
given in Fig. 6. The majority of the time is spent solving
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the pressure Poisson equation to enforce continuity (Eq. (38)).ses

We briefly note that the pressure Poisson equation was
solved via an efficient multigrid method, and other solu-
tion procedures are unlikely to result in significantly re-
duced time. The particle update (Eq. (45)) contributes to
approximately 30% of the time, with the majority spent
in computing collisions. Here, collisions are solved us-
ing nearest-neighbor detection that scales as O (N, log N,)
where N, the number of particles. Most importantly, the
computation of reaction rates only contributes to ~ 2%
of the total time due to the use of efficient lookup tables.
Thus, the proposed framework allows for intraparticle dy-
namics to be captured in a reactor-scale model at negligible
cost.
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Figure 5: A fully evolved state of the fluidized bed test case.

5. Conclusions and Areas for Future Research

This work presents a general framework for modeling
of first order heterogeneous chemical reactions in porous
particles. Open source code is provided that generates
pre-computed lookup tables for efficient implementation
in CFD-DEM. The proposed methodology is built under
the assumptions that the interior can be described with
constant diffusion coefficients, the Biot number describing
the boundary condition does not vary significantly between
species, and the intraparticle dynamics maintain a quasi-
steady state. The constraints on chemistry are clearly
separate from constraints on geometry, and a computa-
tionally efficient scheme for approximating rates in CFD
simulations is obtained by decomposing the problem into
decoupled subproblems. Single stage effectiveness factors
for a variety of common catalyst shapes are summarized
(Tbl. 2). The available code and estimates should acceler-
ate the introduction of this functionality into other CFD
codes by providing pre-processing steps.

The limitations of this approach lead directly to av-
enues for future work. The ostensible goal of the present
work is to assist in design of particle and reactor geometry
taking into account the dynamics of the reactor (i.e., mod-
els including particles moving within a fluid rather than
a one dimensional model of a bed of particles). At the
desired scale, resolving the interior of the particle is im-
practical, but there may be better simplified models for
reaction rates within a single particle.

Efficient methods for solving single-stage problems in
the presence of small Biot numbers also remain an area
for future research. Reversible reactions may introduce
complex eigenvalues and, while the diagonalization is still
valid, the single-stage problem becomes complex, requir-
ing different numerical or analytical methods for comput-
ing integrals of solutions. Further, should interpolation be
used in this case, the validity of a two dimensional inter-
polation in this context would need to be explored.

The model for coking (or other environmental penalties
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Figure 6: Distribution of time spent computing a single timestep
of the CFD-DEM simulations with the parameters in Table 5. The
subject of the present work falls within the ‘Reaction Rates’ category.
‘Particles’ consists of drag computations, projection of quantities to
and from the mesh, and resolving particle collisions.

expressed through ) are assumed to be uniform through-
out the particle. Exact or approximate site tracking re-
mains an area for future research. Practical models for
inhomogeneous deactivation within catalyst particles in
the context of simulations of many particles will require
reduced order representations of historical reaction sites,
and it is at this point unclear what a practical representa-
tion of these distributions would be.

The restrictions on types of chemical reactions are sig-
nificant; the requirement of first order kinetics is particu-
larly restrictive. For the diagonalization proposed in [12]
to be possible, Eq. (2) must be linear in mass fraction (or
equivalently, concentration). A violation of this assump-
tion would either require discovery of an equivalent tensor
decomposition for polynomial dependence (e.g. second or-
der reactions) upon mass fraction or a clever nonlinear
decoupling technique in the general case.

The boundary conditions for reacting particles remains
an important area of research more generally. The exterior
of the catalyst particle is clearly more available than the
porous interior; it is possible the integral of the bulk near
the superficial boundary of the particle is not the appropri-
ate estimate. Mass transport at the superficial boundary
of the reacting particle is affected by the aforementioned
geometry problems, the fluid boundary layer, the differ-
ence in (effective) diffusion at the boundary, the frequent
proximity of other catalyst particles in the intended appli-
cation, and the precise location at which the ‘free stream’
boundary values are estimated. There is not at present
sufficient models for the interplay of these effects.

This generalized approach for quickly computing multi-

14

stage reaction rates provides a framework for applications
to other catalysis and pyrolysis processes (e.g. [42]), ad-
sorption of CO2 [43, 2] or SOy [44], among others. Ap-
plying this method to another application only requires
computing the matrix B from reaction rates, determining
the regimes of the eigenvalues of this matrix, and solving
the single-stage problem for these eigenvalues. Though
the single-stage problem may prove difficult in some of
those cases (e.g. in the case of complex eigenvalues), stan-
dard methods for approaching these problems exist, and
the computation of those solutions can be separated from
the online computational cost. For the case of real eigen-
values (e.g. in the case of irreversible reactions), general
estimates have been presented that are independent of ge-
ometry, providing an alternative to a second interpolation.
Computationally feasible corrections of reaction rates due
to intraparticle diffusion limitations both in catalysis and
other applications has the potential to improve accuracy
of small-scale and reactor-scale simulations across concen-
tration, temperature, and particle size/shape regimes.
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Appendix A. Differing Biot Numbers

One of the limitations of the present approach is the in-
ability to accurately handle different Biot numbers across
species. In this section we will discuss why it is difficult (or
impossible) to use this approach with Biot numbers that
vary across species; a linear decoupling of the type dis-
cussed in Sec. 2.1 may not be possible in this case. Begin
by taking the approach of Sec. 2.2 from Eq. (6) without
the assumption that Biot numbers are equal for all species.
For the type of method proposed here, Y must be written
as some linear combination of reference solutions, each of
which must be a solution to Eq. (8) for A\x. The equation

}Afk = ZOL}CJZA()\’“’b") (Al)
J

then needs to satisfy Eq. (6). For a representation of this
form to exist, it needs to be possible to find coefficients
o i, such that the left side of Eq. (6) is constant on the
boundary. Here, instead of letting Bi be a scalar, let Bi
be the matrix with Biot numbers for each species Biy, Bis,
..., Biy,. on the diagonal (Bi = Diag;(Bi;)). First, observe

(Bi" (VY -n) + RY);
= (Bi 'R"YVY -n)+ R'Y),
1 . .
=30 Zli,k(vyk -n) + Zli,kyk
vk Kk
1

= B E li,kak,j (VZA(Ak’bj) . n) + § li’kak’jZA()\k’bj)
1; - .
k,j k.j

b; . .
— Zlivko‘kdB*]i, (1 _ Z(Ak,bj)) + 37 by g 20w
k,j ’ k,j

1y bi \ -
= Zli,kak,jszi +Zli,kak,j (1 - BJ> ZQwbi)
k.j k,j

1;

Si T;

For this quantity to be constant, we must find a sequence
(bj) such that S; and T; are constant. As long as S; con-
verges (as is the case when it is a finite sum), it is constant.
T; is made constant in the case of all equal Biot numbers
by taking b; = Bi; so that T; = 0. In the case of non-equal
Biot numbers, it is not clear how aj, ; and b; may be cho-
sen, nor if it is possible for them to be chosen. In the case
in which (b;) is an infinite sequence, this truncation will
introduce an additional source of error.
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